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Abstract

In the paper [Tijs, S., Torre, A. and Branzei, P.: Approximate fixed point theorems, Liber-
tas Mathematica, 23(2003), 35 − 39(2003)], the authors studied some fixed point theorems by
considering weakening of the conditions in the fixed point theorems of Brouwer, Kakutani and
Banach which still guarantee the existence of approximate fixed points. Also, in the paper
[Berinde, M.: Approximate fixed point theorems, Studia Univ. BABES-BOLYAL, MATHE-
MATICA, Volume L1, Number 1, pp. 11 − 23(2006).], the author gave some qualitative and
quantitative approximate fixed point results on metric spaces by introducing two Lemmas, and
using some contactive-type operators used by Tijs etal..
The aim of this paper is to establish qualitative and quantitative approximate fixed point re-
sults involving rational-type contraction mappings in metric spaces (not necessarily complete).
Our results are extensions of several others in the literature. Some examples are provided to
illustrate our results.

Keywords: Fixed point, Approximate fixed point, Rational-type contraction, qualitative results,
quantitative results.
MSC2010: 47H06, 54H25

1 INTRODUCTION
The famous Banach’s contraction mapping principle ensures, under certain conditions, the existence
and uniqueness of a fixed point. This theorem provides a technique for solving a variety of applied
problems in Mathematical Sciences and Engineering. Several authors have extended and generalized
Banach fixed point theorem in many ways:
Dass and Gupta [1] were the first to consider a generalization of the Banach fixed point theorem
using a contractive condition of rational-type as follows:
Let (X , d) be a complete metric space. There exists a fixed point for a mapping T : X → X , for
which there exists some α ≥ 0, β ≥ 0 with α+ β < 1, such that

d(Tx, Ty) ≤ αd(y, Ty)[1 + d(x, Tx)]

1 + d(x, y)
+ βd(x, y), ∀x, y ∈ X . (1.1)
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Furthermore, Jaggi [2] established a fixed point theorem in complete metric space using a contractive
condition of rational-type; namely: There exists a fixed point for a mapping T : X → X , for which
there exist some α, β ∈ [0, 1) with α+ β < 1, such that

d(Tx, Ty) ≤ αd(x, Tx).d(y, Ty)

d(x, y)
+ βd(x, y), ∀x, y ∈ X , x 6= y. (1.2)

Using the contractive condition (2), Harjani et al. [3] extended the result of Jaggi [2] to the partially
ordered metric spaces. Contractive conditions of rational-type have been greatly employed in the
fixed point as well as the coupled fixed point settings. For more details on results pertaining to
rational-type contractive conditions, we refer the reader to [4], [5] in the references section and
others in the literature.
The theory of fixed point has a lot of applications in many applied areas such as Mathematical
economics, dynamic optimization and stochastic games, functional analysis, variational calculus,
theory of integro-differential equations, etc [6]. However, in practice, there are many real situations
where an approximate solution proved sufficient and hence, existence of fixed points is not strictly
necessary. This naturally led to the study of approximate fixed point theory.
Here, an approximate fixed point x of a function f has the property that f(x) is ‘near’ to x in a sense
to be specified [6]. In such situations, weakening the condition of the fixed point setting, by giving
up the completeness of the space, the approximate fixed point (ε−fixed point) can still be guaran-
teed for several operators. In 2003, Tijs et al. [6] studied some fixed point theorems by considering
weakening of the conditions in the fixed point theorems of Brouwer [7], Kakutani [8] and Banach [9]
which still guarantee the existence of approximate fixed points. In 2006, Berinde [10] proved ap-
proximate fixed point results by introducing two Lemmas, using some of the operators used by
Tijs et al. [6] and gave some qualitative and quantitative results on metric spaces. Furthermore, in
2017,Mohseni Alhosseini [11] proved some approximate fixed point theorems for cyclical contraction
mappings. For further results on approximate fixed point, we refer the reader to [12], [13], [14], [15]
and others in the literature.
In this paper, we study some qualitative and quantitative results for some mappings satisfying
contractive conditions of rational-type in metric spaces. We present the following definitions and
Lemma which we are to use in the sequel.

