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Abstract
In this present study, finite element method is applied to analyze the magnetohydrodynamic
transient heat and masstransfer of Casson nanofluid past an isothermal vertical flat plate em-
bedded in a porous medium under the influence of thermal radiation is studied. The numerical
solutions are used to carry out parametric studies. The parametric studies based on the numer-
ical simulation reveal that the temperature as well as the concentration of the fluid increase as
the Casson fluid and radiation parameters as well as Prandtl and Schmidt numbers increase.
The increase in the Grashof number, radiation, buoyancy ratio and flow medium porosity pa-
rameters causes the velocity of the fluid to increase. However, the Casson fluid parameter,
buoyancy ratio parameter, the Hartmann (magnetic field parameter), Schmidt and Prandtl
numbers decrease as the velocity of the flow increases. The time to reach the steady state
concentration, the transient velocity, Nusselt number and the local skin-friction decrease as the
buoyancy ratio parameter and Schmidt number increase. Also, the steady-state temperature
and velocity decrease as the buoyancy ratio parameter and Schmidt number increase. Also, the
local skin friction, Nusselt and Sherwood numbers decrease as the Schmidt number increases.
Though, the local Nusselt number increases as the buoyancy ratio parameter increases. It was
established that near the leading edge of the plate, the local Nusselt number is not affected by
bothbuoyancy ratio parameter and Schmidt number. The study provides better physical in-
sight to the flow problem under the influence of thermal radiation and mass transfer as applied
in various engineering processes.

Keywords and Phrases: Finite element method;Transient Free convection; Casson Nanofluid;
Thermal radiation; Mass transfer.
MSC2010: 74F10

1 Introduction
There have been wide industrial and engineering applications of free convection flow over vertical
surfaces. Such applications could be witnessed in mechanical forming processes, glass-fibre produc-
tion processes, extrusion, food processing, melt spinning etc. Consequently, this has aroused lots
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of research interests on the flow phenomena following the experimental investigations of Schmidt
and Beckmann [1] and the pioneering theoretical work of Ostrach [2]. An extended work was done
by Sparrow and Gregg [3] on the free convection under the influence of a uniform surface heat flux.
In another work, the same authors [4] studied the flow phenomena over a non-isothermal vertical
plate. Lefevre [5] examined the free convection of an inviscid flow under low Prandtl-numbers while
Stewartson and Jones [6] as well as Eshghy [7] analyzed the flow over a heated vertical plate at
high Prandtl number. Although, Roy [8] also studied the free convection flow process under a large
Prandtl number, the effects of uniform surface heat flux on the flow phenomena was also inves-
tigated. Kuiken [9], [10] and Kuiken and Rotem [11] examined the free convection flow over the
vertical plates at both low and high Prandtl numbers.
In recent times, different analytical and numerical methods have been used to examine the laminar
free convection [12–18]. Also, various parametric studies on the nonlinear models and fluid flow
problems have been presented in literature [19–28].
Different types of fluid such as tomato sauce, honey, printing inks, blood, concentrated fruit juices
and Jelly have been classified as the non-Newtonian fluids called Casson fluids as invented by Cas-
son [29]. These fluids exhibit shear thinning nature with an assumed infinite viscosity at zero rate of
shear, a yield stress below which no flow occurs, and a zero viscosity at an infinite rate of shear [30].
Its important areas of applications have provoked some studies [30,31]. Also, the effects of thermal
radiation, magnetic field and nanoparticles on the fluid flow processes have been extensively stud-
ied [33–41]. However, most of these studies which are based on time invariant, focused on the free
convection currents caused by the temperature difference. It should be stated that the flow is also
affected by the differences in concentration on material constitution such as seen in atmospheric
flows, chemical processing, formation and dispersion of fog, distributive temperature and moisture
over agricultural fields. Also, the transient behaviours of the fluids flow before a steady state is
reached should be well investigated. Hence, the study of the transient heat and mass transfer of the
fluid over the vertical plate is very much important. Moreover, to the best of the authors knowledge,
a study on finite element analysis of transient behaviours of free convection boundary-layer flow,
heat and mass transfer of Casson nanofluids over a vertical plate under the influences of thermal
radiation, magnetic field, flow medium porosity and nanoparticles has not been presented in lit-
erature. Therefore, the transient magnetohydrodynamics free convection heat and mass transfer
of Casson nanofluid past an isothermal vertical flat plate embedded in a porous media subjected
to thermal radiation is studied using finite element method. Also, graphical presentation of the
controlling parameters on the profiles of velocity, concentration and temperature are given and
discussed.
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2 Problem Formulation and Mathematical analysis

