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Abstract
For function f(z) of the form:

f(z) = z + a2z
2 + a3z

3 + ..., z ∈ U

which are analytic in the unit disk U = {z : |z| < 1}. We determine Fekete-Szegö inequalities
for functions belonging to the generalized class ∆(α, β, λ, θ) of non-Bazilevic functions in the
open unit disk .
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1 Introduction and Definitions
A function g(z) is said to be analytic at a point z0 in a chosen domain if its derivative exists in that
domain. Since these functions are analytic, there exists in their domain Taylor series expansion of
the form

g(z) = b0 + b1z + b2z
2 + b3z

3 + ... (1.0.1)

where the coefficient bk = gk(0)
k! and is obtainable from the famous Cauchy integral formula

gk(z) =
k!

2πi

∫
Γ

g(ξ)

ξ − z
dξ.

Here, we can say that g(z) is normalized such that: g(z) takes the value zero at the origin (i.e, g(0) =
0) and its first derivative takes the value 1 at the origin (g′(0) = 1).
With this in mind, we can write that

g(z)− b0
b1

= z +
b2
b1
z2 +

b3
b1
z3 + ... .
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Let us define

f(z) =
g(z)− b0

b1
. (1.0.2)

Then

f(z) = z +

∞∑
k=2

akz
k (1.0.3)

where ak = bk
b1
, k ≥ 2.

This function in (1.0.3) is analytic and so let A denotes the class of all such functions which are
analytic in the open unit disk U = {z : |z| < 1}. Here, we recall that a single value function f(z)
is said to be univalent if it never takes on the same value twice (i.e, if f(z1) = f(z2) ⇒ z1 =
z2 or z1 6= z2 ⇒ f(z1) 6= f(z2)) for all z1, z2 ∈ U . Furthermore, it is equally possible to show
graphically that f(z) is one-to-one (injective) if and only if f ′(z) 6= 0 for all z ∈ U . On the
other hand, f(z) is injective if and only if it does not turn in its domain, if it does, then in some
neighbourhood of its turning point, it must assign the same value twice.
A set Ω is said to be starlike with respect to a fixed point w0 in it, if the line segment joining w0

to every other points w ∈ Ω lies entirely in the set Ω or if every other points w ∈ Ω is visible from
the fixed point w0. If a function f(z) maps U onto a star domain with respect to w0, then f(z) is
said to be starlike with respect to w0. In particular, if w0 is the origin, then we say that f(z) is a
starlike function in U . Likewise, a set Ω is said to be convex if the line segment joining any two
points of Ω lies entirely in Ω. If a function f(z) maps U onto a convex domain, then we say that
f(z) is a convex function (see Hamzat [1]).
Now, suppose that S denotes the class of all functions in A which are univalent in the disk U . Then
f(z) belonging to S is said to be starlike of order α if and only if

<
{
zf ′(z)

f(z)

}
> α, (1.0.4)

for some α (0 ≤ α < 1). Let S∗(α) denote the class of all functions in S which are starlike of order
α. In like manner, a function f(z) belonging to S is said to be convex of order α if and only if

<
{

1 +
zf ′′(z)

f ′(z)

}
> α, (z ∈ U) (1.0.5)

for some α (0 ≤ α < 1). Let S∗(α) denote the class of all functions in S which are starlike of order
α.
Here, we note that f(z) ∈ K(α) if and only if

S∗(α) ⊆ S∗(0) ≡ S∗,

K(α) ⊆ K(0) ≡ K,

and
K(α) ⊂ S∗(α) ⊂ S,

for some α (0 ≤ α < 1).
These two classes S∗(α) and K(α) were first initiated by Robertson [2] and were subsequently
studied by several authors ( MacGregor [3], Pinchuck [4], Schild [5] and Srivastava and Owa [6]
among others).
However, in the present investigation, the following definitions shall be considered.
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Definition 1.1. Let f(z) be defined by (1.0.3), then we say that f(z) belong to ∆(α, β, λ, θ) if and
only if

<


βeiθ

[
z
(
f ′(z)

)λ]
+ (1− β)

[
zf ′(z) + z2

([
f ′(z)

]λ)′]
βf(z) + (1− β)zf ′(z)

