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Abstract

A 3-Step Hybrid Block Method (S3HBM) with three mid-step grid points based on Linear
Multistep Method is presented in this work for direct approximation of solution of third-order
Initial and Boundary Value Problems (IVPs and BVPs). Multiple Finite Difference formulas
are derived using the collocation technique. These formulas are unified in a block formulation to
form a numerical integrator that solves general third-order ordinary differential equations. Basic
properties of the derived method are discussed. The superiority of this method over existing
methods is established numerically on different test problems, to show its better performance
in terms od accuracy.
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1 Introduction
In this work, third-order problems of the type:

y′′′ = f(x, y, y′, y′′), a ≤ x ≤ b (1.1)

with initial conditions
y(a) = α0, y

′(a) = α1, y
′′(a) = α2 (1.2)

or boundary conditions
y(a) = α0, y

′(a) = α1, y(b) = β0
y(a) = α0, y

′(a) = α1, y
′(b) = β1

(1.3)

are considered, where αi i = 0, 1, 2, β0, β1, a, b are real constants. x ∈ [a, b]. We assume that the
function f is continuous in [a, b] × R3. Thus we as well assume the existence and uniqueness of
the solution of (1.1) with (1.2) and (1.1) with any of (1.3) as discussed in [1,2]. It is also assumed
that (1.1) is well posed and the numerical solution is the interest. Accurate numerical methods for
solving third-order initial and boundary value problems are available in literature. To mention but
few are: Non-polynomial splines [3], Quartic Splines [4], Collocation method [5–7]. Block methods
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credited to [7] and many others. Emphasis is on collocation technique which is employed in this
work. This method is found to be flexible and more efficient in that; (i) it approximates the solu-
tion of (1.1) at several intra-points; (ii) its block formulations consists of several linear multistep
methods viz-a-viz the main and additional methods required for direct solution of (1.1), such that
it overcomes the overlapping of pieces of solutions; (iii) it does not require any starting value from
other methods i.e it is self starting.

In this work a three-step continuous hybrid block method (S3HBM) with three intra-step points is
developed via collocation approach, for the direct approximation of the solution of (1.1) with (1.2)
or any of the conditions in (1.3).

2 Derivation of the Methods
Here, the derivation of a continuous implicit three mid intra-step hybrid block method is described,
for the solution of (1.1) over the integration interval [a, b],

πN ≡ {a = x0 < x1 < · · · < xN−1 < xN = b}
with h the constant step-size, h = xi − xi−1, i = 1, 2, . . . , N .
Method similar to this work can be seen in [9], where the three off-step points in the interval
0 < xn+r < xn+s < xn+t < 1 are given such that (r, s, t) = ( 38 ,

5
8 ,

7
8 ). Optimized two-step block

method with three hybrid points for solving third order initial value problems can be found in [8].
In [9], the off-step points r, s, g are such that 0 < r, s, g < 2. In the case of this paper, the off-step
points are mid points in the interval 0 < s < 1 < u < 2 < v < 3, where s = 1

2 , u = 3
2 and v = 5

2 .
Consider the approximation p(x) of y(x) given by the polynomial

y(x) ' p(x) =
11∑
i=0

ρjx
j . (2.1)

whose third derivatives yields

y′′′(x) ' p′′′(x) =
11∑
j=3

ρjj(j − 1)(j − 2)xj−3 (2.2)

and on differentiation further

y(iv)(x) ' p(iv)(x) =
11∑
j=4

ρjj(j − 1)(j − 2)(j − 3)xj−4 . (2.3)

where ρj are real unknown coefficients to be determined. Interpolating (2.1) at the points xn+i,
i = 0, 1, 2, collocating (2.2) at the points xn+ i

2
=, i = 0, 1, . . . , 6 and finally collocating (2.3) at the

points xn+i, i = 0, 3, we obtain a system of 12 equations with 12 unknowns (the ρj , i = 0, 1, . . . , 11).
This system can be written in matrix form as