In order to set up the flow, heat and mass transfer of the Casson nanofluid, the following assumptions
are made

i The flow is incompressible and laminar

iii Pressure is uniform across the boundary layer and Boussinesq approximation is used

iv The thermal diffusion and diffusion thermal effects which are called the Soret and Dufour
effects, respectively are insignificant and they are therefore negligible.

v The effect of viscous dissipation on the fluid flow process is negligible

vi There is no chemical reaction taking place in the mass of the fluid.

Taken x-coordinate to be directed upward along the plate in the flow direction and y-coordinate
is taken normal to the plate. Then under the stated assumptions, the governing equations of the
flow, heat and mass transfer could be written as

∂u

∂x
+
∂v

∂y
= 0 (2.0.1)

ρnf

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
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1

γ

)
µnf

∂2u

∂y2 + g(ρβ)nf (T − T∞)

+g(ρβ∗)nf (C − C∞)− σnfB2
0u−

µnfu

Kp

(ρcp)nf

(
∂T

∂t
+ u

∂T
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∂T

∂y

)
= knf

∂2T

∂y2 −
∂qr
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(
∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y

)
= Dnf

∂2C

∂y2 (2.0.3)

In this work, we adopt a conditions that the plate and the fluid are initially at the same concentration
and temperature level that is the same in the fluid everywhere. Then at time t > 0, the plate
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temperature is suddenly raised to T∞, and the concentration level near the plate is also raised to
C∞, which are thereafter maintained constant. Therefore, the initial condition is given as

t ≤ 0, u = 0, v = 0, T = T∞, C = C∞ at 0 ≤ x ≤ L, y ≥ 0 (2.0.4)

and the appropriate boundary conditions under no slip conditions are given as

t > 0, u = 0, v = 0, T = T∞, C = C∞ at x = 0, y ≥ 0 (2.0.5)

t > 0, u = 0, v = 0, T = T∞, C = C∞ at x = L, y ≥ 0 (2.0.6)

t > 0, u = 0, v = 0, T = Tw, C = Cw at x ≥ 0, y = 0 (2.0.7)

t > 0, u = 0, v = V∞, T = T∞, C = C∞ at x ≥ 0, y →∞ (2.0.8)

The thermal radiation term in Eq. (2.3) could be linearized using Rosseland’s approximation as
follows

∂qr
∂y

= − 4σ

3K

∂T
4

∂y
∼= −

16σT 3
s

3K

∂2T

∂y2 (2.0.9)

Substituting Eq. (2.10) into Eq. (2.3), we the governing equations of the flow, heat and mass
transfer as

∂u

∂x
+
∂v

∂y
= 0 (2.0.10)
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)
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where the various physical and thermal properties in Eqs. (2.13) and (2.14) are given as

ρnf = ρf (1− φ) + ρsφ (2.0.13)

(ρcp)nf = (ρcp)f (1− φ) + (ρcp)sφ (2.0.14)

(ρβ)nf = (ρβ)f (1− φ) + (ρβ)sφ (2.0.15)

µnf =
µf

(1− φ)2.5
(2.0.16)

σnf = σf

1 +
m
(
σs

σf
− 1
)
ϕ(

σs

σf
+ (m− 1)

)
−
(
σs

σf
− (m− 2)

)
ϕ

 (2.0.17)
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knf = kf

[
ks + (m− 1)kf − (m− 1)φ(kf − ks)

ks + (m− 1)kf + φ(kf − ks)

]
(2.0.18)

where m in the above Hamilton Crosser’s model in Eq. (2.20) is the shape factor which numerical
values for different shapes are given in Table 1.