 > α (1.0.6)

for 0 ≤ α < 1, λ ≥ 1, 0 ≤ β ≤ 1, 0 ≤ θ < π
2 and z ∈ U . Here, we shall give the following remarks

(see Hamzat [7]).
Remarks:
(i.) Let f(z) ∈ ∆(α, 1, λ, 0), then

<


z

(
f ′(z)

)λ
f(z)

 > α, z ∈ U. (1.0.7)

This is the class of analytic function known as λ− pseudo− starlike class of order α.
(ii.) Let f(z) ∈ ∆(α, 0, λ, 0), then

<


z

([
f ′(z)

]λ)′
f ′(z)

 > α, z ∈ U. (1.0.8)

This is the class of analytic function called λ− pseudo− convex class of order α.
(iii.) If f(z) ∈ ∆(α, 1, λ, θ), then

<

e
iθ

z

(
f ′(z)

)λ
f(z)

 > α, z ∈ U. (1.0.9)

This is the class of analytic function known as λ− pseudo− spiralike class of order α.
(iv.) Let f(z) ∈ ∆(α, 0, 1, 0), then

<
{

1 +
zf ′′(z)

f ′(z)

}
> α, z ∈ U. (1.0.10)

This is the class of analytic function known as convex class of order α.
(v.) If f(z) ∈ ∆(α, 1, 1, θ), then

<
{
eiθ

zf ′(z)

f(z)

}
> α, z ∈ U. (1.0.11)

This is the class of analytic function known as spiralike class of order α.
(vi.) Let f(z) ∈ ∆(α, 1, 1, 0), then

<
{
zf ′(z)

f(z)

}
> α, z ∈ U. (1.0.12)
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This is the class of analytic function known as starlike class of order α.
(vii.) If f(z) ∈ (α, 1, 2, θ), then

<
{
eiθf ′(z)

zf ′(z)

f(z)

}
> α, z ∈ U, (1.0.13)

which is the product of combination of geometric expression for bounded turning and spiralike
function of order α.
(viii.) If f(z) ∈ (α, 1, 2, 0), then

<
{
f ′(z)

zf ′(z)

f(z)

}
> α, z ∈ U, (1.0.14)

which is the product of combination of geometric expression for bounded turning and starlike
function of order α.
Now, suppose that ψ is an analytic function with positive real part in the unit disk U and has the
Taylor’s series expansion of the form

ψ(z) = 1 +B1z +B2z
2 +B3z

3 + ... (1.0.15)

with Bn > 0, n ∈ N.
Definition 1.2. A function f ∈ A of the form (1.0.3) is said to be in the class ∆(α, β, λ, θ;ψ) if it
satisfies the condition that

β
[
eiθz

(
f ′(z)

)λ − αf(z)
]

+ (1− β)z
[
(1− α)f ′(z) + z

(
[f ′(z)]λ

)′]
[
1 + β(eiθ − 1)− α

][
βf(z) + (1− β)zf ′(z)

] ≺ ψ(z). (1.0.16)

Here, some well-known Lemmas would be considered.
Lemma 1.1. If a function q ∈ P (class of Caratheodory functions) is given by

q(z) = 1 + c1z + c2z
2 + ... = 1 +

∞∑
k=1

ckz
k (z ∈ U),

then
|ck| ≤ 2 (k ∈ N),

where
q(0) = 1 and <e (q(z)) > 0 (z ∈ U).

Lemma 1.2. If q1(z) = 1 + c1z + c2z
2 + ... is an analytic function with positive real part and σ is

a complex number, then
|c2 − σc21| ≤ 2 max {1; |2σ − 1|} .

The result is sharp for the functions given by

q(z) =
1 + z2

1− z2
and q(z) =

1 + z

1− z
.

