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Abstract

In this paper, we investigate the stability of Modi�ed Crank-Nicolson method for solving one

dimensional Parabolic equation knowing that �nite di�erence solution of partial di�erential

equations must satisfy the requirement of stability, if they are to be reasonably accurate. We

examined it with the Von-Neumann scheme using the Fourier series methods and our result is

con�rmed with examples.
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1 Introduction

There are many boundary value problems which involve partial di�erential equations. Only a few
of these equations can be solved by analytical methods. In most cases, we depend on the numerical
solution of such partial di�erential equations. Finite di�erence method is the oldest and most direct
approach to discretize partial di�erential equations; it is also the most commonly used method to
solve Ordinary Di�erential equations and Partial di�erential equations in a bounded domain [1].
In this method, the derivative appearing in the equation and the boundary conditions are replaced
by their �nite di�erence approximations. Then the given equation is changed to a di�erence equation
which is solved by iterative procedures. The process is slow but gives good results for boundary
value problems. [1] established an explicit �nite di�erence scheme and applied it to solve one-
dimensional heat equation using C program. Crank-Nicolson Method for solving parabolic partial
di�erential equations is a prominent example �nite di�erence method and it was developed by John
Crank and Phyllis Nicolson in 1956. A practical method for numerical solution to partial di�erential
equations of heat conduction type was considered by [2]. [3] modi�ed the simple explicit scheme
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and prove that it is much more stable than the simple explicit case, enabling larger time steps
to be used. [4] considered the stability and accuracy of �nite di�erence method for option pricing.
Crank-Nicolson scheme, which is forward time central space (FTCS). According to Kreyszig (1993),
the time derivative was replaced by forward di�erence in time because we have no information for
negative t at the start. The freedom to experiment with any value of r (the gain parameter) is one
of the reasons the Crank Nicolson scheme was chosen for this study, even though small values of r
yield more accurate results. Because of this unconditional stability and ease of implementation in
a computer no matter how small r becomes.
Recently, [5] established to approached methods to improve the θ-iterated Crank-Nicolson Method
to second order accuracy.Also, [6] Modi�ed the Crank-Nicolson scheme to get a 3-level Implicit �nite
di�erence scheme similar to the Crank-Nicolson scheme. The method utilizes one extra grid point
at the lower level and the result is shown to be more accurate than the Crank-Nicolson scheme. [7]
solved some parabolic di�erential equations using modi�ed Crank-Nicolson scheme. They compared
the results with the exact solutions. There are many exhaustive texts on this subject such as [8�11]
to mention few.

2 FINITE DIFFERENCE METHODS

The general second order linear partial di�erential equation with two independent variables and
one dependent variables is given by

A
∂2f

∂x2
+ B

∂2f

∂x∂y
+ C

∂2f

∂y2
+ D = 0 (1)

Here, A, B, C, are functions of independent variables, and x, y and D can be a function of
x, y, f, ∂f

∂x and ∂f
∂y . It is important to note that for a partial di�erential equation to be parabolic,

B2 − 4AC = 0 is required. The one dimensional heat conduction equation of the form

∂f

∂t
=
∂2f

∂x2
(2)

is a well known example of a parabolic partial di�erential equation. The solution of these equation
is a temperature function u(x, t) which is de�ned for values of x from 0 to l and for values of t
from 0 to ∞. The solution is not de�ned in a closed domain but advances in an open-ended region
from initial values satisfying the prescribed boundary conditions [12].

The equation (2) above together with initial condition

f(x, 0) = f(x), 0 < x < L

and the boundary condition
f(x, 0) = f(x, L) = 0

is an example of Parabolic partial di�erential equation and can be solved analytically but numerical
method have proven exceedingly well for solving such or even more di�cult equations. For this
problem, di�erent numerical methods such as �nite di�erence method, �nite element methods
among others can be applied to solve the Partial di�erential equation. Here, we shall concentrate
on �nite di�erence methods for solving the equation (2) together with the initial and boundary
conditions.

