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Abstract

Sparse Factor Analysis (SFA) is often used for the analysis of high dimensional data, providing
simpler pattern of factor loadings by constraining insigni�cant loadings to be zero. However,
existing SFA approaches require the assumption of normality of data since sparse factor loadings
are obtained through a likelihood function with additional constraint or penalty function.
This work proposes a method for obtaining sparse factor loadings without requiring any
distributional assumption. In this method, the orthogonal sparse eigenvectors were computed
based on Procrustes reformulation, and thereafter, an iterative procedure was provided to
�nd sparse factor loadings corresponding to the orthogonal sparse eigenvectors. In the end,
the proposed method was compared with penalized likelihood factor analysis via nonconvex
penalties using simulated data. Results show that sparse factor loadings from both methods
provide simpler structure of factor loadings than the structure obtained from standard Exploratory
Factor Analysis. In addition, the new method out-performs the penalized likelihood factor
analysis via nonconvex penalties as it provides smaller values of MSE even when the two
methods have the same level of sparsity.
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1 Introduction

Sparse Factor Analysis (SFA) is a variant of the standard Factor Analysis (FA) for analyzing
correlation structures among observed variables. SFA improves interpretability of factor loadings
by avoiding rotational indeterminacy associated with FA models and constraining many entries of
the matrix of loadings to be zero. This technique became a very active research area for the analysis
of high dimensional data in the last few years (e.g., Carvalho, et al., 2008 ; Engelhardt, and Stephen,
2010 ; Adachi and Trenda�lov, 2014 ; Bunte, et al., 2016 ; Zhou, et al., 2016 ; Yamamoto, et al.,
2017). However, current literature on SFA suggests the normality assumption of data as the sparse
factor loadings are obtained from likelihood function with additional constraint or penalty function.
For example, Choi, Zou and Oehler (2011), Ning and Georgiou (2011), Hirose and Yamamoto
(2015) and Trenda�lov et al. (2017) discussed the penalized maximum likelihood procedure to
obtain sparse factor loadings. Choi, et al. (2011) and Hirose and Yamamoto (2015) proposed
the sparse approach of Factor Analysis based on the maximum likelihood with the least absolute
shrinkage and selection operator (LASSO), Tibshirani (1996) and nonconvex penalty respectively,
and developed Expectation-Maximization (EM) algorithm to compute the sparser solutions. Ning
and Georgiou (2011) addressed the standard maximum likelihood (ML) EFA with L1-norm penalty,
while Trenda�lov, et al. (2017) suggested a special reparameterization with additional LASSO
penalties introduced into the standard factor analysis problems. Authors have shown, through
empirical examples, SFA approaches outperformed the classical FA in terms of interpretability of
factor loadings. However, the use of the maximum likelihood function to obtained sparse factor
loadings is more complicated since this implies normality assumption which may a�ect the overall
�t especially when the data under investigation deviate substantially from the normal distribution
(Trenda�lov, et al. (2017)). Furthermore, regularized maximum likelihood-based method tends to
produce too many zero loadings.
In this article, a distribution-free sparse principal component is suggested to provide sparse factor
loadings. Indeed, sparse principal component is used to obtain sparse eigenvectors from which
sparse factor loadings are calculated. This study has employed the method proposed by Benidis,
Sun, Babu, and Palomar (2016) in obtaining orthogonal sparse eigenvectors of a sample correlation
matrix. This method is deemed appropriate as it is very suitable for high-dimensional data and
provides sparser orthogonal eigenvectors. Then, an iterative procedure is applied to provide the
sparse factor loadings based on obtained orthogonal sparse eigenvectors.
The rest of this paper is organized as follows: Section 2 presents a brief description of the penalized
likelihood factor analysis (via nonconvex penalties) proposed by Hirose and Yamamoto (2015).
Section 3 focuses on the proposed methodology to �nd sparse factor loadings. In Section 4, the
performance of the proposed method is compared with the regularized maximum likelihood method
proposed by Hirose and Yamamoto (2015) through numerical examples using simulated data while
discussion of results and conclusion are presented in Sections 5 and 6, respectively.