Lemma 1.3. If q(z) = 1 + c1z + c2z
2 + ... ∈ P is an analytic function with positive real part and

σ is a complex number, then

|c2 − σc21| ≤

 2− 4σ, if σ ≤ 0;
2, if 0 ≤ σ ≤ 1;
4σ − 2, if σ ≥ 1.
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For σ < 0 or σ > 1, the equality holds true if and only if

q1(z) =
1 + z

1− z

or one of its rotations.
If 0 < σ < 1, then the equality holds true if and only if

q1(z) =
1 + z2

1− z2

or one of its rotations.
Also, for σ = 0, the equality holds true if and only if

q1(z) =
(1

2
+

1

2
t
)1 + z

1− z
+
(1

2
− 1

2
t
)1− z

1 + z
, (0 ≤ t ≤ 1),

or one of its rotations.
Further, if σ = 1, the equality holds true if and only if

1

q1(z)
=
(1

2
+

1

2
t
)1 + z

1− z
+
(1

2
− 1

2
t
)1− z

1 + z
, (0 ≤ t ≤ 1),

or one of its rotations.
The above upper bound is sharp and it can be improved as follows when 0 < σ < 1:∣∣∣c2 − σc21∣∣∣+ σ

∣∣c1∣∣2 ≤ 2,
(
0 < σ <

1

2

)
and ∣∣∣c2 − σc21∣∣∣+ (1− σ)

∣∣c1∣∣2 ≤ 2,
(
0 < σ <

1

2

)
.

For more details on the Lemmas above, interested reader can refer Ma and Minda [8], Shanmugham
et al. [9] and Aouf et al. [10] among others.

2 Preliminary Result
Here, except otherwise stated, we shall assume throughout this paper that 0 ≤ α < 1, λ ≥ 1, 0 ≤
β ≤ 1 and |θ| < π

2 .
Theorem 2.1. Let f(z) be defined by (1.0.3). Also let ψ(z) = 1+B1z+B2z

2+B3z
3+..., ψ(z) ∈ A

and ψ′(z) > 0. If f(z) ∈ ∆(α, β, λ, θ;ψ), then

|a2| ≤
|Y |B1

Ω1
(2.0.1)

and

|a3| ≤
|Y |B1

Ω2
. max

{
1,

∣∣∣∣B2

B1
+
Y B1

Ω2
1

[
(2− β)Ω1 − 2λ(λ− 1)

(
2 + β(eiθ − 2)

)]∣∣∣∣} , (2.0.2)

where,
Y = 1− α+ β(eiθ − 1),

Ω1 = 2λβ
(
eiθ − 1

)
− (2− β)

(
eiθ − 1

)
+ 2λ− β

and
Ω2 = 3λβ

(
eiθ − 2

)
− (2− β)

(
eiθ − 1

)
+ 6λ− β.
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Proof. Since f(z) ∈ ∆(α, β, λ, θ;ψ), there exists a Schwarz function w(z) such that w(0) = 0 and
|w(z)| < 1 in U , then

β
[
eiθz

(
f ′(z)

)λ − αf(z)
]

+ (1− β)z
[
(1− α)f ′(z) + z

(
[f ′(z)]λ

)′]
[
1 + β(eiθ − 1)− α

][
βf(z) + (1− β)zf ′(z)

] = ψ
(
w(z)

)
. (2.0.3)

If the function q1(z) is an analytic function with positive real part and q1(0) = 1, then we define
q1(z) such that

q1(z) =
1 + w(z)

1− w(z)
= 1 + c1z + c2z

2 + ... . (2.0.4)

Since w(z) is a Schwarz function, observe that <{q1(z)} is positive with q1(0) = 1. We define

q(z) =
β
[
eiθz

(
f ′(z)

)λ − αf(z)
]

+ (1− β)z
[
(1− α)f ′(z) + z

(
[f ′(z)]λ

)′]
[
1 + β(eiθ − 1)− α

][
βf(z) + (1− β)zf ′(z)

] = ψ
(
w(z)

)

= 1 + d1z + d2z
2 + ... z ∈ U. (2.0.5)

From (2.0.4), we have that

ω(z) =
(q1(z)− 1

q1(z) + 1

)
=

1

2

[
c1z +

(
c2 −

c21
2

)
z2 +

(
c3 +

c31
4
− c1c2

)
z3 + ...

]
. (2.0.6)

Since
q(z) = ψ

(q1(z)− 1

q1(z) + 1

)
= 1 + d1z + d2z

2 + ... ,

and a simple computation yields

ψ
(q1(z)− 1

q1(z) + 1

)
= 1 +

1

2
B1c1z +

[
1

2
B1

(
c2 −

c21
2

)
+

1

4
B2c

2
1

]
z2 + ... , (2.0.7)

where

d1 =
1

2
B1c1, d2 =

1

2
B1

(
c2 −

c21
2

)
+

1

4
B2c

2
1, ... .

