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Abstract

In this study, the derivation, stability analysis and the application of a one-step Hybrid method
for solving systems of semi-explicit Index-1 Differential-Algebraic Equations (DAEs) were dis-
cussed. A semi-explicit differential-algebraic equation consists of a system of ordinary differen-
tial equations and algebraic equations. Interpolation and collocation technique was employed
for the derivation of the Continuous form of the proposed method (CHM). The discrete schemes
were computed by evaluating CHM at specific grid and off-grid points and were implemented
as a block Integrator (BHI). The numerical results of BHI obtained showed its efficiency when
compared with the exact solutions and some existing methods.
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1 Introduction
Most processing mathematical models consist of differential and algebraic equations which results
in Differential-Algebraic Equations systems (DAEs). DAEs can be deduced from chemical process
simulations, mechanical systems, electrical networks, incompressible fluids dynamics and so on.
Semi-explicit Index-1 Differential-Algebraic Equation is written in the form

y′ = f(y, z), y(t0) = y0

0 = g(y, z), z(t0) = z0 (1)

Where ∂g
∂z = gz is non-singular in a neighbourhood of solution and the unknown y and z are the dif-

ferential and algebraic variables respectively. DAEs are characterized by a differential index which
is the minimum number of times that all or part of the DAE must be differentiated with respect to
time in order to convert the DAE (1) to a system of ODEs. Hence the algebraic part of the Index-1
DAEs will be differentiated once to convert it to an ordinary differential equation.
In Literature, several numerical methods have been proposed for the solution of semi-explicit Index-
1 Differential-Algebraic Equations such as the idea of using numerical methods for ODEs to solve
DAEs introduced by Gear [1], Chebyshev spectral procedure method by Khateb and Hussien [2],
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Backward Differentiation Formula [3,4], Implicit Runge-Kutta methods by Ascher and Petzold [5],
L-stable extended Block Backward Differentiation Formula by Akinfenwa and Okunuga [6], 2-points
and 3-points BBDF by Abasi et al. [7], Block method of Runge-Kutta type by Khoo Kai Wen et
al [8] to mention a few.
In this paper, a one-step Block Hybrid Integrator of order five (BHI5) was developed via Interpola-
tion and collocation techniques [9]. The method incorporate off-grid points to produce the discrete
hybrid schemes which were implemented as a block method to simultaneously produce approxima-
tion at nodal points for the numerical solution of Index-1 DAE of the form (1). Block method was
first introduced by Milne [10], then used by other scholars (see [1, 11–13]). This method preserves
the Runge-Kutta traditional advantage of being self-starting and efficient.

2 Derivation of BHI5
This section describes the derivation of the one-step Hybrid Integrator of the form

yn+1 = yn + h

1∑
j=0

βjfn+j + h

2∑
j=1

βvjfn+vj + h2φ1gn+1 (2)

where h, n, v1 = 1
6 and v2 = 1

2 are the step size, grid index and off-step points respectively while
βj , j = 0, 1, βvj , j = 1, 2 and φ1 are parameters to be determined uniquely. An approximate solution
to (1) by the interpolating function

y(t) =

r+s−1∑
j=0

bjt
j (3)

where bj in (3) are the unknown coefficients to be determined while r and s are the number of
interpoation and collocation points respectively. The imposing conditions for the construction of
the proposed Method are:

y(tn+r) = yn+r, r = 0 (4)

y′(tn+r) = fn+r, r = 0,
1

6
,
1

2
, 1 (5)

y′′(tn+r) = gn+r, r = 1 (6)

Equations (4)-(6) generate six equations which were solved simultaneously to obtain bj and the
values of bj were substituted into equation (3) to form the Continuous Hybrid Method (CHM)
which is second derivative in nature and expressed in the form

y(x) = yn + h

1∑
j=0

βj(x)fn+j + h

2∑
j=1

βvj
(x)fn+vj + h2φ1(x)gn+1 (7)

where x = t−tn
h and βj , j = 0, 16 ,

1
2 , 1 and φ1(x) are written in matrix form as follows:



β0(x)

β 1
6
(x)

β 1
2
(x)

β1(x)


=



0 1 −5 29
3 −8 12

5

0 0 162
25 − 432

25
81
5 − 648

125

0 0 −2 32
3 −13 24

5

0 0 13
25 − 229

75
24
5 − 252

125





x0

x1

x2

x3

x4

x5
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[
φ1(x)

]
=
[
0 0 − 1

10
3
5 −1 12

25

]



x0

x1

x2

x3

x4

x5


The main scheme was generated from interpolating CHM (7) at t = tn+1 as

yn+1 = yn +
1

15
hfn +

27

125
hfn+ 1

6
+

7

15
hfn+ 1

2
+

94

375
hfn+1 −

1

50
h2gn+1 (8a)

The additional methods were generated from interpolating CHM (7) at t = tn+ 1
2
and t = tn+ 1