2 Penalized likelihood factor analysis

The penalized likelihood estimation in factor analysis is the optimization of the likelihood function
of the factor model with additional penalty function which can be convex or nonconvex function.
The penalized likelihood factor analysis via nonconvex penalties suggested by Hirose and Yamamoto
(2015) is based on the following maximization problem:
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max
Λ

l (Λ,Ψ)− n
p∑
i=1

k∑
j=1

ρP (|λij |) (2.0.1)

where,

l (Λ,Ψ) = −n2 p log (2π)+log |Σ|+tr
(
SΣ−1

)
, is the log-likelihood function of the factor model with

Σ = ΛΛ
′
+Ψ and S being the sample correlation matrix; Λ = [λij ] , is a p×k matrix of factor loadings

; Ψ is a p× p diagonal matrix whose diagonal elements, ψii are called unique variances; n, p and
k are the number of observations, manifest variables, and factors respectively. P (.) is a nonconvex
penalty function and ρ > 0 is the parameter of regularization. As nonconvex penalty functions,
the smoothly clipped absolute deviation (SCAD) and the minimax concave (MC+) introduced by
Fan & Li (2001) and Zhang 2010) respectively, are the most widely used to enhance the sparsity of
factor loadings. SCAD and MC+ are considered as alternative to the lasso (the L1 - penalty) and
they are de�ned respectively as follow:

P (θ; γ; a) = I (θ ≤ γ) +
(aγ − θ)+

(a− 1) γ
I (θ > γ) fora > 2 (2.0.2)

γP (θ; γ; a) = γ

(
|θ| − θ2

2γa

)
I (θ < γa) +

γ2a

2
I (|θ| ≥ γa) (2.0.3)

where, θ represents the parameter subject to the constraint; γ and a are the parameters of regulation
and I (.) is an indicator function for a given value of γ and a .

The maximization problem (1) using SCAD or MC+ can be solved by an iterative procedure which
combined the EM and coordinate descent algorithms (see, Hirose and Yamamoto, 2015).

3 Methodology

The extraction or estimation of the sparse factor loadings is generally done via a likelihood function
with additional penalty function introduced in the factor analysis model. However, since this
approach requires normality of data, we used the sparse eigenvectors to obtain the sparse factor
loadings which is independent of the distribution of the data. Thus, the approach requires �nding
sparse eigenvectors before the computation of the sparse factor loadings.

3.1 Computation of sparse eigenvectors from a sample correlation matrix

There are various methods of computation of sparse eigenvectors of a matrix among which the
orthogonal sparse eigenvector via Procrustes reformulation proposed by Benidis, Sun, Babu, andPalomar
(2016). Estimation of orthogonal sparse eigenvectors from the sample covariance matrix is done
based on the following maximization problem:

maximize
V

Trace
(
V TSV D

)
−

k∑
i=1

ρi‖vi‖0 Subject to V TV = Ik (3.1.1)
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where,

k is the number of eigenvectors to be estimated; p is the number of random variables; V is a p× k
matrix containing the k eigenvectors that correspond to the k �rst eigenvalues (leading eigenvectors);
D is a diagonal matrix of weights to ensure that V contains the leading eigenvectors without an
arbitrary rotation. D is chosen such that the diagonal of entries V TSV D are di�erent from those
of V TSV while keeping the right descending order of the eigenvectors, V at each iteration. D
can be a scaled identity matrix since k 6= p in factor analysis; ‖vi‖0 the l0 -norm function with
vi ∈ V (i = 1, . . . , k) .

The optimization problem (4) is directly intractable due to the nonconvexity and discontinuous
implied by the penalty function, ‖vi‖0 . To deal with this problem, the following smoothened
function presented by Song et al (2015) is used to approximate the penalty function:

zεδ (x) =

{ x2

2ε(δ+ε) log(1+ 1
δ )
, |x| ≤ ε

log( δ+|x|
δ+ε )+ ε

2(δ+ε)

log(1+ 1
δ )

, |x| > ε
(3.1.2)

where,

x is the variable of interest; δ > 0 and0 < ε� 1 are parameters that controls the approximation of
the penalty function.