We now introduce the following non-dimensional quantities
x = x

L , y = y
LG

1/2
L , u =

ρrfuL
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1/2
L

, v =
ρrfvL

µrfG
1/4
L
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1/2
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2
0L

2

µrfG
1/2
L
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ρ2rfgβL

3(Tw−T∞)

µ2
rf

, P r =
µrfCprf

krf
, R =

k[rf ]K

4σT 3
5
, Sc =

µrf

ρrfDrf
, λ = β(Cw−C∞)

β(Tw−T∞) ,
1
Da =

L2

G
1/4
L Kp

We have the dimensionless forms of the governing equations as

∂u
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= 0 (2.0.19)
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1
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The appropriate initial and boundary conditions are given as

τ ≤ 0, u = 0, v = 0, T = 0, C = 0 at 0 ≤ x ≤ 1, y ≥ 0 (2.0.23)

τ > 0, u = 0, v = 0, T = 0, C = 0 at x = 0, y ≥ 0 (2.0.24)

τ > 0, u = 0, v = 0, T = 0, C = 0 at x = 1, y ≥ 0 (2.0.25)

τ > 0, u = 0, v = 0, T = 1, C = 1 at x ≥ 0, y = 0 (2.0.26)

τ > 0, u = 0, v = V∞, T → 1, C → 1 at x ≥ 0, y → 0 (2.0.27)

3 Finite Element Analysis of the Transient
Equations (21) - (24) are systems of coupled non-linear ordinary differential equations. It is very
difficultdevelop exact analytical solutions for these non-linear equations. Therefore, in order to
solve the equations, recourse is made to a finite element method The procedures of the numerical
method are outlined as follows:

i Finite element discretization

ii Generation of the element equations

iii Assembly of element equations

iv Imposition of boundary conditions

v Solution of assembled equation

In order to apply finite element method to the systems of the coupled nonlinear equations, the
governing equations are multiplied by weight functions and the integrations over an element domain
are set to zero, the following variational formulationsare obtained:∫ ∫

Ωe

Ni

[
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
−
(

1 +
1

γ

)
∂2u

∂y2
− T − λC +Hau+

1

Da
u

]
dxdy = 0 (3.0.1)

∫ ∫
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[
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+ u
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+ v

∂T
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− 1
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(
3R+ 4

3R

)
∂2T

∂y2

]
dxdy = 0 (3.0.2)

∫ ∫
Ωe

Ni

[
∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
− 1

Sc

∂2C

∂y2

]
dxdy = 0 (3.0.3)

The Galerkin finite element formulation may be obtained from Eq. (3.1)-(3.3) by substituting the
finite element approximations of the form:

u =

3∑
j=1

Njuj , T =

3∑
j=1

NjTj , C =

3∑
j=1

NjCj (3.0.4)

where Nj are the linear interpolation functions for a triangular element, Ωe.
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It should be stated that the requirement on continuity of field variables is much stronger in its
present strong forms in Eqs. (3.1) – (3.3). In order to overcome the difficulties, weak formulations
are preferred. Indisputably, the weak formulations help to reduce the order of continuity needed
for elements selected i.e. it will reduce the continuity requirements on the approximation (or
basis functions) functions thereby allowing the use of easy-to-construct and implement polynomials.
Moreover, weak formulation automatically enforces natural boundary conditions. Therefore, the
desired weak forms of the variational formulations are developed by replacing the unknowns in the
weighted residual approach in Eqs. (3.1) – (3.3) by approximate trial solutionswhich are given
by polynomial relationships in Eq. (3.4) and carry out theintegrations by parts over the element
domain. Incorporating the boundary conditions directly into the weak forms after the integrations
by parts over the element domain. The finite element model of the equations in matrix form is
given as [p11] [p12] [p13]