Therefore, in view of (2.0.3), we can say that[
1− α+ β(eiθ − 1)

]
z +

[
2λβ(eiθ − 1) + 2(λ− α− β + 1) + αβ

]
a2z

2 + Lz3 + ...[
1− α+ β(eiθ − 1)

][
z + (2− β)a2z2 + (3− 2β)a3z3 + ...

]
= 1 +

1

2
B1c1z +

[
1

2
B1

(
c2 −

c21
2

)
+

1

4
B2c

2
1

]
z2 + ... (2.0.8)

where
L =

(
3λβ(eiθ − 2) + 3(2λ− α− β + 1)

)
a3 + 2λ(λ− 1)

(
2 + β(eiθ − 2)

)
a2

2.

From (2.0.8), we obtain

a2 =
Y B1c1

2Ω1
(2.0.9)
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and

a3 =
Y B1

2Ω2

{
c2 −

Y B2
1

[(
2 + β(eiθ − 2)

)
− (2− β)Ω1

]
−
(
B2 −B1

)
Ω2

1

2B1Ω2
1

c21

}
, (2.0.10)

where
Y = 1− α+ β(eiθ − 1),

Ω1 = 2λβ
(
eiθ − 1

)
− (2− β)

(
eiθ − 1

)
+ 2λ− β

and
Ω2 = 3λβ

(
eiθ − 2

)
− (2− β)

(
eiθ − 1

)
+ 6λ− β.

Using Lemma 1.1 and Lemma 1.2 respectively, in (2.0.9) and (2.0.10), we obtain the inequalities in
(2.0.1) and (2.0.2). This obviously completes the proof of Theorem 2.1.
Next, we present the main results.

3 Main Results
Theorem 3.1. Let ψ = 1 + B1z + B2z

2 + B3z
3 + ...,

(
Bn > 0, n ∈ N

)
, ψ(z) ∈ A and ψ′(z) > 0.

Also let

ρ1 =
Ω2

1

Y B1Ω2

{
B2

B1
− Y B1

Ω2
1

[
2λ(λ− 1)

(
2 + β(eiθ − 2)

)
− (2− β)Ω1

]
− 1

}
.

and

ρ2 =
Ω2

1

Y B1Ω2

{
1 +

B2

B1
− Y B1

Ω2
1

[
2λ(λ− 1)

(
2 + β(eiθ − 2)

)
− (2− β)Ω1

]}
,

where all the parameters involved are as earlier defined.
Suppose that f(z) is of the form (1.0.3) and belongs to the class ∆(α, β, λ, θ;ψ), then for real µ we
obtain the following results:
(i) If µ ≤ ρ1, then∣∣a3 − µa2

2

∣∣ ≤ |Y |B1

Ω2

{
B2

B1
− |Y |B1

Ω2
1

[
µΩ2 + 2λ(λ− 1)

(
2 + β(eiθ − 2)

)
− (2− β)Ω1

]}
.

(ii) If ρ1 ≤ µ ≤ ρ2, then ∣∣a3 − µa2
2

∣∣ ≤ |Y |B1

Ω2
.

(iii) If µ ≥ ρ2, then∣∣a3 − µa2
2

∣∣ ≤ |Y |B1

Ω2

{
|Y |B1

Ω2
1

[
µΩ2 + 2λ(λ− 1)

(
2 + β(eiθ − 2)

)
− (2− β)Ω1

]
− B2

B1

}
,

where Y,Ω1 and Ω2 are as earlier defined.
Proof. Suppose that f(z) ∈ ∆(α, β, λ, θ;ψ). Also let q(z) be given by (2.0.5) and q1(z) be of
the form (2.0.4), then a2 and a3 are given as in (2.0.9) and (2.0.10) of Theorem 2.1 respectively.
Observe that

a3 − µa2
2 =

Y B1

2Ω2

{
c2 − σc21

}
, (3.0.1)

where

σ =
Y B2

1

[
2λ(λ− 1)

(
2 + β(eiθ − 2)

)
− (2− β)Ω1

]
−
(
B2 −B1

)
Ω2

1 + µY B2
1Ω2

2B1Ω2
1

.