1 xn x2n x3n x4n x5n x6n · · · x11n
1 xn+1 x2n+1 x3n+1 x4n+1 x5n+1 x6n+1 · · · x11n+1

1 xn+2 x2n+2 x3n+2 x4n+2 x5n+2 x6n+2 · · · x11n+2

0 0 0 6 24xn 60x2n 120x3n · · · 990x8n
0 0 0 6 24xn+ 1

2
60x2

n+ 1
2

120x3
n+ 1

2

· · · 990x8
n+ 1

2

0 0 0 6 24xn+1 60x2n+1 120x3n+1 · · · 990x8n+1

0 0 0 6 24xn+ 3
2

60x2
n+ 3

2

120x3
n+ 3

2

· · · 990x8
n+ 3

2

0 0 0 6 24xn+2 60x2n+2 120x3n+2 · · · 990x8n+2

0 0 0 6 24xn+ 5
2

60x2
n+ 5

2

120x3
n+ 5

2

· · · 990x8
n+ 5

2

0 0 0 6 24xn+3 60x2n+3 120x3n+3 · · · 990x8n+3

0 0 0 0 24 120xn 360x2n · · · 7920x7n
0 0 0 0 24 120xn+3 360x2n+3 · · · 7920x7n+3





ρ0
ρ1
ρ2
ρ3
ρ4
ρ5
ρ6
ρ7
ρ8
ρ9
ρ10
ρ11


=



y0
y1
y2
h3f0
h3f 1

2

h3f1
h3f 3

2

h3f2
h3f 5

2

h3f3
h4g0
h4g3
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where y(j)n+i ' y(j)(xn+i), fn+i ' f(xn+i, yn+i, y′n+i, y′′n+i), and gn+i '
df(xn+i,yn+i,y

′
n+i,y

′′
n+i)

dxn+i
.

Solving the above system using a computer algebraic system (cas) in Mathematica we obtain
the values of the coefficients ρi, i = 0, 1, . . . , 11, (not included here). Substituting these values of
ρi’s into the polynomial (2.1), the formula is obtained as:

p(x) =

2∑
i=0

αi(x)yn+i + h3

(
3∑
i=0

βi(x)fi +

3∑
i=1

β̂i(x)f 2i−1
2

)
+ h4 (γ0(x)g0 + γ3(x)g3) (2.4)

where the α, β, β̂ and γ are continuous coefficients (which are large expressions and are not included
here, but can be easily obtained with the help of a cas).

Evaluating p(x) in (2.4) at the points x = xn+ 1
2
, xn+ 3

2
, xn+ 5

2
and xn+3 and after some simplifi-

cations, we obtain the following methods:

yn+ 1
2
= 3yn

8
+

3yn+1

4
− yn+2

8
+ h3

(
131381fn
580608000

+
89281f

n+1
2

4032000
+

29047fn+1

860160
+

1963f
n+3

2
362880

+
3491fn+2

2580480

−
261f

n+5
2

448000
+

35137fn+3

193536000

)
− h4

(
3gn

102400
+

89gn+3

2764800

)
yn+ 3

2
= − yn

8
+

3yn+1

4
+

3yn+2

8
− h3

(
536243fn

1741824000
+

9367f
n+1

2
1344000

+
9169fn+1

286720
+

401f
n+3

2
17010

− 563fn+2

860160

+
617f

n+5
2

1344000
− 235507fn+3

1741824000

)
− h4

(
257gn

8294400
+

193gn+3

8294400

)
yn+ 5

2
= 3yn

8
− 5yn+1

4
+

15yn+2

8
+ h3

(
7813fn

23224320
+

2049f
n+1

2
89600

+
47801fn+1

516096
+

1097f
n+3

2
8064

+
10357fn+2

172032

+
23f

n+5
2

161280
+

33871fn+3

116121600

)
− h4

(
gn

110592
+

29gn+3

552960

)
yn+3 = yn − 3yn+1 + 3yn+2 + h3

(
4699fn
3402000

+
52f

n+1
2

875
+

421fn+1

1680
+

3208f
n+3

2
8505

+
421fn+2

1680
+

52f
n+5

2
875

+
4699fn+3

3402000

)
+ h4

( gn
16200

− gn+3

16200

)