Then, substituting the l0 -norm function, ‖vi‖0 by the function, zδ (x) in problem (4) yields a
nonconvex but di�erentiable optimization problem which can be written as:

max
V

Trace
(
V TSV D

)
−

k∑
i=1

ρi

p∑
j=1

zεδ (vij) , Subject to V TV = Ik (3.1.3)

Where,

zεδ is the penalty function which approximate the l0 -norm function; ρi , δ andε are the parameters
that controls the whole optimization process with 0 < δ ≤ 1, 0 < ε � 1 , ρi > 0 and vij ∈
V (i = 1, . . . , k; j = 1, . . . , p) .

The optimization problem (6) is a non-convex problem which can be solved using minorization-
maximization (MM) based mainly on two key quantities, G and H obtained from functions that

majorize Trace
(
V TSV D

)
and

∑k
i=1 ρi

∑n
j=1 z

ε
δ (vij) respectively. The quantities G and H are

expressed at each iteration, l , as follow:

G(l) = SV (l)D (3.1.4)

and

H(l) =
[
diag

(
w(l) − w(l)

max

⊗
1p

)
ṽ(l)
]
p×k

(3.1.5)

where,
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w(l) ∈ Rnk+ ; ṽ(l) = vec
(
V (l)

)
∈ Rnk+ ; w

(l)
max ∈ Rk+ , with wmax,i being the maximum weight that

corresponds to the i th eigenvector ṽ
(l)
i (i = 1, . . . , k) .

Each weight, w
(l)
i ∈ w(l) is given by:

w
(l)
i =

{ ρi
2ε(δ+ε) log(1+ 1

δ )
, |ṽ(l)

i | ≤ ε
ρi

2 log(1+ 1
δ )|ṽ

(l)
i |
(
|ṽ(l)i |+δ

) , |ṽ(l)
i | > ε

(3.1.6)

The algorithm for performing the optimization problem is described as follow:

1) Initialization: Set the initial iteration, l = 0 and choose the starting point V (0) .

2) Compute G(l) and H(l) as de�ned previously.

3) Perform the Singular Value Decomposition (SVD) of G(l)−H(l) to obtained the eigenvectors,
Lleft and Lright .

4) Compute the new eigenvectors, V (l+1) = Lleft (Lright)
T
.

5) l = l + 1

6) Repeat steps 2-5 until convergence.

3.2 Computation of sparse factor loadings

Let Y be a p× p matrix of scores of observed variables and S , a correlation matrix obtained from
Y . The principle of factoring by principal component assumes that if uii and qi (i = 1 . . . , p) are
the eigenvalues and eigenvectors of S respectively, then, S and Λ , the matrix of factor loadings,
can be expressed by:

S = QUQT (3.2.1)

and

Λ = V (U∗)
1
2 (3.2.2)

where,

U = [uij ] , is a p× p diagonal matrix (diagonal entries uii ); Q = [qij ] is a p× p matrix containing
the p eigenvectors corresponding to the p eigenvalues of S . QT is the transpose of Q . Λ = [λij ]
, is a p × k matrix (−1 ≤ λij ≤ 1) ; p and k are the number of observed variables and common
factors, respectively. U∗ , is a k×k diagonal matrix whose diagonal contains the �rst k eigenvalues,
uii (i = 1, . . . , k) and V is the p× k matrix of eigenvectors corresponding to the �rst k eigenvalues
of S .
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When qij 's are not the true eigenvectors of S , then, QTSQ 6= U and computing factor loadings
with the true eigenvalues of S is inappropriate because such estimation may produce out of range
values leading to incorrect estimate of the sample correlation matrix. Moreover, the matrix ( QTSQ
) can be used to compute the sparse factor loadings that �t with these eigenvectors.

First, it should be noted that the fundamental concept of factor analysis requires that ΛΛT must
be Gramian Matrix and of rank k (Everitt, 1984; Thompson, 2004). Subsequently, this implies that
the matrix product of the sparse factor loadings by its transpose should be symmetric and positive
semi-de�nite with rank k .