880

doi.org/10.6084/m9.figshare.13704001.


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

Vol. 6, No. 2, pp. 874 - 885.
doi.org/10.6084/m9.figshare.13704001.

Now, we considered the following cases .
Case 1.a
If µ ≤ ρ1, then σ ≤ 0. Applying Lemma 1.3 to (3.0.1), we obtain∣∣a3 − µa2

2

∣∣ ≤ |Y |B1

Ω2

{
B2

B1
− |Y |B1

Ω2
1

[
µΩ2 + 2λ(λ− 1)

(
2 + β(eiθ − 2)

)
− (2− β)Ω1

]}
which obviously satisfies the item (i) of Theorem 3.1.
Case 1.b
If µ = ρ1, then σ = 0. Therefore equality holds true if and only if

q1(z) =
(1 + t

2

)1 + z

1− z
+
(1− t

2

)1− z
1 + z

,
(

0 ≤ t ≤ 1; z ∈ U
)
.

Case 2.a
If ρ1 ≤ µ ≤ ρ2, observe that

max

 |Y |B
2
1

[
2λ(λ− 1)

(
2 + β(eiθ − 2)

)
− (2− β)Ω1

]
−
(
B2 −B1

)
Ω2

1 + µ|Y |B2
1Ω2

2B1Ω2
1

 ≤ 1,

then applying Lemma 1.3 to (3.0.1), we obtain∣∣a3 − µa2
2

∣∣ ≤ |Y |B1

Ω2

which satisfies the item (ii) of Theorem 3.1.
Case 2.b
If ρ1 < µ < ρ1, then we obtain

q1(z) =
(1 + t

2

)1 + z2

1− z2
.

Case 3.a
If µ ≥ ρ2, then σ ≥ 1. Therefore, applying Lemma 1.3 to as before, we obtain∣∣a3 − µa2

2

∣∣ ≤ |Y |B1

Ω2

{
|Y |B1

Ω2
1

[
µΩ2 + 2λ(λ− 1)

(
2 + β(eiθ − 2)

)
− (2− β)Ω1

]
− B2

B1

}
which ultimately satisfies the item (iii) of Theorem 3.1.
Case 3.b
If µ = ρ2, then σ = 1. Then, equality holds if and only if

1

q1(z)
=
(1 + t

2

)1 + z

1− z
+
(1− t

2

)1− z
1 + z

,
(

0 ≤ t ≤ 1; z ∈ U
)
.

This evidently completes the proof of Theorem 3.1.
Theorem 3.2. Let ψ = 1 + B1z + B2z

2 + B3z
3 + ...,

(
Bn > 0, n ∈ N

)
, ψ(z) ∈ A and ψ′(z) > 0.

Also let f(z) be given by (1.0.3) and belongs to the class ∆(α, β, λ, θ;ψ) with ρ1 ≤ µ ≤ ρ2, then in
view of Lemma 1.3, Theorem 3.1 can be improved. So let

ρ3 =
Ω2

1

Y B1Ω2

{
B2

B1
− Y B1

Ω2
1

[
2λ(λ− 1)

(
2 + β(eiθ − 2)

)
− (2− β)Ω1

]}
.

(i) If ρ1 ≤ µ ≤ ρ3, then we have∣∣a3−µa2
2

∣∣+ Ω2
1

|Y |B1Ω2

{
1− B2

B1
+
|Y |B1

Ω2
1

[
2λ(λ− 1)

(
2 + β(eiθ − 2)

)
− (2− β)Ω1

]
+
|Y |B1Ω2

Ω2
1µ

} ∣∣a2

∣∣2 ≤ |Y |B1

Ω2
,

881

doi.org/10.6084/m9.figshare.13704001.


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

Vol. 6, No. 2, pp. 874 - 885.
doi.org/10.6084/m9.figshare.13704001.