(2.5)

Then, evaluating p′(x) in (2.4), at the points x = x i
2
, i = 1, 2, . . . , 6, we obtain the following

formulas for approximating the first derivatives:

hy′n = − 3yn
2

+ 2yn+1 −
yn+2

2
+ h3

(
221533fn
8981280

+
1883f

n+1
2

12375
+

13997fn+1

110880
+

8378f
n+3

2
280665

+
3fn+2

12320

+
f
n+5

2
3465

− 3611fn+3

32076000

)
+ h4

(
431gn
213840

+
23gn+3

1069200

)
hy′

n+ 1
2

= −yn + yn+1 − h3
(

48527fn
14784000

+
2359649f

n+1
2

66528000
+

1257fn+1

394240
−

2869f
n+3

2
11975040

+
493fn+2

5322240

+
2147f

n+5
2

22176000
+

89239fn+3

2395008000

)
− h4

(
1813gn
5702400

+
gn+3

140800

)
hy′n+1 = − yn

2
+

yn+2

2
− h3

(
6389fn

37422000
+

2791f
n+1

2
86625

+
212fn+1

2079
+

2986f
n+3

2
93555

+
5fn+2

11088

−
31f

n+5
2

259875
+

29fn+3

519750

)
+ h4

( gn
19800

+
gn+3

89100

)
hy′

n+ 3
2

= −yn+1 + yn+2 − h3
(

1079861fn
14370048000

−
2819f

n+1
2

7392000
+

21779fn+1

7096320
+

1298369f
n+3

2
35925120

+
21779fn+2

7096320

−
2819f

n+5
2

7392000
+

1079861fn+3

14370048000

)
− h4

(
779gn

68428800
− 779gn+3

68428800

)
hy′n+2 = yn

2
− 2yn+1 +

3yn+2

2
+ h3

(
47513fn
74844000

+
7753f

n+1
2

259875
+

13843fn+1

110880
+

698f
n+3

2
4455

+
7759fn+2

332640

−
31f

n+5
2

12375
+

38911fn+3

74844000

)
+ h4

(
7gn

356400
− 29gn+3

356400

)
hy′

n+ 5
2

= yn − 3yn+1 + 2yn+2 + h3
(

226489fn
159667200

+
187963f

n+1
2

3168000
+

190603fn+1

760320
+

4519733f
n+3

2
11975040

+
292613fn+2

1182720

+
318803f

n+5
2

13305600
− 2276639fn+3

1197504000

)
+ h4

(
157gn

2280960
+

487gn+3

1900800

)
hy′n+3 = 3yn

2
− 4yn+1 +

5yn+2

2
+ h3

(
109981fn
56133000

+
7747f

n+1
2

86625
+ 331

880
fn+1 +

23882f
n+3

2
40095

+
13919fn+2

27720

+
20903f

n+5
2

86625
+

3001763fn+3

112266000

)
+ h4

(
19gn

267300
− 1127gn+3

534600

)


(2.6)
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Similarly, evaluating p′′(x) in (2.4), at the points x = x i
2
, i = 1, 2, . . . , 6, we obtain the formulas

for approximating the second derivatives:

h2y′′n = yn − 2yn+1 + yn+2 − h3
(

1547893fn
6804000

+
11429f

n+1
2

23625
+

6229fn+1

30240
+

118f
n+3

2
1215

− 137fn+2

6048

+
289f

n+5
2

23625
− 8959fn+3

2268000

)
− h4

(
169gn
10800

+
23gn+3

32400

)
h2y′′

n+ 1
2

= yn − 2yn+1 + yn+2 + h3
(

26872157fn
1306368000

−
82841f

n+1
2

504000
− 624473fn+1

1935360
−

398f
n+3

2
25515

− 16909fn+2

645120

+
18187f

n+5
2

1512000
− 701179fn+3

186624000

)
+ h4

(
17843gn
6220800

+
4147gn+3

6220800

)
h2y′′n+1 = yn − 2yn+1 + yn+2 − h3

(
20401fn
4082400

−
409f

n+1
2

4725
− 5fn+1

288
+

2938f
n+3

2
25515

− 719fn+2

30240

+
17f

n+5
2

1575
− 13229fn+3

4082400

)
− h4

(
19gn
19440

+
11gn+3

19440

)
h2y′′

n+ 3
2

= yn − 2yn+1 + yn+2 + h3
(

2086271fn
435456000

+
71173f

n+1
2

1512000
+

557063fn+1

1935360
+

1604f
n+3

2
8505

− 72071fn+2

1935360

+
2669f

n+5
2

216000
− 494933fn+3

145152000

)
+ h4

(
443gn
691200

+
1201gn+3

2073600

)
h2y′′n+2 = yn − 2yn+1 + yn+2 − h3

(
37951fn
20412000

−
79f

n+1
2

1125
− 6859fn+1

30240
−

12562f
n+3

2
25515

− 2351fn+2

10080

+
641f

n+5
2

23625
− 130199fn+3

20412000

)
− h4

(
49gnh2

97200
+

101gn+3h
2

97200

)
h2y′′

n+ 5
2

= yn − 2yn+1 + yn+2 + h3
(

6712669fn
1306368000

+
71669f

n+1
2

1512000
+

178573fn+1

645120
+

10022f
n+3

2
25515

+
31699fn+2

55296

+
112793f

n+5
2

504000
− 25067741fn+3

1306368000

)
+ h4

(
4531gn
6220800

+
17459gn+3

6220800

)
h2y′′n+3 = yn − 2yn+1 + yn+2 − h3

(
2497fn
972000

−
1693f

n+1
2

23625
− 6893fn+1

30240
−

4034f
n+3

2
8505

− 13807fn+2

30240

−
12833f

n+5
2

23625
− 519097fn+3

2268000

)
− h4

(
7gn

10800
− 509gn+3

32400

)


(2.7)

It is noteworthy that methods in (2.5)-(2.7) form the required unique block method applied sequen-
tially for solving (1.1)-(1.2)) and simultaneously (for solving (1.1)-(1.3).

3 Analysis of the Method

3.1 Local truncation error and order
Consider the linear difference operators associated with the formulas in (2.5), which could be written
as

L[z(x); h] ≡hjz(j)
n+ i

2

−

[
2∑
k=0

αkzn+k + h3

(
3∑
k=0

βkz
′′′
n+k +

3∑
k=1

β̂kz
′′′
n+ 2k−1

2

)

+ h4
(
γ0z

(4)
n + γ3z

(4)
n+3

)] (3.1)

for i = 0(1)6, j = 0, 1, 2.

The local truncation error of each of the formulas in (2.5)-(2.7) is the amount by which the
exact solution of the ODE fails to satisfy the corresponding difference operator. Consider the exact
solution y(x) in (3.1), expanding in Taylor series around x the following is arrived at

L[y(x); h] = C0y(x) + C1hy
′(x) + C2h

2y′′(x) + · · ·+ Cqh
qy(q)(x) +O(h(q+1)) . (3.2)

where the Ci are constants. Suppose the first p+ 2 constants are such that

C0 = C1 = C2 = · · · = Cp+2 = 0
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and Cp+3 6= 0, then
L[y(x); h] = Cp+3h

p+3y(p+3)(x) +O(hp+4) (3.3)

Here, p is called the order of the method and Cp+3 is the principal error constant. As such, the
method is said to be consistent of order p (see [13]).