[p21] [p22] [p23]
[p31] [p32] [p33]

{u̇}{Ṫ}
{Ċ}

+

[K11] [K12] [K13]
[K21] [K22] [K23]
[K31] [K32] [K33]

{u}{T}
{C}

 =

{S(1)}
{S(2)}
{S(3)}

 (3.0.5)

where u̇, Ṫ and Ċ are the time derivatives of u, T and C, respectively. Also, [pmn], [Kmn] and
[Sm] are defined as follows:

p11
ij =

∫ ∫
Ωe

NiNjdxdy, p12
ij = 0, p13

ij = 0

K11
ij =

∫ ∫
Ωe

Niu
∂Nj
∂x

dxdy +

∫ ∫
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∂y
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(
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)∫ ∫
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+

(
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1

γ

)∫ ∫
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∂y

∂Nj
∂y
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K12
ij = −

∫ ∫
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NiNjdxdy, K13
ij = −λ

∫ ∫
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NiNjdxdy, S(2)

p21
ij = 0, p22

ij =

∫ ∫
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NiNjdxdy, p23
ij = 0

K22
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∫ ∫
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∂x
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∫ ∫
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1
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∂Nj
∂y

dxdy

K21
ij = 0, K23
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ij = 0, p33
ij =

∫ ∫
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NiNjdxdy

K33
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∫ ∫
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Niu
∂Nj
∂x

dxdy +

∫ ∫
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where

u =

3∑
j=1

Njuj , v =
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Njvj
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It should be stated that u and v are the assumed known incorporated functions that are used to
linearize the system of equations.

With the aid of Crank-Nicolson scheme as in the author’s previous study [46], the time deriva-
tives are approximated. Then the computational domain is uniformly dividedinto 448 triangular
elements of three nodes each. This makes the total number of nodes in the whole domain to be 285.
Since, at each node, three functions are evaluated, then, the order of each element matrix is 9× 9.
After assembly of the elemental equations, a system of 855 nonlinear coupled equations is initially
obtained. The system of nonlinear coupled equations are linearized using and as stated above. After
imposition of the boundary conditions into the system of linearized coupled equations, a system of
660 linear coupled equations (of order 660× 660) are obtained. The linearized system of equations
is solved by using Gauss Seidel iteration method. The convergence of solutions is assumed when
the relative error for each variable between consecutive iterations is recorded below the convergence
criterion such that

∑
|φsi − φs−1| ≤ 10−6, where φ is the general dependent variable u, T and C

and s is the number of iteration.

4 Results and discussion
The results of the numerical simulations are presented. Grid independence and sensitivity analyses
are carried out. The results with the discussion are illustrated through the Figs. 2-19 to substantiate
the applicability of the present analysis.

4.1 Grid independency test and code verification
A mesh sensitivity analysis was carried out to ensure grid independence. In order to choose the
grid size, grid independency test is performed for the grid mesh of sizes of 21× 21, 31× 31, 41× 41,
51×51, 61×61, 71×71, 81×81, 91×91, 101×101, 111×111 and 121×121. It is observed that for
large values of number of grids greater than 81× 81, there is no appreciable change in the results.
It is observed that in the same domain the accuracy is not affected even if the numbers of elements
are increased by decreasing the size of the elements. The grid independency test shows that a grid
mesh of size 91× 91 is adequate to describe the flow processes.Also, the results obtained for lesser
number of elements are of sufficient accuracy. Hence the grid a grid mesh of size 91 × 91 can be
used to get the results that accurately describe the flow and heat transfer processes.
The available results in literature verify the solution procedure, in the form of an in-house computa-
tional fluid dynamics code. Therefore, this method has been proven to be adequate and giveaccurate
results for boundary layer problems as presented in this work.