Now, let V s ∈ Rp×k be the sparse orthogonal eigenvectors generated from S ( V s 6= Q, true
eigenvectors of S) and QUQT with Q and U , being the p × p eigenvectors matrix and the p × p
diagonal matrix containing the eigenvalues of S respectively. The matrix product (V s)

T
SV s can

be expressed as:

(V s)
T
SV s = (V s)

T [
QUQT

]
V s (3.2.3)

(V s)
T
SV s = (V s)

T
QUQTV s (3.2.4)

As V s and Q are both orthogonal eigenvectors ( V snot ⊥ Q ), we can see that,

(V s)
T
QQTV s = Ik (3.2.5)

Accordingly, (V s)
T
Q ∈ Rkp is an orthogonal matrix and QTV s ∈ Rpk is its transpose. Let

T = (V s)
T
Q , then,

(V s)
T
SV s = TU1/2U1/2TT (3.2.6)

(V s)
T
SV s =

(
TU1/2

)(
TU1/2

)T
(3.2.7)

The matrix product
(
TU1/2

) (
TU1/2

)T
is a Gramian matrix. Therefore, the diagonal entries of the

matrix product
(
TU1/2

) (
TU1/2

)T
are strictly positive, but the o�-diagonal elements are necessarily

neither positive nor equal to zero ( (V s)
T
Q 6= I ). Moreover, these diagonal entries are not

unavoidably in decreasing order, but they can be used as eigenvalues with the sparse eigenvectors,
V s to obtain the sparse factor loadings, Λs because:

1) The number of coe�cients on the diagonal of
[(
TU1/2

) (
TU1/2

)T ]
equals the number of

columns of V s ;

2) The matrix product,

V s
[(
diag

[(
TU1/2

) (
TU1/2

)T ]) 1
2

Ik

]
.

[(
diag

[(
TU1/2

) (
TU1/2

)T ]) 1
2

Ik

]
(V s)T , is a p × p

symmetric matrix of rank k ;
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3) The diagonal of
[(
TU1/2

) (
TU1/2

)T ]
has positive values which can be arranged in decreasing

exactly like the eigenvalues of a positive semi-de�nite matrix.

Subsequently, the matrix of factor loadings, Λs can be expressed by:

Λs = V s

[(
diag

[(
TU1/2

)(
TU1/2

)T]) 1
2

Ik

]
(3.2.8)

which is equivalent to

Λs = V s
[(
diag

[
(V s)

T
SV s

]) 1
2

.Ik

]
(3.2.9)

where,

V s ∈ Rp×k is the sparse eigenvectors generated from S ; Q and U are the p× p eigenvectors matrix
and the p × p diagonal matrix containing the eigenvalues of S respectively; (V s)T and QT are the

transpose of V s and Q respectively; T = (V s)
T
Q .

However, one major problem with the use of the diagonal of
[
(V s)

T
SV s

]
for computing sparse

factor loadings, Λs , is the fact that some coe�cients, λsij of the latter may not lie between −1
and 1 and this may lead to improper solutions. To avoid this issue, we introduce a parameter for
adjusting the square root of the quantity, (V s)

T
SV s such that all coe�cients of the sparse factor

loadings lie between -1 and 1. Let τ ≥ 0 be the adjustment parameter, if a coe�cient, λsij ∈ Λs is
out of the normal range, then, the sparse factor loadings, Λs is re-expressed as:

Λs∗ = V s
[(
diag

[
(V s)

T
SV s

]) 1
2+τ

.Ik

]
(3.2.10)

Having the sparse eigenvectors, V s and the sample correlation matrix, S , the estimation of sparse
factor loadings becomes very simple if λsij ∈ [−1; 1] . But, since this case is often not likely, an
iterative procedure can be used to �nd λsij ∈ [−1; 1] . This iteration procedure consists in choosing
a very small value of τ so that the quantity 2 + τ is very close to 2 and computing the sparse
factor loadings, Λs∗ . Then, sequentially increase τ and compute again the sparse factor loadings
(for each sequence) until all coe�cients of the latter lie between -1 and 1. The coe�cients of Λs∗

decrease only with respect to τ since the quantity 1
2+τ decreases when τ increases while V s and S

remain constant.

3.3 Algorithm for Computation of Sparse Factor Loadings

Based on the details provided in Section 3.2, the algorithm for computing the sparse factor loadings
Λs∗ is presented in the following steps:

Step 1: Compute the sparse eigenvectors, V s from the sample correlation matrix, S using Benidis
et al., (2016) algorithm described previously.