6
as

yn+ 1
2
= yn +

1

30
hfn +

621

2000
hfn+ 1

6
+

41

240
hfn+ 1

2
− 11

750
hfn+1 +

1

400
h2gn+1 (8b)

and

yn+ 1
6
= yn +

1

15
hfn +

671

6000
hfn+ 1

6
− 101

6480
hfn+ 1

2
+

38

10125
hfn+1 −

23

32400
h2gn+1 (8c)

The discrete hybrid methods (8a, 8b, 8c) together forms the One-step Block Hybrid Integrator of
order five (BHI5). Equations (8a), (8b) and (8c) are denoted as equation (8) written together as:

yn+1 = yn +
1

15
hfn +

27

125
hfn+ 1

6
+

7

15
hfn+ 1

2
+

94

375
hfn+1 −

1

50
h2gn+1

yn+ 1
2
= yn +

1

30
hfn +

621

2000
hfn+ 1

6
+

41

240
hfn+ 1

2
− 11

750
hfn+1 +

1

400
h2gn+1 (8)

yn+ 1
6
= yn +

1

15
hfn +

671

6000
hfn+ 1

6
− 101

6480
hfn+ 1

2
+

38

10125
hfn+1 −

23

32400
h2gn+1

The method (8) can be presented in a matrix block form as

A(1)Y$ = A(0)Y$−1 + hB(1)F$ + hB(0)F$−1 + h2C(1)G$ (9)

where

Y$ =


yn+ 1

6

yn+ 1
2

yn+1

 ;Y$−1 =


yn− 1

2

yn− 1
6

yn

 ;F$ =


fn+ 1

6

fn+ 1
2

fn+1

 ;F$−1 =


fn− 1

2

fn− 1
6

fn

 ;G$ =


gn+ 1

6

gn+ 1
2

gn+1


The 3 by 3 matrices A(0), A(1), B(0), B(1), C(1) of the BHI5 (8) are defined as follows
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A(1) =


1 0 0

0 1 0

0 0 1



A(0) =


0 0 1

0 0 1

0 0 1



B(1) =


671
6000 − 101

6480
38

10125

621
2000

41
240 − 11

750

27
125

7
15

94
375



B(0) =


0 0 1

15

0 0 1
30

0 0 1
15



C(1) =


0 0 − 23

32400

0 0 1
400

0 0 − 1
50


3 Analysis of BHI5

3.1 Order and Error Constant of the Method
Following Fatunla [14] and Lambert [15], a method was proposed for finding the order m and
error constant Cm+1 of the block hybrid method (8) by first expanding y function, f functions
and g functions of the method (8) using Taylors series expansion about t and then comparing the
coefficients of h . Using the above procedure, one-step Block Hybrid Integrator have order and
error constants as m = (5, 5, 5)T and Cm+1 = ( 763

335923200 ,−
7

1382400 ,
1

86400 )
T respectively where T is

transpose.

3.2 Zero Stability
A numerical method is said to be zero-stable if the roots Rj , j = 1, 2, . . . , N of the first characteristic
polynomial ρ(R) satisfies |Rj | ≤ 1, j = 1, . . . , N and those roots with |Rj | = 1 is simple (see
Lambert [15]). Applying the above conditions to the derived block method, the first characteristic
polynomial ρ(R) = 0 is calculated as

ρ(R) = det(RA(1) −A(0)) = R2(R− 1)

The BHI5 is found to be zero-stable since ρ(R) = 0 satisfies |Rj | ≤ 1, j = 1, 2, 3.
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Figure 1: Stability Region of Block Hybrid Integrator of order 5

3.3 Consistency and Convergence
A numerical method converges if it is consistent and zero-stable (see Henrici [16]). Since BHI5 (8)
is of order m = 5 > 1, then it is consistent and we have established earlier that the method satisfies
the conditions of zero-stability. Therefore, the block hybrid Integrator (8) converges.

3.4 Stability of BHI5
Applying the BHI5 to the test equation

y′ = λy, λ < 0

to obtain
Y$ = Q(z)Y$−1, z = λh

where Q(z) is the amplification matrix given by

Q(z) =
A(0) + zB(0)

A(1) + zB(1) + z2C(1)

Q(z) has eigenvalues (ζ1, ζ2, ζ3) = (0, 0, ζ3). The dominant eigenvalue ζ3 is the stability function
with real coefficient as

ζ3 =
1 + 0.466667z + 0.0875z2 + 0.0069z3

1− 0.533333z + 0.120833z2 − 0.01388889z3 + 0.00069444z4

The stability function is used to plot the Region of Absolute Stability (RAS) of the BHI5 (see
Figure 1) which reveals that the method is L-stable in nature since the RAS covers the entire left
plane of the graph (A-stable) and the limit of the stability function ζ3 is zero as z →∞.

4 Numerical Results
The following test problems were considered in order to examine the accuracy and computational
efficiency of BHI5. The numerical results with constant step size were compared with existing
methods. All computations were carried out using MATHEMATICA 9.0.