4.2 Effects of Casson parameter on the fluid velocity, temperature and
concentration distributions

The effects of Casson parameter on the flow velocity, temperature and concentrations profiles of the
nanofluid are shown in Fig. 3a, 3b and 3c, respectively. The figures depict that the flow velocity
of the nanofluid near the plate decreases as the Casson parameter increases as illustrated in Fig.
3a. The trend in the figure could explained that, physically, increasing values of Casson parameter
develop the viscous forces which in consequent retards the flow of the and thereby reduced the flow
velocity. It could be established from the results that the temperature as well as the concentration
of the fluid increase as the Casson fluid parameter increase as shown in Fig. 3b and 3c.
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4.3 Effects of radiation parameter on the fluid velocity, temperature and
concentration distributions

Fig. 4a, 4b and 4c show that the viscous, thermal and concentration boundary layers increase with
the increase of radiation parameter, R. It is shown that increase in radiation parameter causes
the velocity of the fluid to increase. This is because as the radiation parameter is increased, the
absorption of radiated heat from the heated plate releases more heat energy released to the fluid and
the resulting temperature increases the buoyancy forces in the boundary layer which also increases
the fluid motion and the momentum boundary layer thickness accelerates. This is expected, because
the considered radiation effect within the boundary layer increases the motion of the fluid which
increases the surface frictions.
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4.4 Effects of nanoparticle shape on the fluid velocity, temperature and
concentration distributions

The use of nanoparticles in the fluids exhibited better properties relating to the heat transfer of
fluid than heat transfer enhancement through the use of suspended millimeter- or micrometer-sized
particles which potentially cause some severe problems, such as abrasion, clogging, high pressure
drop, and sedimentation of particles. The very low concentrations applications and nanometer sizes
properties of nanoparticles in basefluid prevent the sedimentation in the flow that may clog the
channel. It should be added that the theoretical prediction of enhanced thermal conductivity of
the basefluid and prevention of clogging, abrasion, high pressure drop and sedimentation through
the addition of nanoparticles in basefluid have been supported with experimental evidences in lit-
erature.
Fig. 5a, 5b and 5c show the influence of the shape of nanoparticle on the flow velocity, temperature
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and concentrations profiles of the nanofluid. It is observed that lamina shaped nanoparticle carries
maximum velocity whereas spherical shaped nanoparticle has better enhancement on heat transfer
than other nanoparticle shapes. In fact, it is in accordance with the physical expectation since
it is well known that the lamina nanoparticle has greater shape factor than other nanoparticles
of different shapes, therefore, the lamina nanoparticle comparatively gains maximum temperature
than others. The velocity decrease is maximum in spherical nanoparticles when compared with
other shapes. The enhancement observed at lower volume fractions for non-spherical particles is
attributed to the percolation chain formation, which perturbs the boundary layer and thereby in-
creases the local Nusselt number values. The results show that the maximum decrease in velocity
and maximum increase in temperature are caused by lamina, platelets, cylinder and sphere, re-
spectively.It is also observed that irreversibility process can be reduced by using nanoparticles,
especially the spherical particles. This can potentially result in higher enhancement in the thermal
conductivity of a nanofluid containing elongated particles compared to the one containing spher-
ical nanoparticle, as exhibited by the experimental data in the literature. It is therefore required
thatthat proper choice of nanoparticles should made as this will be helpful in controlling fluid flow,
heat and mass transfer processes
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4.5 Effect of Prandtl number on the fluid velocity, temperature and con-
centration distributions