Step 2: Choose τ such that 2 + τ ≈ 2 and set l = 0 ; τ l = τ ;
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Step 3: Compute Λl = V s
[(
diag

[
(V s)

T
SV s

]) 1

2+τl

Ik

]
;

Step 4: l = l + 1 and τ l+1 = (l + 1) τ l .

Step 5: Repeat Steps 3 and 4 until all coe�cients of Λl lie between -1 and 1;

Step 6: Return Λl .

4 Numerical application

The main purpose of this application is to see how the proposed method referred as “Method 1”
perform comparatively to the method proposed by Hirose & Yamamoto (2015) referred as “Method
2” in term of sparsity level and error introduce by the sparsity. Accordingly, we generated 50 sample
of p = 20 random variables following multivariate normal distribution with vector of mean, µ = 0
and Σ lying between -1 and 1. We choose n = 200 and Σ such that the correlations between the
random variables have four disconnected cliques of size 5.

To obtain this correlation pattern, each sample (20 random variables) is divided into 4 sets of 5
random variables. For each set, �ve random variables are separately generated following normal
distribution with µ = 0 and σ = 1 . In order to have strong correlation between random variables
within the same set, we �rst generated a 5× 5 symmetric correlation matrix, Σi (i = 1, . . . , 4) with
o�-diagonal entries equal to ± 0.999 (with random signs). Then, the data matrix of each set is
multiplied by the upper triangular matrix of the Cholesky decomposition of Σi to provide the
�nal correlated random variables. By combining these new random variables, we �nally got a 200
×20 data matrix for each sample where random variables belonging to the same set are strongly
correlated while correlations between di�erent sets are weak. Figure 1 shows how the structure of
the correlation matrix of each generated sample is generally presented.

For each sample, the correlation matrix, Sj (j = 1, . . . , 50) is computed and the number of eigenvectors,
kj , to be estimated is �xed with respect to the most important eigenvalues of each Sj . Figure
2 displays the plots of each eigenvectors with respect to its corresponding eigenvalues for each of
the 50 samples. Following these plots, each curve decreases signi�cantly from the 4th eigenvectors.
Accordingly, k = 4 for each sample because only the �rst four eigenvectors correspond to the largest
eigenvalues while the remaining eigenvectors have eigenvalues almost equal to zero.

We choose ε = 10−9 , τ0 = 10−9 , δ = 0.5 and dii = w1 − (i− 1)w , with i = 2, . . . , k − 1 , w1 = 1,
w = 1−0.5

k−1 and dkk = 0.5 (dii ∈ D) . However, for Method 1, ρ is taken at six levels for each
sample notably: 0.0001, 0.01, 0.1, 0.5, 1, 10. With respect to Method 2, γ is taken at four levels
namely, 1, 50, 100, and ∞ for each of the six levels of ρ . Subsequently, for each sample, Method 1
is performed six times leading to 300 cases for all samples ( 6 × 50 ). While Method 2 is carried
out 6× 50× 4 times leading to 300 cases for each level of γ .

The two methods are compared in terms of sparsity level and mean squared error (MSE). The
sparsity level is given by the number of zero in the matrices of loadings, Λs while the error is
represented by the average squared di�erence between S and Λs(Λs)T .

The summary (minimum, mean and maximum) of the number zero and MSE provided by the 50
samples taken at di�erent levels of ρ and γ is presented in table 1 and 2 for Method 1 and 2
respectively. The comparison of MSE with respect to the number of zero provided by each case is
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given in �gure 3.

Figure 1: The structure or pattern of the sample correlation matrix.

Figure 2: Plot of successive eigenvalues for the 50 sample correlation matrices.
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Table 1: Summary of the number of zero and MSE for Method 1.