Setting x = xn, the local truncation errors for formulas in (2.5) are given by

L 1
2
[y(xn); h] = − 140911y(12)(xn)h12

11771943321600
+O(h)13;

L 3
2
[y(xn); h] = − 297y(12)(xn)h12

1468006400
+ (h)13;

L 5
2
[y(xn); h] = − 274375y(12)(xn)h12

470877732864
+ (h)13;

L3[y(xn); h] = − 27y(12)(xn)h12

31539200
+ (h)13

(3.4)

For the formulas in (2.6)-(2.7) the local truncation errors may be obtained similarly. From the
(3.3), the order of the block method is p = 9.

3.2 Zero-stability and convergence
A numerical method is zero-stable if the solutions remain bounded as h → 0. Following the
procedure in [12], to show the zero-stability the block method (2.5)-(2.7) may be rewritten in a
form such that y(k)

n+ j
2

, for each k = 0, 1, 2, j = 1(1)6 are on the left hand side. Thus, as h → 0 the
method in matrix form becomes

A0Yµ = A1Yµ−1 (3.5)

where
Yµ =

(
Y 0
µ , Y

1
µ , Y

2
µ

)T
, Yµ−1 =

(
Y 0
µ−1, Y

1
µ−1, Y

2
µ−1
)T

Y 0
µ = (y 1

2
, y1, y 3

2
, y2, y 5

2
, y3)

...
Y 2
µ = (y′′1

2
, y′′1 , y

′′
3
2
, y′′2 , y

′′
5
2
, y′′3 )

Y 0
µ−1 = (y 1

2−1
, y0, y 3

2−1
, y1, y 5

2−1
, y2)

...
Y 3
µ−1 = (y′′1

2−1
, y′′0 , y

′′
3
2−1

, y′′1 , y
′′
5
2−1

, y′′′2 )

A0 is the identity matrix of order 18, A0 = I18, and A1 is a 18× 18 matrix given by A11

A22

A33


with the A11, A22 and A33 being 6× 6 matrices respectively, given by

Aii =


0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0

 , i = 1, 2, 3

The characteristic polynomial of each of the matrix A11, A22 and A33 is given as |Amm−λI6| = 0,
for m = 1, 2, 3, that is, λ5(λ−1) = 0. The roots of the characteristic polynomial are λτ = 0, for τ =
1, . . . , 5 and λ6 = 1. Consequently, the method is zero-stable, since the roots of the characteristic
polynomial are all zero except one, whose modulus is one (see [13, 15]). For convergence, we state
the following theorem.
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Theorem 3.1. Henrici [?]. A linear multistep method is said to be convergent if it is consistent
(with order p ≥ 1) and it is zero-stable.

By the above analysis, the method has order p = 9, and is zero-stable. Then, by Theorem 3.1,
the method is convergent.

3.3 Computational procedure
3.3.1 For IVPs of the form (1.1)-(1.2)

The block method has been implemented using Mathematica, enhanced by the feature NSolve[]
for linear problems while nonlinear problems were solved by Newton’s method enhanced by the
feature FindRoot[] , as summarized in the following code:

Algorithm

a, b (integration interval), N (number of steps), y00, y10, y20 (initial values), f, dfdx sol, discrete
approximate solution of the IVP (1.1)-(1.2)) Let n = 0, h = b−a

N Let xn = a, yn = y00, y
′
n =

y10, y
′′
n = y20. Let sol={(xn, yn)}.

Solve (2.5)-(2.7) to get yn+i, y′n+i, y′′n+i, i = 1(1)3
Let sol = sol ∪ {(xn+i, yn+i)}i=1(1)3.
Let xn = xn + 3h, yn = yn+3, y