In this paper, we investigate the stability of modi�ed Crank-Nicolson scheme for solving one
dimensional parabolic partial di�erential equations and to verify our results, we solve problems
on one dimensional heat equations. The method employ for the modi�cation and derivation of the
Modi�ed Crank-Nicolson method is described in Section 2.2
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2.1 CRANK-NICOLSON SCHEME

The classical Crank-Nicolson scheme is derived by �nding the average of the (j)th and (j + 1)th

rows, as follows;

fi, j+1 − fi, j
k

=
1

2

[
fi−1, j − 2fi, j + fi+1, j

h2

]
+

1

2

[
fi−1, j+1 − 2fi, j+1 + fi+1, j+1

h2

]
(3)

which gives

2(fi, j+1 − fi, j) =
k

h2
(fi−1, j − 2fi, j + fi+1, j + fi−1, j+1 − 2fi, j+1 + fi+1, j+1)

let k
h2 = r then

2(fi, j+1 − fi, j) = r (fi−1, j − 2fi, j + fi+1, j + fi−1, j+1 − 2fi, j+1 + fi+1, j+1)

rfi−1, j+1 + (2 + 2r)fi, j+1 − rfi+1, j+1 = rfi−1, j + (2− 2r)fi, j + rfi+1, j

which can be written as

2(1 + r)fi, j+1 + r [fi−1, j+1 − fi+1, j+1] = 2(1− r)fi, j + r [fi−1, j + fi+1, j ] (4)

Equation (4) is the Crank-Nicolson method.

2.2 MODIFIED CRANK-NICOLSON METHOD

Here, we derive the Modi�ed Crank-Nicolson scheme as follows; we replace the left hand sides of (3)

by
fi, j − fi, j−1

k also, we replace (j + 1)th row, on the second part of the right hand side (Implicit)
with (j − 1)th row. We then �nd the average of the (j)th and (j − 1)th row. The �nite di�erence
approximation analogue to equation (2) is then given as

2fi, j − 2fi, j−1 = rfi+1, j−1 − 2rfi, j−1 + rfi−1, j−1 + rfi+1, j − 2rfi, j + rfi−1, j

where

−2rfi, j−1 + 2fi, j−1 + rfi+1, j−1 + rfi−1, j−1 = −rfi+1, j + 2fi, j + 2rfi, j − rfi−1, j

2(1 + r)fi, j − r(fi+1, j + fi−1, j) = 2(1− r)fi, j−1 + r(fi+1, j−1 + fi−1, j−1) (5)

here r = k
h2 Equation(5) is the modi�ed Crank-Nicolson scheme.

Equation (5) can be written in matrix form as Uf = yb, where the known concentrations are
b = fi, j−1 and the unknown concentrations are f = fi, j and U, y are tri-diagonal matrices of
coe�cients de�ned as

2 + 2r −r 0 . . . 0
−r 2 + 2r −r . . . 0

0 −r 2 + 2r
. . . 0

...
...

. . .
. . . −r

0 0 0 −r 2 + 2r




f1,j
f2,j
f3,j
...

fn,j

 =



2− 2r r 0 . . . 0
r 2− 2r r . . . 0

0 r 2− 2r
. . . 0

...
...

. . .
. . . r

0 0 0 r 2− 2r




f1,j−1
f2,j−1
f3,j−1

...
fn,j−1


(6)

The convergence of this method follows from the condition (Tunner, 1994)

r = λδt
δx2 ≤ 1

2 , which implies δt ≤ (δx)2

2λ .

For su�cient accuracy we choose δx small, which makes δt very small by δt ≤ (δx)2

2λ . This will make
the computation lengthy, as more time levels will be required to cover the region. A method that
imposes no such restriction as r = λδt

(δx)2 was proposed by Crank and Nicolson in [2].
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2.3 STABILITY ANALYSIS

The two fundamental sources of error are the truncation and round o� error. The three fundamental
factors that characterize a numerical scheme are consistency, stability and convergence.

Consistency: A �nite di�erence of a partial di�erential equation is consistent, if the di�erence
between the partial di�erential equation and �nite di�erence equation vanishes as the interval and
time step size approaches zero. Consistency deals with how well the �nite di�erence equation
approximates the partial di�erential equation and it is necessary condition for convergence.

Stability: For a stable numerical scheme, the errors from any source will not grow unboundedly
with time.

Convergence: It means that the solution to a �nite di�erence equation approaches the true
solution to the partial di�erential equation as both grid and time step sizes are reduced. The
necessary and su�cient conditions for convergent are consistency and stability.