10−4 0.01 0.1 0.5 1 10

Number min 0 0 15 50 60 60

of mean 0.12 15.22 45.1 59.2 60 74.28

Zeros max 3 40 60 60 60 76

min 0 0.002 0.0182 0.0283 0.0469 0.119

MSE mean 0.0002 0.0133 0.0537 0.0807 0.0842 0.4701

max 0.0011 0.0316 0.0825 0.1189 0.1274 0.5041

Table 2: Summary of the number of zero and MSE for Method 2.

gamma=1 10−4 0.01 0.1 0.5 1 10

Number min 51 51 51 60 60 60

of mean 58 58 58 60 60 65

Zero max 60 60 60 60 60 70

min 0.027 0.027 0.027 0.0386 0.2277 0.3899

MSE mean 0.078 0.078 0.078 0.0821 0.2397 0.4241

max 0.1254 0.1254 0.1254 0.1374 0.2631 0.4588

gamma=50 10−4 0.01 0.1 0.5 1 10

Number min 7 7 39 60 60 60

of mean 13 13 47 60 66 66

Zero max 19 19 54 65 70 70

min 0.0296 0.0296 0.127 0.3007 0.3653 0.3653

MSE mean 0.0405 0.0405 0.1452 0.3102 0.4103 0.4103

max 0.0513 0.0513 0.1757 0.3641 0.4528 0.4528

gam=100 10−4 0.01 0.1 0.5 1 10

Number min 6 6 38 59 60 60

of mean 9 10 48 60 65 65

Zero max 17 20 55 60 70 70

min 0.0147 0.0147 0.1401 0.299 0.3651 0.3651

MSE mean 0.0291 0.0341 0.16 0.309 0.4083 0.4083

max 0.0342 0.0404 0.1882 0.3244 0.4472 0.4472
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gamma=Inf 10−4 0.01 0.1 0.5 1 10

Number min 3 4 40 60 60 60

of mean 5 9 49 60 65 65

Zero max 8 15 56 65 70 70

min 0.005 0.0404 0.1654 0.3023 0.3648 0.3648

MSE mean 0.0057 0.0471 0.1831 0.3151 0.4093 0.4093

max 0.0071 0.0583 0.2233 0.3707 0.4475 0.4475

γ = 1 γ = 50

γ = 100 γ = ∞
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Figure 3: Plots of MSE versus number of cases for Method 1 (�rst 4 plots at the top) and Method
2 (last plot at the bottom).

5 Discussion of Results

Table 1 and 2 presents the summary of the number of zeros and MSE obtained by varying ρ for
Method 1 and ρ and γ for Method 2 respectively. Following these tables, both methods provide
sparser factor loadings according to the chosen parameters of regulation ρ and γ . For Method 1,
the number of zero increases as the parameter ρ increases. While for Method 2, the level of sparsity
increases when ρ increases and γ decreases simultaneously. With ρ = 10−4 , Method 1 provides
very few zero loadings whereas small number of zeros are obtained in Method 2 only when ρ = 10−4

and γ tend toward in�nity. Furthermore, the number of zeros is particularly high for every level of
ρ when γ = 1 , but almost constant for each level of γ with ρ ≥ 0.5 . This is evidenced by the �rst
part and last 3 columns of table 2 respectively. For some values of ρ and γ , both methods produce
the same number zero.

With respect to MSE, �gure 3 displays errors introduced by the sparsity of each case using Method
1 and 2. The �rst four plots represent values of MSE for di�erent cases taken at the four level of
γ respectively using Method 2, whereas the last plot indicates MSE's values provided by Method
1. For Method 2, except for γ = 1 , most cases (almost 200 over 300 cases) have more than 20
zeros with MSE's values above 0.1 as shows by plots at the top right and middle of �gure 3. But,
for γ = 1 , most cases (almost 250 over 300) have number of zeros between 50 and 60 with MSE's
values less than 0.15 for some and above 0.2 for others (see top left plot of �gure 3). In addition,
good levels of sparsity with small MSE's values are provide with ρ ≤ 0.5 for every level of γ . This
is also evidenced by di�erent values of MSE and corresponding number of zeros given in table 2.
The last plot obtained from Method 1 indicates that all cases with number of zeros less or equal to
60 have MSE's values under 0.15. Compared to Method 2, Method 1 seems to be better because it
gives smaller values of MSE even when both have the same level of sparsity.
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6 Conclusion

Based on the obtained results, we found that both methods provide sparser factor loadings and
the sparsity level depends strongly on the parameters of regulation required for each method. The
level of sparsity increases as ρ increases for Method 1 whereas for Method 2, it increases when ρ
increases and γ decreases simultaneously. The proposed method performs better than Method 2
since it provides smaller values of MSE even when both methods have the same level of sparsity or
number of zero. However, this does not prevent the loss of information which increases with the
level of sparsity.
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