Definition 1.01 [10] Let (X , d) be a metric space. Let T : X → X , ε > 0, x ∈ X . Then x is
an ε−fixed point (approximate fixed point) of T if d(Tx, x) < ε.

Remark 1.02 [10] We denote the set of all ε−fixed points of T, for a given ε, by Fε(T ) = {x ∈
X |x is an ε−fixed point of T}.

Lemma 1.03 [10] Let (X , d) be a metric space, T : X → X such that T is asymptotic regular
i.e., d(Tn(x), Tn+1(x))→ 0 as n→∞, ∀x ∈ X . Then, for ε > 0, Fε(T ) 6= ∅.

The following example shows that the set of ε−fixed points is indeed larger than the set of fixed
points.
Example 1:04. Let X ⊆ R be endowed with the usual metric. Suppose X = (0, 12 ]. Let T be
defined by T : X → X such that Tx = x

4 ,∀x ∈ X .
The fixed point of T is 0 /∈ X . On the other hand, take 0 < ε < 1

2 and select y ∈ X , such that
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y < 1
4ε.

d(Ty, y) = |y
4
− y|

= |−3
4
y|

≤ 3

4
|y|

<
3

4
|1
4
ε|

=
3ε

16
< ε.

Hence, T has an approximate fixed point in X , implying that Fε(T ) 6= ∅ in X whereas T does
not have a fixed point in X .

2 MAIN RESULTS
This section consists of two subsections, namely: The qualitative and the quantitative results. We
first deal with the qualitative aspect as follow.

A. QUALITATIVE RESULTS:
Theorem 2.01 : Let (X , d) be a metric space, T : X → X a self-map on X such that for some
α, β ≥ 0, α+ β < 1, ∀x, y ∈ X ,

d(Tx, Ty) ≤ αd(y, Ty)[1 + d(x, Tx)]

1 + d(x, y)
+ βd(x, y). (2.1)

Then, T has an ε−fixed point.
Proof : Let ε > 0 and x ∈ X .

d(Tnx, Tn+1x) = d(T (Tn−1x), T (Tnx))

≤ αd(Tnx, T (Tnx))[1 + d(Tn−1x, T (Tn−1x))]

[1 + d(Tn−1x, Tnx)]
+ βd(Tn−1x, Tnx)

≤ αd(Tnx, Tn+1x))[1 + d(Tn−1x, Tnx))]

[1 + d(Tn−1x, Tnx)]
+ βd(Tn−1x, Tnx)

= αd(Tnx, Tn+1x) + βd(Tn−1x, Tnx)

≤ β

1− α
d(Tn−1x, Tnx)

...

≤
( β

1− α
)n
d(x, Tx).

But
(

β
1−α

)
< 1, therefore

lim
n→∞

d(Tnx, Tn+1x) = 0, ∀x ∈ X .

By Lemma 1.03, it follows that Fε(T ) 6= ∅, ∀ε > 0.

Example 2:02 Let X ⊆ R be endowed with the usual metric. Suppose X = (0,∞]. Let T be
defined as Tx = x

2 ,∀x ∈ (0,∞].
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Certainly, T does not have a fixed point in (0,∞].
Let α = 1

2 , β = 1
5 . Choose x = 1

2 , y = 1
4 ∈ X . Let T satisfy the conditions of Theorem 2.01. Then,

d

(
T (

1

2
), T (

1

4
)

)
= d

(
1

4
,
1

8

)
=

∣∣∣∣14 − 1

8

∣∣∣∣ = 1

8
,

d(y, Ty) = d

(
1

4
,
1

8

)
=

1

8
,

d(x, Tx) = d

(
1

2
,
1

4

)
=

1

4
,

d(x, y) = d

(
1

2
,
1

4

)
=

1

4
.

Therefore,

1

8
≤

1
2 (

1
8 )[1 +

1
4 ]

1 + 1
4

+
1

5
(1 +

1

4
)

=
1
16 (

5
4 )

5
4

+
1

5
(
5

4
)

=
1

16
+

1

4
=

5

16
.