These three factors that characterize a numerical scheme are linked together by Lax equivalence
theorem [11] which state that given a well posed linear initial value problem and a consistent �nite
di�erence scheme, stability is a necessary and su�cient condition for convergence.
In general, a problem is said to be well posed if

1. A solution to the problem exists

2. The solution is unique when it exists

3. The solution depends continuously on the problem data

A �nite di�erence approximation is said to be convergent if

φi,j = ||f̄i,j − fi,j || → 0, as h, k → 0 (7)

where f̄i,j is the exact solution, fi,j is the numerical approximation and φi,j is the error. We shall
test for this later, using one of the numerical examples.

Let f(x, t) be the analytical solution of the partial di�erential equation and fi,j the solution of
its �nite di�erence approximation.
We de�ne the error as

φi,j = f(xi, tj)− fi,j , i,= 1, 2, 3, ...N, j = 1, 2, 3, ...M (8)

we say φi,j satis�es the same di�erence equation fi,j . Let the errors at the mesh point (xi, 0) at
t = 0 be denoted by φi, i = 0, 1, 2, ...N
We investigate the propagation of these errors as t increases by �nding a solution of the �nite
di�erence equation in φi,j that reduces φi when t = 0. To this e�ect we apply the Von Newmann
stability method. We use Fourier series method. We express the errors in terms of �nite Fourier
series, using the interval [−L,L] (Interval of �nite Fourier series function) given as

f(x) = a0 +

∞∑
n=0

ancos(
nπ

l
)x+

∞∑
n=1

bnsin(
nπ

l
)x (9)

the complex exponential form of the series is

f(x) =

∞∑
n=0

Ane
z(nπl )x (10)
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where An, f(x), bn, a0, and an are constants to be determined. Expressing φi in term of complex
Fourier series we have

φi =

∞∑
n=0

Ane
z(nπl )xi (z =

√
−1) (11)

using the domain
D = {(x, t)|0 ≤ x ≤ l, 0 ≤ t ≤ T}

Let the mesh point (xi, tj) assume the form (ih, jk) where h and k are the mesh sizes, therefore;

φi =

∞∑
n=0

Ane
zβnih (12)

where β0 = nπ
l = nπ

Nh , i.e l = Nh, z =
√
−1 from (12), because of linearity, we only consider

one of the terms and thus only need eziβ where β is real. Let the solution of the �nite di�erence
approximation be given in separable form as

E(x, t) ≈ eγxeziβ (13)

where γ = γ(β) is complex. The solution at x = 0 equals the error introduced at x = 0. Observing
from (13) that in order for the original error not to grow as x increases

| eγx |≤ 1 ∀ γ (14)

Therefore, the Von Newmann condition for stability can be written as

| eγh |≤ 1 (15)

If we de�ne ξ = eγh which is the ampli�cation factor, then the stability constraint of (15) becomes

| ξ |≤ 1 (16)

We shall use the above procedure to investigate the stability of modi�ed Crank-Nicolson scheme as
follows;

Illustration: Investigate the stability of the Parabolic Partial Di�erential equation (2) approximated
using the modi�ed Crank-Nicolson scheme as given below:

fi, j − fi, j−1
k

=
1

2
[
fi+1, j−1 − 2fi, j−1 + fi−1, j−1

h2
+
fi+1, j − 2fi, j + fi−1, j

h2
]

Solution:

The scheme above results into;

2(1 + r)fi, j − r(fi+1, j + fi−1, j) = 2(1− r)fi, j−1 + r(fi+1, j−1 + fi−1, j−1) (17)

Let
Ei,j = eγihezβjk = ξiezβjk (18)

substituting (18) into (17) gives

2(1 + r)ξiezβjk − r(ξiezβ(j+1)k + ezβ(j−1)kξi) = 2(1− r)ξi−1ezβjk + r(ξi−1ezβ(j+1)k + ξi−1ezβ(j−1)k)
(19)
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factoring out ξezβjk we have