(ii) If ρ3 ≤ µ ≤ ρ2, then we have

∣∣a3−µa2
2

∣∣+ Ω2
1

|Y |B1Ω2

{
1 +

B2

B1
− |Y |B1

Ω2
1

[
2λ(λ− 1)

(
2 + β(eiθ − 2)

)
− (2− β)Ω1

]
+
|Y |B1Ω2

Ω2
1µ

} ∣∣a2

∣∣2 ≤ |Y |B1

Ω2
,

where Y,Ω1 and Ω2 are as earlier defined.
Proof. For all values of ρ1 ≤ µ ≤ ρ3, we obtain∣∣a3 − µa2

2

∣∣+
(
µ− ρ1

)∣∣a2

∣∣2 =
|Y |B1

2Ω2

∣∣∣c2 − σc21∣∣∣
+

{
µ− Ω2

1

|Y |B1Ω2

[
B2

B1
− |Y |B1

Ω2
1

(
2λ(λ− 1)

(
2 + β(eiθ − 2)

)
− (2− β)Ω1

)
− 1

]}
.
|Y |2B2

1

4Ω2
1

∣∣c1∣∣2
=
|Y |B1

2Ω2

{∣∣∣c2 − σc21∣∣∣+ σ
∣∣c1∣∣2} . (3.0.2)

Applying Lemma 1.3 to equality (3.0.2), we obtain∣∣a3 − µa2
2

∣∣+
(
µ− ρ1

)∣∣a2

∣∣2 ≤ |Y |B1

2Ω2

where Y and Ω2 are as earlier defined. This obviously satisfies the item (i) of Theorem 3.2.
Finally, for the values of µ : ρ3 ≤ µ ≤ ρ2, we have that∣∣a3 − µa2

2

∣∣+
(
ρ2 − µ

)∣∣a2

∣∣2 =
|Y |B1

2Ω2

∣∣∣c2 − σc21∣∣∣
+

{
Ω2

1

|Y |B1Ω2

[
1 +

B2

B1
− |Y |B1

Ω2
1

(
2λ(λ− 1)

(
2 + β(eiθ − 2)

)
− (2− β)Ω1

)]}
.
|Y |2B2

1

4Ω2
1

∣∣c1∣∣2
=
|Y |B1

2Ω2

{∣∣∣c2 − σc21∣∣∣+
(
1− σ

)∣∣c1∣∣2} . (3.0.3)

Applying Lemma 1.3 to equality (3.0.3), we obtain∣∣a3 − µa2
2

∣∣+
(
ρ2 − µ

)∣∣a2

∣∣2 ≤ |Y |B1

2Ω2

where Y and Ω2 are as earlier defined. This obviously satisfies the item (ii) of Theorem 3.2 and
this evidently ends the proof.
Theorem 3.3. Let f(z) be defined by (1.0.3). Also let ψ(z) = 1 + B1z + B2z

2 + B3z
3 + ...,(

Bn > 0, n ∈ N
)
, ψ(z) ∈ A and ψ′(z) > 0. If f(z) ∈ ∆(α, β, λ, θ;ψ), then for real µ

∣∣a3 − µa2
2

∣∣ ≤ |Y |B1

Ω2
.max

{
1,

∣∣∣∣B2

B1
+
|Y |B1

Ω2
1

(
(2− β)Ω1 − 2λ(λ− 1)

(
2 + β(eiθ − 2)

)
− µΩ2

)∣∣∣∣} .
The result is sharp.
Proof. In view of (2.0.9) and (2.0.10), we have that

a3 − µa2
2 =

Y B1

2Ω2

[
c2 − σc21

]
,

where

σ =
Y B2

1

[
2λ(λ− 1)

(
2 + β(eiθ − 2)

)
− (2− β)Ω1

]
−
(
B2 −B1

)
Ω2

1 + µY B2
1Ω2

2B1Ω2
1

.
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Using Lemma 1.2, then we have

∣∣a3 − µa2
2

∣∣ ≤ |Y |B1

Ω2
.max

{
1,

∣∣∣∣B2

B1
+
Y B1

Ω2
1

(
(2− β)Ω1 − 2λ(λ− 1)

(
2 + β(eiθ − 2)