The figures also show the effects of Prandtl number (Pr) on the velocity and temperature profiles are
shown in Fig. 6a, 6b and 6c, respectively. It is indicated that the velocity of the Casson nanofluid
decreases as the Pr increases but the temperature of the nanofluid increases as the Pr increases.
This is because the nanofluid with higher Prandtl number has a relatively low thermal conductivity,
which reduces conduction, and thereby reduces the thermal boundary-layer thickness, and as a
consequence, increases the heat transfer rate at the surface. For the case of the fluid velocity that
decreases with the increase of Pr, the reason is that fluid of the higher Prandtl number means more
viscous fluid, which increases the boundary-layer thickness and thus, reduces the shear stress and
consequently, retards the flow of the nanouifld. Also, it can be seen that the velocity distribution
for small value of Prandtl number consist of two distinct regions. A thin region near the wall of the
plate where there are large velocity gradients due to viscous effects and a region where the velocity
gradients are small compared with those near the wall. In the later region, the viscous effects are
negligible and the flow of fluid in the region can be considered to be inviscid. Also, such region
tends to create uniform accelerated flow at the surface of the plate.
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4.6 4.6 Effect of Schmidt and Grashof numbers on fluid velocity and
temperature distributions

Fig. 7a and 7b show the effects of Schmidt number (Sc) on the velocity and concentration profiles of
the Casson nanofluid, respectively. Fig. 8 shows that the as Grashof number increases, the velocity
of the fluid increases. However, as in the case of the effect of Prandtl number on the velocity and
temperature distribution, it is depicted in the figures that the velocity of the nanofluid decreases as
the Sc increases but the temperature of the nanofluid increases as the Sc increases. This is because
the nanofluid with higher Schmidt number has a relatively low diffusion coefficient, which reduces
mass diffusion thereby reduces the concentration boundary-layer thickness, and as a consequence,
increases the mass transfer rate at the surface. In Fig. 7a, where the fluid velocity decreases with
the increase of Sc, this is because the fluid of the higher Schmidt number means more viscous fluid,
which increases the boundary-layer thickness and thus, reduces the shear stress and consequently,
retards the flow of the nanofluid. It is also observed that the species concentration decreases with
increasing Schmidt number as shown in Fig. 7b. It was also found that the temperature increases
with increasing Schmidt number. A further investigation revealed that an increase in the Schmidt
number leads to a decrease in Grashof number Gr.
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4.7 Effects of Magnetic field and Flow Medium Porosity on Casson
nanofluid velocity distributions

Figs. 9 shows the effect of magnetic field on the flow velocity of the fluid. It is revealed that there
is a diminution in the velocity field occurs for increasing value of the magnetic field number, Hart-
mann number (Ha). This confirms the general physical behavior of the magnetic field that say that
the fluid velocity depreciates for improved values of Ha. The magnetic field produces Lorentz force
which is drag-like force that produces more resistance to the flow and reduces the fluid velocity. So
large Ha values implies that the Lorentz force increases and the resistance to the flow increases,
and consequently, the velocity of the fluid decreases. Practically, the Lorentz force has a resistive
nature which opposes motion of the fluid and as a result heat is produced which increases thermal
boundary layer thickness and fluid temperature. The magnetic field tends to make the boundary
layer thinner, thereby increasing the wall friction. Consequently, the boundary layer thickness is a
decreasing function of Ha. i.e. presence of magnetic field slows fluid motion at boundary layer and
hence retards the velocity field.
A porous medium studies is very important in a number of engineering applications such as geo-
physics, die filling, metal processing, agricultural and industrial water distribution, oil recovery
techniques, and injection molding. Therefore, Figs. 10 shows the effect of flow medium porosity
on the fluid velocity. As it is illustrated, the fluid velocity increases as the flow medium porosity,
Darcy number increases. This is because, as the Darcy number increases, there is less resistance to
fluid flow through the flow medium.

915

doi.org/10.6084/m9.figshare.13524392.


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

Vol. 6, No. 2, pp. 901 - 923.
doi.org/10.6084/m9.figshare.13524392.