ξiezβjk[2(1 + r)− r(ezβk + e−zβk) = ξiezβjk[2(1− r)ξ−1 + r(ξ−1ezβk + ξ−1e−zβk)]

which gives
[2(1 + r)− r(ezβk + e−zβk)] = [2(1− r) + r(ezβk + e−zβk)]ξ−1 (20)

using Trigonometric identity, we de�ne

ezβk + e−zβk = 2cosβk

and

1− cosβk = 2sin2(
βk

2
)

substituting these into (20) we have

2(1 + r)− r(2cosβk) = ξ−1[2(1− r) + r(2cosβk)]

2(1 + r)(1− cosβk) = ξ−1[2(1− r)(1− cosβk)][
1 + r

(
2sin2

βk

2

)]
= ξ−1

[
1− r

(
2sin2

βk

2

)]

ξ−1 =
1 + r

(
2sin2 βk2

)
1− r

(
2sin2 βk2

)
ξ−1 =

1 + 2rsin2
(
βk
2

)
1− 2rsin2

(
βk
2

)
from whence the ampli�cation factor

ξ =
1− 2rsin2

(
βk
2

)
1 + 2rsin2

(
βk
2

)
for any value of r and βk, we have that | ξ |< 1 and thus the approximation is unconditional stable.

3 Numerical Examples

In this section, we present some numerical examples of one dimensional Parabolic partial di�erential
equations solved using the modi�ed Crank-Nicolson method, we also compare the results obtained
with the analytical solution.

Example 1:

Solve the partial di�erential equation using modi�ed Crank-Nicolson scheme:

∂2f
∂x2 = ∂f

∂t , 0 ≤ x ≤ 1

with f(x, 0) = 100sinπx

and f(0, t) = 0 = f(1, t)

 (21)
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Solution:

here, we use h = 0.1, and k = 0.04 then r = k
h2 = 4

using

2(1 + r)fi, j − r(fi+1, j + fi−1, j) = 2(1 + r)fi, j−1 + r(fi+1, j−1 + fi−1, j−1)

at i = 1, j = 1 we have

2(1 + 4)f1,1 − 4(f2,1 + f0,1) = 2(1− 4)f1,0 + 4(f2,0 + f0,0)

10f1,1 − 4f2,1 = −6f1,0 + 4f2,0 + 4f0,0

10f1,1 − 4f2,1 = 30.9017 (22)

solving for 1 ≤ i ≤ 9 at j = 1, we get a tridiagonal matrix which is represented below;

10 4 0 0 0 0 0 0 0
−4 10 −4 0 0 0 0 0 0
0 −4 10 4 0 0 0 0 0
0 0 −4 10 −4 0 0 0 0
0 0 0 −4 10 −4 0 0 0
0 0 0 0 −4 10 −4 0 0
0 0 0 0 0 −4 10 −4 0
0 0 0 0 0 0 −4 10 −4
0 0 0 0 0 0 0 −4 10





f1,1
f2,1
f3,1
f4,1
f5,1
f6,1
f7,1
f8,1
f9,1


=



49.7038
94.5426
130.1266
152.9726
160.8456
152.9726
130.1266
94.5426
49.7038


also, the results of the next steps 2 ≤ j ≤ 9, and 1 ≤ i ≤ 10 is given in the table1.
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Table 1: Results of Modi�ed Crank-Nicolson Solution

j t f1, j f2, j f3, j f4, j f5, j f6, j f7, j f8, j f9, j
1 0.04 20.7831 39.5319 54.4110 63.9640 67.2557 63.9640 54.4110 39.5319 20.7831
2 0.08 13.9779 26.5875 36.5945 43.0194 45.2333 43.0194 36.5945 26.5875 13.9779
3 0.12 9.4009 17.8816 24.6119 28.9330 28.9330 28.9330 24.6119 17.8816 9.4009
4 0.16 6.3227 12.0264 16.5529 19.4592 19.4592 19.4592 16.5529 12.0264 6.3227
5 0.20 4.2523 8.0885 11.1328 13.0873 13.7609 13.0873 11.1328 8.0885 4.2523
6 0.24 2.8600 5.4399 7.4874 8.8020 9.2549 8.8020 7.4874 5.4399 2.8600
7 0.28 1.9234 3.6587 5.0357 5.9198 6.2245 5.9198 5.0357 3.6587 1.9234
8 0.32 1.2937 2.4606 3.3868 3.9814 4.1863 3.9814 3.3868 2.4606 1.2937
9 0.36 0.8700 1.6550 2.2778 2.6777 2.8155 2.6777 2.2778 1.6550 0.8700