))
− Y B1Ω2

Ω2
1

µ

∣∣∣∣}
and this evidently completes the proof of Theorem 3.3.
Let ψ(z) = 1+Az

1−Bz ,
(
− 1 ≤ B < A ≤ 1

)
or equivalently, B1 = A − B and B2 = −B(A − B) in

Theorem 3.3, then we obtain the following corollary:
Corollary 3.4. Let f(z) ∈ ∆(α, β, λ, θ;A,B). Then∣∣a3 − µa2

2

∣∣
≤ |Y |(A−B)

Ω2
.max

{
1,

∣∣∣∣Y (A−B)

Ω2
1

(
(2− β)Ω1 − 2λ(λ− 1)

(
2 + β(eiθ − 2)

)
− µΩ2

)
−B

∣∣∣∣} .
The result is sharp. Also, setting ψ(z) = 1+(1−2γ)z

1−z ,
(
− 1 ≤ B < A ≤ 1

)
in Theorem 3.3, then we

obtain the following corollary:
Corollary 3.5. Let f(z) ∈ ∆(α, β, λ, θ; (1− 2γ),−1). Then∣∣a3 − µa2

2

∣∣
≤ 2(1− γ)|Y |

Ω2
.max

{
1,

∣∣∣∣2(1− γ)Y

Ω2
1

(
(2− β)Ω1 − 2λ(λ− 1)

(
2 + β(eiθ − 2)

)
− µΩ2

)
+ 1

∣∣∣∣} .
The result is sharp. Also, setting
Corollary 3.6. Let f(z) ∈ ∆(α, 1, λ, 0; 1,−1). Then

∣∣a3 − µa2
2

∣∣ ≤ 2(1− α)

3λ− 1
.max

{
1,

∣∣∣∣ 2(1− α)

(2λ− 1)2

(
− 2λ2 + 4λ− 1− µ(3λ− 1)

)
+ 1

∣∣∣∣} .
Corollary 3.7. Let f(z) ∈ ∆(α, 0, λ, 0; 1,−1). Then

∣∣a3 − µa2
2

∣∣ ≤ (1− α)

3λ
.max

{
1,

∣∣∣∣ (1− α)

λ

(
2(2− λ)− 3µ

)
+ 1

∣∣∣∣} .
Corollary 3.8. Let f(z) ∈ ∆(α, 1, 15, 0; 1,−1). Then

∣∣a3 − µa2
2

∣∣ ≤ (1− α).max

{
1,

∣∣∣∣2(1− α)
(

2− 3µ
)

+ 1

∣∣∣∣} .
Corollary 3.9. Let f(z) ∈ ∆(α, 0, 1, 0; 1,−1). Then

∣∣a3 − µa2
2

∣∣ ≤ (1− α)

3
.max

{
1,

∣∣∣∣(1− α)
(

2− 3µ
)

+ 1

∣∣∣∣} .
Corollary 3.10. Let f(z) ∈ ∆(0, 1, λ, 0; 1,−1). Then

∣∣a3 − µa2
2

∣∣ ≤ 2

3λ− 1
.max

{
1,

∣∣∣∣ 2

(2λ− 1)2

(
− 2λ2 + 4λ− 1− µ(3λ− 1)

)
+ 1

∣∣∣∣} .
Corollary 3.11. Let f(z) ∈ ∆(0, 0, λ, 0; 1,−1). Then

∣∣a3 − µa2
2

∣∣ ≤ (1

3λ
.max

{
1,

∣∣∣∣ 1λ
(

2(2− λ)− 3µ

)
+ 1

∣∣∣∣} .
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Corollary 3.12. Let f(z) ∈ ∆(0, 1, 1, 0; 1,−1). Then∣∣a3 − µa2
2

∣∣ ≤ max

{
1,

∣∣∣∣(2(1− 2µ)
)

+ 1

∣∣∣∣} .
Corollary 3.13. Let f(z) ∈ ∆(0, 0, 1, 0; 1,−1). Then∣∣a3 − µa2

2

∣∣ ≤ 1

3
.max

{
1,

∣∣∣∣3(1− µ)

∣∣∣∣} .
For recent works on Fekete-Szegö problems, refer to Hamzat [7], Ali et al. [11], Alsoboh and Darus
[12] and Arikan et al. [13], Hamzat and Makinde [14] and Jahangiri et al [15] among others.
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