Hence, T has an approximate fixed point in X .

Theorem 2.03 : Let (X , d) be a metric space, T : X → X a self-map on X such that for some
α, β ∈ [0, 1), α+ β < 1, we have

d(Tx, Ty) ≤ αd(x, Tx).d(y, Ty)

d(x, y)
+ βd(x, y), (2.2)

∀x, y ∈ X , where d(x, y) > 0. Then T has an ε−fixed point.
Proof : Let ε > 0 and x ∈ X . If there is n ∈ N such that d(Tn−1x, Tnx) = 0, then Tn−1x is a fixed
point of T and thus an ε−fixed point. Suppose now that for all n ∈ N, d(Tn−1x, Tnx) 6= 0, then,

d(Tnx, Tn+1x) = d(T (Tn−1x), T (Tnx))

≤ αd(Tn−1x, T (Tn−1x)).d(Tnx, T (Tnx))

d(Tn−1x, Tnx)
+ βd(Tn−1x, Tnx)

=
αd(Tn−1x, Tnx).d(Tnx, Tn+1x)

d(Tn−1x, Tnx)
+ βd(Tn−1x, Tnx)

= αd(Tnx, Tn+1x) + βd(Tn−1x, Tnx)

≤ β

1− α
d(Tn−1x, Tnx)

...

≤
( β

1− α
)n
d(x, Tx).
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But α, β ∈ [0, 1) with α + β < 1, then ( β
1−α ) ∈ [0, 1). Thus, lim

n→∞
d(Tnx, Tn+1x) = 0. By Lemma

1.03, it follows that Fε(T ) 6= ∅, ∀ε > 0.

Theorem 2.04 : Let (X , d) be a metric space, T : X → X a self-map on X such that for some
α ≥ 0, β ∈ [0, 1), and ∀x, y ∈ X , such that d(y, Ty) + d(x, y) > 0, we have

d(Tx, Ty) ≤ αd(x, Tx)d(x, Ty)d(y, Ty)

d(y, Ty) + d(x, y)
+ βd(x, y). (2.3)

Then, T has an ε−fixed point ∀ε > 0.
Proof : Let ε > 0 and x ∈ X . If there is n ∈ N such that d(Tn−1x, Tnx) = 0, then Tn−1x is a fixed
point of T and thus an ε−fixed point. Suppose now that for all n ∈ N, d(Tn−1x, Tnx) 6= 0, then,

d(Tn+1x, Tnx) = d(T (Tn)x, T (Tn−1x))

≤ αd(Tnx, T (Tnx))d(Tnx, T (Tn−1x))d(Tn−1x, T (Tn−1x))

d(Tn−1x, T (Tn−1x)) + d(Tnx, Tn−1x)
+ βd(Tnx, Tn−1x)

=
αd(Tnx, Tn+1x)d(Tnx, Tnx)d(Tn−1x, Tnx)

d(Tn−1x, Tnx) + d(Tnx, Tn−1x)
+ βd(Tnx, Tn−1x)

≤ βd(Tnx, Tn−1x)

≤
...
≤ βnd(Tx, x).

But β ∈ [0, 1), then, lim
n→∞

d(Tn+1x, Tnx) = 0. By Lemma 1.03, it follows that Fε(T ) 6= ∅, ∀ε > 0.

In what follows, we have a theorem which is a generalization of Theorem 2.04. Meanwhile, the
following definition is to be used in the sequel.

Definition 2.05: Consider a function ψ : R+ → R+. ψ is called a comparison function if it
satisfies the conditions:
(i)ψ is monotone increasing, and
(ii)ψn(t) converges to 0 as n→∞,∀t ∈ R+.

Theorem 2.06: Let (X , d) be a metric space and let T : X → X be a self-map on X such that
for some α ≥ 0 and ψ, a comparison function satisfying ψ(t) < t, ∀t > 0, we have

d(Tx, Ty) ≤ αd(x, Tx)d(x, Ty)d(y, Ty)

d(y, Ty) + d(x, y)
+ ψ(d(x, y)). (2.4)

∀x, y ∈ X such that d(y, Ty) + d(x, y) 6= 0. Then, Fε(T ) 6= ∅, ∀ε > 0.