′
n = y′n+3, y

′′
n = y′′n+3

Let n = n+ 3
n = N go to 12 go to 3
End

3.3.2 For BVPs of the form (1.1)-(1.3)

Assume the boundary conditions (1.3) are known:

y(a) = α0, y(b) = β0, y′(a) = α1

the vector of unknowns y is given by

y = (y1, . . . , yN−1, y
′
1, . . . , y

′
N , y

′′
0 , . . . , y

′′
N )T

This makes a total of (N − 1)+ (N)+ (N +1) = 3N unknowns. Consider the formulas in (2.5), for
n = 0(3), N − 3, there are 4N/3 formulas. Also, consider (2.6), for n = 0(3), N − 3, there are 7N/3
total formulas therein. Finally, consider (2.7), n = 0(3), N − 3, there are also 7N/3 total formulas
as well. In total for (2.5)-(2.7) there are a total of 4N/3 + 7N/3 + 7N/3 = 3N . Hence we have a
system with 3N equations and 3N unknowns, whose solution provides a set of approximate values of
the BVP in (1.1)-(1.3). Now, the formulae (2.5)-(2.7) form a block and solved simultaneously using
codes written in Mathematica, enhanced by the feature NSolve[] for linear problems and the feature
FindRoot[] for nonlinear problems solved by Newton?s method. The following is the algorithm

Algorithm

ENTER PARTITION a, b, NUMBER OF STEPS N , BOUNDARY VALUES ya, y′a, yb, f,
df
dx sol,

discrete approximate solution of the BVP (1.1)-(1.3)) Set n = 0, h = b−a
N Let sol={(xn, yn)}.

Generate block system Solve (2.5)-(2.7) to get unknown values
Let sol = sol ∪ {(xn+i, yn+i)}i=1(1)3.
Let n = n+ 3
End
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4 Numerical Examples
Numerical examples are presented to show the accuracy of the method proposed (S3HBM). We
state here that we have not been able to find any method as ours which of order 9 in literature.
As such, we have tried to make fair comparison with some of the methods in literature to show the
efficiency of our method in terms of errors and Maximum errors (ME) obtained where applicable.
We also need to reiterate that the number of sub-interval used in each problem is a multiple of 3 so
as to obtain results at the right hand boundary interval. Hence, we have extended the right hand
boundary of some of the problems during computation. In all, the problems considered are mainly
to show the efficiency in terms of the errors obtained using the S3HBM.

Problem 1. Consider the BVP discussed in [9]

y′′′ − xy = (x3 − 2x2 − 5x− 3)ex, x ∈ [0, 1]
y(0) = y′(0) = 1, y′(1) = −e (4.1)

whose exact solution is y(x) = xex(1 + x).

Table 1: Comparison of Maximum Errors (ME) for Problem 1
h ME in [9] h ME in S3HBM N ME in [5] N ME in S3HBM
1
16

1.3647× 10−10 1
15

7.7229× 10−17 7 4.12× 10−12 6 4.3392× 10−15

1
32

4.2086× 10−12 1
30

4.4805× 10−22 14 1.56× 10−14 12 4.2653× 10−18

1
64

1.2939× 10−13 1
60

4.3765× 10−25 28 6.08× 10−17 24 4.1719× 10−21

56 2.37× 10−19 48 4.0758× 10−24

112 9.27× 10−22 96 3.9807× 10−27

Table 1 compares the S3HBM and those of [5] and [9]. This problem has a misprint in [9] but
the correct version is in [5]. The method in [5] is of order 8 and that of [9] has order 5. In both cases,
the S3HBM performs better for different step-sizes (h) and for different number of subintervals (N),
which shows a better performance over both methods.

Problem 2. Consider the BVP discussed in [9].

y′′′ + y = (x− 4) sin(x) + (1− x) cos(x), x ∈ [0, 1]
y(0) = 0, y′(0) = −1, y′(1) = sin 1

(4.2)

whose exact solution is y(x) = (x− 1) sin(x).

Table 2: Comparison of maximum Errors (ME) for Problem 2
h ME in [9] h ME in S3HBM
1
16

1.03179× 10−11 1
15

1.0507× 10−18

1
32

3.24907× 10−13 1
30

9.1161× 10−19

1
64

1.02789× 10−14 1
60

9.1145× 10−20

Table 2 shows the Maximum Error obtained using different step-sizes and compared with the
method in [9] having order 5 and the S3HBM in this work. It clearly shows that the method
presented is more superior to the cited literature.