Table 2: Comparison of Modi�ed Crank-Nicolson Solution and the Analytical Solution of table 1
above at x = 0.5 and k = 0.04

t Modi�ed Crank-Nicolson Solution Analytical Solution Error
0.24 9.2549 9.4052 0.1503
0.28 6.2245 6.3071 0.0826
0.32 4.1863 4.2499 0.0636

Example 2:

Solve the partial di�erential equation [13] using Modi�ed Crank-Nicolson scheme:

1

8

∂2f

∂x2
=

∂f

∂t
, 0 ≤ x ≤ 4 (23)

with initial condition
f(x, 0) = 2000, 0 ≤ x ≤ 4 (24)

and boundary conditions

∂f

∂x
=

 0.36f − 25.2, x = 4

0 x = 0
(25)

Solution::
using (5) and r = λδt

(δx)2 , where δt = δx = 1 which have r = 1
8 < 1

substituting r into (5) we have

2

(
1 +

1

8

)
fi,j −

1

8
(fi+1,j + fi−1,j) = 2

(
1− 1

8

)
fi,j−1 +

1

8
(fi+1,j−1 + fi−1,j−1)

which gives

2.25fi,j − 0.125 (fi+1,j + fi−1,j) = 1.75fi,j−1 + 0.125 (fi+1,j−1 + fi−1,j−1) (26)

at i = 1, j = 1
2.25f1,1 − 0.125(f2,1 + f0,1) = 1.75f1,0 + 0.125(f2,0 + f0,0) (27)

solving for f0,1 in terms of f1,1 and f2,1, using the boundary condition

∂f

∂x

∣∣∣∣
0

=
fi+1,j − fi−1,j

2
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Table 3: Results of Modi�ed Crank-Nicolson Solution

j t f1, j f2, j f3, j f4, j f5, j
1 1 2000.0 2000.0 2000.0 2000.0 2000.0
2 2.0 1850.6 1991.7 1999.5 2000.0 2000.0
3 3.0 1741.5 1970.7 1998.0 1999.9 2000.0
4 4.0 1659.0 1943.5 1995.3 1999.5 1999.9
5 5.0 1594.4 1913.7 1988.3 1998.7 1999.7
6 6.0 1542.1 1883.1 1979.4 1997.1 1999.3
7 7.0 1498.5 1852.9 1968.9 1994.7 1998.5
8 8.0 1461.2 1823.7 1957.1 1991.5 1997.3
9 9.0 1428.7 1795.7 1944.3 1987.5 1995.6
10 10 1399.8 1769.1 1930.8 1982.7 1993.3
11 11 1373.7 1743.8 1916.9 1977.2 1990.3

we get
2(0.36f1,1 − 25.2) = f2,1 − f0,1
f0,1 = f2,1 − 0.72f1,1 + 50.4 (28)

similarly, we solve for f0,0 in terms of f1,0 and f2,0 so that

f0,0 = f2,0 − 0.72f1,0 + 50.4 (29)

putting (28) and (29) into (27) gives

2.25f1,1 − 0.125[2f2,1 − 0.72f1,1 + 50.4] = 1.75f1,0 + 0.125[2f2,0 − 0.72f1,0 + 50.4]

on simplifying we get
2.34f1,1 − 0.25f2,1 = 1.66f1,0 + 0.25f2,0 + 12.6 (30)

and for 2 ≤ i ≤ 4 we use (26) also for i = 5 we use the fact that ∂f
∂x

∣∣∣
x=4

= 0, therefore, f4 = f6 so

we have
2.25f5,1 − 0.25f4,1 = 1.75f5,0 + 0.25f4,0 (31)

now, equations (30), (26) for 2 ≤ i ≤ 4 and (31) is expressed in a matrix form as
2.34 −0.25 0 0 0
−0.125 2.25 −0.125 0 0