Proof : Let ε > 0 and x ∈ X . If there is n ∈ N such that d(Tn−1x, Tnx) = 0, then Tn−1x is a
fixed point of T and thus an ε−fixed point. Suppose now that for all n ∈ N, d(Tn−1x, Tnx) 6= 0,
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then,

d(Tn+1x, Tnx) = d(T (Tnx), T (Tn−1x))

≤ αd(Tnx, T (Tnx))d(Tnx, T (Tn−1x))d(Tn−1x, T (Tn−1x))

d(Tn−1x, T (Tn−1x)) + d(Tnx, Tn−1x)
+ ψ(d(Tnx, Tn−1x))

=
αd(Tnx, Tn+1x)d(Tnx, Tnx)d(Tn−1x, Tnx)

d(Tn−1x, Tnx) + d(Tnx, Tn−1x)
+ ψ(d(Tnx, Tn−1x))

= ψ(d(Tnx, Tn−1x))

≤
...
≤ ψn(d(Tx, x)).

But ψ is a comparison function, ψn(d(Tx, x))→ 0 as n→∞. Hence,

lim
n→∞

d(Tn+1x, Tnx) = 0, ∀x ∈ X .

Then, Fε(T ) 6= ∅, ∀ε > 0.

B. QUANTITATIVE RESULTS FOR MAPPINGS IN METRIC SPACES
In this subsection, we will obtain quantitative results for some of the operators we have studied in
the previous subsection.

Theorem 2.07 : Let (X , d) be a metric space and T : X → X a mapping satisfying all the
conditions of Theorem 2.01. Then, for each ε > 0, the diameter of Fε(T ) is not larger than

6ε+ 4(α− β − αβ)ε+ 4(1 + α− αβ)ε2

2(1− β)
.

Proof : Let x, y ∈ Fε(T ). By triangle inequality and condition (3),

d(x, y) ≤ d(x, Tx) + d(Tx, Ty) + d(Ty, y)

≤ 2ε+ d(Tx, Ty)

≤ 2ε+
αd(y, Ty)[1 + d(x, Tx)]

1 + d(x, y)
+ βd(x, y)

≤ 2ε+
αε(1 + ε)

1 + d(x, y)
+ βd(x, y)

(1− β)[d(x, y)]2 + (1− β − 2ε)d(x, y) ≤ 2ε+ αε+ αε2

[
d(x, y)

]2
+

(
1− β − 2ε

1− β

)
d(x, y) ≤ 2ε+ αε+ αε2

1− β
.

Completing the square, we have[
d(x, y) +

1− β − 2ε

2(1− β)

]2
≤ 2ε+ αε+ αε2

1− β
+

(
1− β − 2ε

2(1− β)

)2

.

Then, it follows that

d(x, y) ≤ β + 2ε− 1

2(1− β)
+

1

2(1− β)
√
1 + 4(1 + α− β − αβ)ε+ 4(1 + α− αβ)ε2 + β2 − 2β

<
1

2(1− β)

(
β + 2ε− 1 + 1 + 4(1 + α− β − αβ)ε+ 4(1 + α− αβ)ε2 + β2 − 2β

)
.
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Hence,

d(x, y) ≤ β + 2ε+ 4(1 + α− β − αβ)ε+ 4(1 + α− αβ)ε2 + β2 − 2β

2(1− β)

=
6ε+ 4(α− β − αβ)ε+ 4(1 + α− αβ)ε2 + β2 − β

2(1− β)

<
6ε+ 4(α− β − αβ)ε+ 4(1 + α− αβ)ε2

2(1− β)
.

Example 2.08. Let X = (0, 12 ] be endowed with the usual metric. Let T : X → X be defined
by Tx = x

3 ,∀x ∈ X . We want to prove that the conditions of Theorem 2.07 are satisfied. Consider
the contractive condition (3) such that α = 1

4 , β = 1
5 and ε = 1

2 . Choose x = 1
2 , y = 1

4 ∈ X .

d(x, Tx) = |1
2
− 1

6
| = 1

3
<

1

2
.