Problem 3. Consider the nonlinear BVP discussed in [5].

y′′′ + 2e−3y = 4(1 + x)−3, x ∈ [0, 1]
y(0) = 0, y′(0) = 1, y′(1) = 0.5

(4.3)
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whose exact solution is y(x) = ln(1 + x).

Table 3: Comparison of maximum Errors (ME) for Problem 3
N ME in S3HBM N ME in [11]
6 9.046× 10−10 7 5.24× 10−9

12 2.374× 10−12 14 2.39× 10−11

24 3.189× 10−15 28 9.50× 10−14

48 3.407× 10−18 56 3.62× 10−16

96 3.406× 10−21 112 2.27× 10−17

From Table 3 different values of N has been used to obtain the maximum error for Problem 3.
There is a missprint in the boundary condition of this problem in [5] but has been corrected in this
work. As stated earlier, The N used in this work for comparison is a multiple of 3, hence a closer
value to the N used in [5] for this particular problem was used so as to make comparison. It should
also be stated here that the order for FDM in [5] is p = 8. A fair comparison in the use of N is
thus considered.

Problem 4. Consider the Sandwich problem discussed in [5] governed by a linear third order
differential equation with the boundary conditions at three different points.

y′′′ − l2y′ + a = 0, x ∈ [0, 1]
y′(0) = 0, y′(1) = 0, y

(
1
2

)
= 0.5

(4.4)

whose exact solution is y(x) =
z
(
l(2x− 1)− 2 sinh(lx) + 2 cosh(lx) tanh

(
l
2

))
2l3

.
where y(x) is shear deformation of the Sandwich beams, l and a are physical parameters depending
on the elasticity of the layers.

Table 4: Comparison of maximum Errors (ME) for Problem 4
l = 5 l = 10
N ME in S3HBM N ME in [5] N ME in S3HBM N ME in [5]
12 8.008× 10−14 14 5.78× 10−12 12 7.068× 10−12 14 2.26× 10−10

24 9.179× 10−17 28 2.16× 10−14 24 1.109× 10−14 28 7.91× 10−13

48 9.346× 10−20 56 4.94× 10−16 48 1.251× 10−17 56 2.96× 10−15

96 9.223× 10−23 112 1.07× 10−16 96 1.269× 10−20 112 1.73× 10−17

Table 4 shows the Maximum Error (ME) obtained by S3HBM compared to those obtained in [5]
for different values of the parameter l. The Number of steps employed is a multiple of 3 but still
less than that which was used in method or order 8 in [5]. The S3HBM performed better compare
to the Finite Difference Method (FDM) in [5].

Problem 5. Consider the IVP discussed in [8]

y′′′ = 3 sin(x), x ∈ [0, 1]
y(0) = 1, y′(0) = 0, y′′(0) = 2

(4.5)

whose exact solution is y(x) = 3 cos(x) + x2

2 .

The order of the method in [8] is 8. We solved Problem 5 for x ∈ [0, 3]. This is because in other
to reach to the end of the integration interval (end point of integration), N has to be a multiple of 3.
In this case, N = 30, 300 is used so as to have h = 0.1, 0.01 respectively for the sake of comparison.
Hence, we recorded the solution for x = 0.1(0.1)1 only in Table 5. This shows the performance of
the S3HBM for this problem.
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Table 5: Comparison of errors for Problem 5
h = 0.1 h = 0.01

x Error in S3HBM Error in [8] Error in S3HBM Error in [8]
0.1 2.6030× 10−19 4.1078× 10−15 2.8491× 10−29 4.4409× 10−16