0 −0.125 2.35 −0.125 0
0 0 −0.125 2.25 −0.125
0 0 0 −0.25 2.25



f1,1
f2,1
f3,1
f4,1
f5,1

 =


3832.6
4000.0
4000.0
4000.0
4000.0


solving the tri-diagonal matrix for the various time steps (j=1-11) we have the following tabulated
results in table 3.
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Table 4: Results of Modi�ed Crank-Nicolson Solution

x t i fi, j=1 fi, j=2 fi, j=3 fi, j=4 fi, j=5 fi, j=6 fi, j=7 fi, j=8

0.1 0.001 1 0.3060 0.3030 0.3001 0.2972 0.2943 0.2914 0.2886 0.2858
0.2 0.002 2 0.5821 0.5764 0.5708 0.5652 0.5597 0.5542 0.5488 0.5435
0.3 0.003 3 0.8011 0.7933 0.7856 0.7779 0.7703 0.7628 0.7554 0.7480
0.4 0.004 4 0.9418 0.9326 0.9235 0.9145 0.9056 0.8968 0.8880 0.8793
0.5 0.005 5 0.9903 0.9806 0.9710 0.9615 0.9521 0.9428 0.9336 0.9245
0.6 0.006 6 0.9418 0.9326 0.9235 0.9145 0.9056 0.8968 0.8880 0.8793
0.7 0.007 7 0.8011 0.7933 0.7856 0.7779 0.7703 0.7628 0.7554 0.7480
0.8 0.008 8 0.5821 0.5764 0.5708 0.5652 0.5597 0.5542 0.5488 0.5435
0.9 0.009 9 0.3060 0.3030 0.3001 0.2972 0.2943 0.2914 0.2886 0.2858

Table 5: Comparison of Modi�ed Crank-Nicolson Solution and the Analytical Solution of table 4
above at x = 0.5 and k = 0.001

t Modi�ed Crank-Nicolson Solution Analytical Solution Error
0.005 0.9521 0.9518 0.0003
0.006 0.9428 0.9425 0.0003
0.007 0.9336 0.9332 0.0004

Example 3:

Solve the partial di�erential equations using modi�ed Crank-Nicolson method

∂2f
∂x2 = ∂f

∂t , 0 ≤ x ≤ 1

with f(x, 0) = sinπx

and f(0, t) = 0 = f(1, t)

 (32)

given that the exact solution is f(x, t) = exp(−π2t) sin(πx) then from (5) we have at i = 1, j = 1
and using r = k

h2 , k = 0.001, h = 0.1

2.2f1,1 − 0.1f2,1 = 0.61498

solving for 1 ≤ i ≤ 9 at j = 1, we get a tridiagonal matrix which is represented below;



2.2 −0.1 0 0 0 0 0 0 0
−0.1 2.2 −0.1 0 0 0 0 0 0

0 −0.1 2.2 −0.1 0 0 0 0 0
0 0 −0.1 2.2 −0.1 0 0 0 0
0 0 0 −0.1 2.2 −0.1 0 0 0
0 0 0 0 −0.1 2.2 −0.1 0 0
0 0 0 0 0 −0.1 2.2 −0.1 0
0 0 0 0 0 0 −0.1 2.2 −0.1
0 0 0 0 0 0 0 −0.1 2.2





f1,1
f2,1
f3,1
f4,1
f5,1
f6,1
f7,1
f8,1
f9,1


=



0.61498
1.16984
1.61009
1.89288
1.99022
1.89288
1.61009
1.16984
0.61498


the results for the tridiagonal matrix above and the various next steps for 2 ≤ j ≤ 9, and 1 ≤ i ≤ 10
is given in the table 4:
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4 Discussion of Results

Tables 1, 3 and 4 show that the Modi�ed Crank-nicolson method is good for solving parabolic
partial di�erential equation (Di�usion equation). Tables 2 and 5 also show that the Modi�ed
Crank-Nicolson method performs well, consistent and agree with the analytical solution. The
method provides better accuracy and requires the solution of tridiagonal system at every time
level.

5 Conclusion

From the results analysis, it is seen that our method provides approximate results and fast convergence
compared to the classical Crank-Nicolson method. Since it is not possible to solve every partial
di�erential equation analytically so numerical methods providing a good agreement in those cases
where solutions do not exist or where Partial di�erential equations can not be solve analytically.
The results of our method also agree with existing �ndings in literature that smaller time step
produces more accurate results.This can be always be achieved when the value of r = k

h2 is kept
reasonably small for a close approximation to the solution of the partial di�erential equation as
seen in the tables.
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