Also,

d(y, Ty) = |1
4
− 1

8
| = 1

8
<

1

2

Thus, x, y ∈ Fε(T ).

d(x, y) = d(
1

2
,
1

4
)

=
1

4

<
6ε+ 4(α− β)ε+ 4(1 + α− αβ)ε2 + β2 − β

2(1− β)

=
6( 12 ) + 4( 14 −

1
5 )

1
2 + 4(1 + 1

4 −
1
20 )

1
4 + 1

25 −
1
5

2(1− 1
5 )

=
3 + 26

20 −
4
25

2( 45 )

=
207

80
,

hence, the result.

Theorem 2.09 : Let the conditions of Theorem 2.03 be satisfied. Then, for each ε > 0, the

diameter of Fε(T ) is not larger than
(
α+ 2

1−β

)
ε.

Proof : Let x, y ∈ Fε(T ). By triangle inequality and condition (4),

d(x, y) ≤ d(x, Tx) + d(Ty, y) + d(Tx, Ty)

≤ 2ε+ d(Tx, Ty)

≤ 2ε+
αd(x, Tx)d(y, Ty)

d(x, y)
+ βd(x, y)

[d(x, y)]2 ≤ 2εd(x, y) + αd(x, Tx)d(y, Ty) + β[d(x, y)]2

(1− β)[d(x, y)]2 ≤ 2εd(x, y) + αε2

[d(x, y)]2 − 2εd(x, y)

1− β
≤ αε2

1− β
.
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Completing the square, we have[
d(x, y)− ε

1− β

]2
≤ αε2

1− β
+

(
ε

1− β

)2

.

Hence,

d(x, y) ≤ ε

1− β
+

√
αε2 + ε2(1− αβ)

(1− β)2

=
ε

1− β
+

ε

1− β
√
1 + α− αβ

=
ε

1− β

(
1 +

√
1 + α− αβ

)
<

ε

1− β

(
1 + 1 + α− αβ

)
= ε

(
2 + α(1− β)

1− β

)
=

(
α+

2

1− β

)
ε

which completes the proof.

Theorem 2.10 : Let (X , d) be a metric space and T : X → X satisfy the conditions of Theorem
2.04. Then, for each ε > 0, the diameter of Fε(T ) is not larger than

1

2(1− β)
[ε(β + 1) + ε2(α+ 10) + ε3(6α− 2αβ) + ε4α2].

Proof : Let x, y ∈ Fε(T ). By triangle inequality and condition (5),

d(x, y) ≤ d(x, Tx) + d(Tx, Ty) + d(Ty, y)

≤ 2ε+ d(Tx, Ty)

≤ 2ε+
αd(x, Tx)d(x, Ty)d(y, Ty)

d(y, Ty) + d(x, y)
+ βd(x, y).

Also, by triangle inequality,

d(x, y) ≤ 2ε+
αd(x, Tx)[d(x, y) + d(y, Ty)]d(y, Ty)

d(y, Ty) + d(x, y)
+ βd(x, y)

≤ 2ε+
[αd(x, Tx)d(x, y) + αd(x, Tx)d(y, Ty)]d(y, Ty)

d(y, Ty) + d(x, y)
+ βd(x, y)

≤ 2ε+
[εαd(x, y) + αε2]ε

ε+ d(x, y)
+ βd(x, y)

(1− β)d(x, y) ≤ 2ε+
ε2αd(x, y) + αε3

ε+ d(x, y)

(1− β)d(x, y) ≤ 2ε(ε+ d(x, y)) + ε2αd(x, y) + αε3

ε+ d(x, y)

(1− β)[d(x, y)]2 + ε(1− β)d(x, y) ≤ 2ε(ε+ d(x, y)) + ε2αd(x, y) + αε3

= 2ε2 + 2εd(x, y) + ε2αd(x, y) + αε3
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(1− β)[d(x, y)]2 + ε(1− β)d(x, y)− 2εd(x, y)− ε2αd(x, y) ≤ 2ε2 + αε3

(1− β)[d(x, y)]2 + [ε(1− β)− 2ε− αε2]d(x, y) ≤ 2ε2 + αε3

[d(x, y)]2 +
[−εβ − ε− αε2]d(x, y)

1− β
≤ 2ε2 + αε3

1− β
.