0.2 1.1080× 10−18 1.6875× 10−14 1.1377× 10−28 1.2212× 10−15

0.3 2.5430× 10−18 5.0848× 10−14 2.5508× 10−28 2.4425× 10−15

0.4 4.4779× 10−18 1.1779× 10−13 4.5109× 10−28 3.7748× 10−15

0.5 6.9530× 10−18 2.4081× 10−13 7.0009× 10−28 5.5511× 10−15

0.6 9.9679× 10−18 4.3709× 10−13 9.9985× 10−28 8.4377× 10−15

0.7 1.3422× 10−17 7.3708× 10−13 1.3476× 10−27 1.1324× 10−14

0.8 1.7326× 10−17 1.1662× 10−12 1.7404× 10−27 1.4544× 10−14

0.9 2.1680× 10−17 1.7587× 10−12 2.1746× 10−27 1.8985× 10−14

1.0 2.6379× 10−17 2.5466× 10−12 2.6464× 10−27 2.3870× 10−14

Problem 6. Consider the IVP discussed in [11]

y′′′ + 4y′ = x, x ∈ [0, 1]
y(0) = y′(0) = 0, y′′(0) = 1

(4.6)

whose exact solution is y(x) = 3
16 (1 cos(2x)) +

x2

8 .

Table 6: Comparison of maximum errors for Problem 6
S3HBM Method in [11]

b TS ME b TS ME
5 30 2.14× 10−12 5 46 1.20× 10−10

45 3.79× 10−14 56 3.69× 10−11

60 1.32× 10−15 88 2.44× 10−12

10 60 4.81× 10−12 10 61 5.54× 10−09

75 5.24× 10−13 91 5.04× 10−10

90 8.52× 10−14 136 4.53× 10−11

15 75 4.69× 10−11 15 76 2.67× 10−08

90 7.70× 10−12 110 2.91× 10−09

105 1.66× 10−12 180 1.52× 10−10

20 90 1.75× 10−10 20 91 5.29× 10−08

105 3.88× 10−11 129 6.54× 10−09

120 1.03× 10−11 204 4.19× 10−10

Table 6 shows the Maximum Error obtained for different values of N (Total nummber of sub
intervals TS) and the different end point of integration (b). Comparing with an order 5 method
in [11], the S3HBM demonstrates its efficiency by using less number of subinternals to achieve better
results.

Problem 7. Consider the IVP discussed in [11]

y′′′ − 3
8y5 = 0, x ∈ [0, 2]

y(0) = 0, y′(0) = 1
2 , y′′(0) = − 1

4

(4.7)

whose exact solution is y(x) =
√
1 + x.

Table 7 shows the error for Problem 7 using the S3HBM and compared with hybrid method
in [11]. Though results of the error in [11] was given for all values of the grid points x = 0.1(0.1)2,
but we have given the values of the errors for x = 0.2(0.2)2. The errors obtained demonstrates the
efficiency in terms of accuracy of the solution obtained when compared to the exact solution
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Table 7: Comparison of errors for Problem 7
x Error in S3HBM Error in [11]

0.2 8.43637× 10−15 2.181300× 10−11

0.4 2.81807× 10−14 7.069234× 10−11

0.6 5.26285× 10−14 1.348290× 10−10

0.8 8.06737× 10−14 2.105969× 10−10

1.0 1.11941× 10−13 2.964273× 10−10

1.2 1.46179× 10−13 3.913760× 10−10

1.4 1.83172× 10−13 4.947245× 10−10

1.6 2.22711× 10−13 6.058536× 10−10

1.8 2.64603× 10−13 7.242000× 10−10

2.0 3.08660× 10−13 8.492393× 10−10

5 Conclusion
A block of 3 mid-point hybrid method based on a 3 step continuous linear multistep method
is proposed and applied to solve third-order linear and non linear IVPs and BVPs in ordinary
differential equations. The method has order 9 of accuracy and have been tested using some
problems in literature. The method has been shown to be less ambiguous and easy to derive. It has
been tested to solve diverse kinds of third-order ODEs as shown in the numerical examples. The
method show a very high accuracy when compared to the exact solution and hence with existing
methods in the literature cited.
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