Test Problem 4.1:
y′(t) = z, y(0) = 1
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z3 − y2 = 0, z(0) = 1

0 ≤ t ≤ 10

Exact solution as

y(t) =

(
1 +

t

3

)3

, z(t) =

(
1 +

t

3

)2

Test Problem 4.2:
y′(t) = t cos t− y + (1 + t)z, y(0) = 1

sin t− z = 0, z(0) = 0

Exact solution is
y(t) = e−t + t sin t, z(t) = sin t

The results for the two test problems are tabulated for h = 0.1 and h = 0.01 and compared with
some existing methods in [7] and [8].

Notations used in the result tables are as follows:

h step size
1BDF 1-Point sequential BDF in Abasi et al. [7]
2BDF 2-Point blockl BDF in Abasi et al. [7]
3BDF 3-Point blockl BDF in Abasi et al. [7]
2Bdae 2-Point block one-step method in Khoo Kai Wen et al. [8]
BHI5 Block Hybrid Integrator of order 5

MAXE Maximum Error of the computed solution

Maximum Error is
MAXE =Max1≤i≤N (error(i))

where
error(i) = |y(i)exact − y(i)appro|, |z

(i)
exact − z(i)appro|

Table 1: Numerical Results for Test Problem 4.1

t i Exact BHI5 Error h = 0.1 i Errorh = 0.01
y(t) yi y(t)− yi y(t)− yi
z(t) zi z(t)− zi z(t)− zi

2 20 4.62962962 4.62962962 3.55271× 10−15 200 3.55271× 10−15

2.77777777 2.77777777 3.10862× 10−15 3.55271× 10−15

4 40 12.7037037 12.7037037 1.42109× 10−14 400 2.18492× 10−13

5.44444444 5.44444444 5.32907× 10−15 6.03961× 10−14

6 60 26.9999999 26.9999999 3.55271× 10−14 600 7.06999× 10−13

8.99999999 8.99999999 5.32907× 10−15 1.33227× 10−13

8 80 49.2962962 49.2962962 1.35003× 10−13 800 1.63425× 10−12

13.4444444 13.4444444 2.48690× 10−14 2.70006× 10−13

10 100 81.3703703 81.3703703 3.55271× 10−13 1000 3.01270× 10−12

18.7777777 18.7777777 5.32907× 10−14 5.00933× 10−13

Table 2: Comparison of Results for Test Problem 4.1
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h Methods MAXE
0.01 1BDF 2.7469E − 1

2BDF 1.9608E − 3
3BDF 2.0417E − 3
2Bdae 3.2685E − 12
BHI5 3.0127E − 12

0.001 1BDF 2.7528E − 2
2BDF 1.9799E − 5
3BDF 2.0631E − 5
2Bdae 1.0301E − 11
BHI5 1.2079E − 12

Table 3: Comparison of Results for Test Problem 4.1

h 3BDF [7] h BHI5
0.01 2.04173× 10−3 0.5 2.84217× 10−14

0.001 2.06314× 10−5 0.1 3.55271× 10−13

0.0001 2.06367× 10−7 0.05 3.12639× 10−13

0.00001 1.01275× 10−9 0.01 3.01270× 10−12

0.000001 1.04160× 10−8 0.005 3.33955× 10−12

Table 4: Numerical Results for Test Problem 4.2

t i Error h = 0.1 i Errorh = 0.01
y(t)− yi y(t)− yi
z(t)− zi z(t)− zi

2 20 1.69271× 10−10 200 5.77316× 10−15

1.64869× 10−10 1.22125× 10−15

4 40 1.27069× 10−9 400 1.15019× 10−13

1.90682× 10−10 3.43059× 10−14

6 60 2.22245× 10−10 600 1.00808× 10−13

4.33142× 10−12 2.55351× 10−14

8 80 7.64584× 10−10 800 1.95399× 10−14

1.33624× 10−10 2.22045× 10−15

10 100 2.62416× 10−9 1000 2.93099× 10−13

2.12364× 10−10 3.00870× 10−14

Table 5: Comparison of Results for Test Problem 4.2

h Methods MAXE
0.01 1BDF 2.51240E − 1

2BDF 7.38080E − 4
3BDF 6.60560E − 4
2Bdae 1.85820E − 9
BHI5 2.93099E − 13

0.001 1BDF 2.509508E − 2
2BDF 6.43480E − 6
3BDF 6.60000E − 6
2Bdae 3.92310E − 12
BHI5 1.61782E − 12

The numerical results of the test problems shown in tables (1-5) reveal that the new method BHI5
is superior to the methods of Abasi et al. [7] and it compares favourably with the block method of
Khoo Kai Wen et al. [8].
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5 Conclusion
A one-step L-stable Block Hybrid Integrator of order five (BHI5) had been developed for the
numerical solution of semi-explicit Index-1 Differential Algebraic Equations. The block method is
self-starting and satisfies the zero-stability, consistency and convergence conditions. BHI5 possesses
high accuracy as shown in tables (1)− (5) where it was compared with some existing methods. The
method had proved efficient and suitable for the solution of the class of problems under considera-
tion.
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