4.8 Effect of Buoyancy ratio parameter on the fluid velocity, temperature
and concentration distributions

Fig 11a, 11b and 11c show the impacts of buoyancy ratio parameter (N = λ) on the velocity,
temperature and concentration profiles. Fig. 11a depicts that the as buoyancy ratio parameter
increases, the velocity of the fluid increases. However, an increase in buoyancy ratio parameter
leads to a decrease in the fluid temperature and concentration as shown in Figs. 11b and 11c
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4.9 Effect of flow time on the fluid velocity, temperature and concentra-
tion distributions

In order to shown the effects of flow time on the velocity, temperature and concentration distribu-
tions, Figs. 11a-c are presented Apart from the fact that the velocity, temperature and concentration
distributions increase as the flow time increases, the results also shown the effects of the controlling
parameters on the time to reach steady state velocity, temperature and concentration. In our fur-
ther investigations, the required time to reach the steady state concentration, the transient velocity,
Nusselt number and the local skin-friction decrease as the buoyancy ratio parameter and Schmidt
number increase. Also, the steady-state temperature and velocity decrease as the buoyancy ratio
parameter and Schmidt number increase.
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The effects of Schmidt number on local skin friction, Nusselt and Sherwood numbers are shown in
Fig. 13, 14 and 15, respectively. The figures reveal that the local skin friction, Nusselt and Sherwood
numbers decrease as the Schmidt number increases. An opposite trend was recorded when the
impact of the buoyancy ratio parameter on Nusselt number was investigated. In the investigation,
it was found that as the local Nusselt number increases as the buoyancy ratio parameter increases.
It was shown that at small values of x (near the leading edge of the plate), the local Nusselt number
is not affected by bothbuoyancy ratio parameter and Schmidt number due to the pure diffusion and
conduction at the location.
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5 Conclusion
In this present study, the transient free convection heat and mass transfer of Casson nanofluid
past an isothermal vertical flat plate embedded in a porous mediumunder the influences of thermal
radiation and magnetic field have been investigated. The governing systems of nonlinear partial
differential equations of the flow, heat and mass transfer processes are solved using implicit finite
difference scheme of Crank-Nicolson type. The numerical solutions are used to carry out parametric
studies and the follow results were established:

i The temperature and the concentration of the fluid increase as the Casson fluidand radiation
parameters as well as Prandtl and Schmidt numbers increase.

ii The increase in the Grashof number, radiation, buoyancy ratio and flow medium porosity
parameters causes the velocity of the fluid to increase. However, the Casson fluid parameter,
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buoyancy ratio parameter, the Hartmann (magnetic field parameter), Schmidt and Prandtl
numbers decrease as the velocity of the flow increases.

iii The time to reach the steady state concentration, the transient velocity, Nusselt number and
the local skin-friction decrease as the buoyancy ratio parameter and Schmidt number increase.

iv The steady-state temperature and velocity decrease as the buoyancy ratio parameter and
Schmidt number increase.

v The local skin friction, Nusselt and Sherwood numbers decrease as the Schmidt number
increases. However, the local Nusselt number increases as the buoyancy ratio parameter
increases.

vi The maximum decrease in velocity and maximum increase in temperature in the nanofluid
flow are caused by lamina, platelets, cylinder and sphere, respectively.

Following the results in this work, it is believed that the present study will greatly assist in various
areas of industrial and engineering applications of the flow problems.

Nomenclature, Symbols & Subscrip
B0 electromagnetic induction R Radiation number
cp specific heat capacity Sc Schmidt number
C species concentration t time
D species diffusion coefficient T temperature of the fluid
g acceleration due to gravity u velocity component in x-direction
Gr Grashof number v velocity component in y-direction
Ha Hartmann number/magnetic field parameter Uw fluid inflow velocity at the wall
k thermal conductivity x coordinate axis parallel to the plate
K the absorption coefficient y coordinate axis perpendicular to the plate
m shape factor β volumetric extension coefficients
N buoyancy ratio parameter ρnf density of the nanofluid
Pr Prandtl number σnf permeability of the magnetic field
pr Prandtl number σ Stefan-Boltzmann constant
P pressure f fluid
P pressure s solid
ρf density of the base fluid nf nanofluid
µnf dynamic viscosity of the nanofluid w wall
ρs density of the solid/nanoparticles
φ fraction of nanoparticles in the nanofluid
γ Casson parameter
τ shear stress
τ0 Casson yield stress
µ dynamic viscosity
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