Completing the square, we have[
d(x, y) +

−εβ − ε− αε2

2(1− β)

]2
≤ 2ε2 + αε3

1− β
+

[
−εβ − ε− αε2

2(1− β)

]2
Implying that,

d(x, y) ≤ εβ + ε+ αε2

2(1− β)
+

√
2ε2 + αε3

1− β
+

[
−εβ − ε− αε2

2(1− β)

]2
=

εβ + ε+ αε2

2(1− β)
+

√
2ε2 + αε3

1− β
+

(−εβ − ε− αε2)2
4(1− β)2

=
εβ + ε+ αε2

2(1− β)
+

√
4(1− β)(2ε2 + αε3) + (−εβ − ε− αε2)2

4(1− β)2

=
1

2(1− β)

[
εβ + ε+ αε2 +

√
4(1− β)(2ε2 + αε3) + (−εβ − ε− αε2)2

]
<

1

2(1− β)

[
εβ + ε+ αε2 + 4(1− β)(2ε2 + αε3) + (−εβ − ε− αε2)2

]
=

1

2(1− β)
[εβ + ε+ αε2 + ε2β2 + 9ε2 + 6αε3 + α2ε4 − 6ε2β − 2αβε3]

≤ 1

2(1− β)
[ε(β + 1) + ε2(α+ 10) + ε3(6α− 2αβ) + ε4α2].

Theorem 2.11 : Let (X , d) be a metric space and T : X → X satisfy the conditions of Theorem
2.06. Then, for each ε > 0, the diameter of Fε(T ) is indeterminate.
Proof : x, y ∈ Fε(T ). By triangle inequality and condition (6),

d(x, y) ≤ d(x, Tx) + d(Tx, Ty) + d(Ty, y)

≤ ε+ d(Tx, Ty) + ε

= 2ε+ d(Tx, Ty)

≤ 2ε+
αd(x, Tx)d(x, Ty)d(y, Ty)

d(y, Ty) + d(x, y)
+ ψ(d(x, y)).

Also, by triangle inequality,

d(x, y) ≤ 2ε+
αd(x, Tx)[d(x, y) + d(y, Ty)]d(y, Ty)

d(y, Ty) + d(x, y)
+ ψ(d(x, y)).

Since ψ(t) < t,∀t > 0, then,

d(x, y) < 2ε+
αd(x, Tx)[d(x, y) + d(y, Ty)]d(y, Ty)

d(y, Ty) + d(x, y)
+ d(x, y)

≤ 2ε+
αε[d(x, y) + ε]ε

ε+ d(x, y)
+ d(x, y).
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It implies that

−αε[d(x, y) + ε]ε

ε+ d(x, y)
≤ 2ε

−αε[d(x, y) + ε]ε ≤ 2ε2 + 2εd(x, y)

−αε2d(x, y)− αε3 ≤ 2ε2 + 2εd(x, y)

(−αε2 − 2ε)d(x, y) ≤ 2ε2 + αε3

(−αε− 2)d(x, y) ≤ 2ε+ αε2

(αε+ 2)d(x, y) ≥ −2ε− αε2

d(x, y) ≥ −2ε− αε
2

αε+ 2
.

3 CONCLUSION
We have proved qualitative and quantitative results involving contractive conditions of rational
type. It is interesting to note that apart from a quantitative result involving a comparison function,
the value of ε is directly proportional to the diameter estimate of the set containing the ε−fixed
points in all the cases considered in this paper. When ε approaches zero, we approach the more
restricted fixed point setting.
The theory of ε−fixed points is therefore not less important than that of fixed points as several
results given in the latter can be formulated in a weaker setting to guarantee existence of the ε−fixed
points.
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