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Abstract

In this paper, we provide certain conditions that guarantee the stability of the zero solution
when P (t,X, Y ) = 0 and boundedness of all solutions when P (t,X, Y ) 6= 0 of a certain system
of second order differential equation using a suitable Lyapunov function. The results in this
paper are quite new and complement those in the literature. Examples are given to demonstrate
the correctness of the established results.
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1 Introduction
Consider the following second order nonlinear vector differential equation given by:

Ẍ +AẊ +H(X) = P (t,X, Ẋ) (1.1)

or its equivalent system:

Ẋ = Y, Ẏ = −AY −H(X) + P (t,X, Y ) (1.2)

in which X,Y : Rn → Rn, H(X) : Rn → Rn, P (t,X, Y ) : R+ × Rn × Rn → Rn, A is an n × n
constant matrix and the dots as usual indicate differentiation with respect to t, t ∈ R+ = [0,∞), R
denote the real line (−∞,∞) and Rn denote the real n−dimensional Euclidean space equipped with
the usual Euclidean norm ‖·‖. It is assumed that the functions H(X) and P (t,X, Y ) are continuous
for the arguments displayed explicitly and H(X) is not necessarily differentiable. Furthermore, the
existence and uniqueness of solutions of Eq. (1.1) will be assumed [see [1]].

The study of qualitative behaviour of solutions of second order differential equation has received no-
table attention from many researchers. For instance, Tejumola [2] in 1976 used the second method

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://ijmso.unilag.edu.ng/article

108

https://doi.org/10.52968/28305999
http://ijmso.unilag.edu.ng/article


International Journal of Mathematical Analysis and
Optimization: Theory and Applications

Vol. 7, No. 1, pp. 108 - 115
https://doi.org/10.52968/28305999

of Lyapunov to examine the stability, ultimate boundedness of all solutions and the existence of
periodic solution of a certain matrix differential equation of the form

Ẍ +AẊ +H(X) = P (t,X, Ẋ), (1.3)

where A is an n × n constant matrix and H(X) is a differentiable vector function. Kroopnick
( [3], [4]) used the approach of the integral test to prove the stability and boundedness of solutions
of a second order scalar linear differential equation

x′′ + a(t)x = 0, (1.4)

where a(t) > 0 and a′(t) ≥ 0. Tunç and Tunç [5] used integral test to investigate the boundedness
and stability properties of a second order vector linear differential equation given by

Ẍ + a(t)X = P (t). (1.5)

And recently, in 2017, Tunç and Tunç [6] used Lyapunov’s direct method to study the stability and
boundedness of a second order nonlinear vector differential equation of the form

Ẍ + a(t)X = P (t, Ẋ), (1.6)

where both a(t) and P (t, Ẋ) are continuous in their respective arguments and in addition, P (t, Ẋ)
satisfies Lipschitz condition in Ẋ. Many other interesting results have also been obtained concerning
solutions of second order and even higher order differential equations. We refer interested readers
to the following few papers and the references cited in them: Ademola et al. [7], Adeyanju [8],
Afuwape [9], Alaba and Ogundare [10], Cartwright and Littlewood [11], Ezeilo [12], Grigoryan [13],
Kroopnick [14], Meng [15], Ogundare and Afuwape [16], Ogundare et al. [17] , Ogundare et al. [18],
Omeike [19], Omeike et al. [20], Tejumola [21], Tunç [22], Tunç and Tunç ( [23], [24], [5], [6]), Wang
and Zhu [25].

2 Notation
Henceforth, δ’s, ∆’s and K’s with or without suffixes will denote positive constants whose magni-
tudes depend on an n× n constant matrix A and vector functions H(X), P (t,X, Ẋ). The δ’s, ∆’s
and K’s with numerical or alphabetical suffixes shall retain fixed magnitudes, while those without
suffixes are not necessarily the same at each occurrence.

We also denote the scalar product 〈X,Y 〉 of any vectors X,Y in Rn, with respective components
(x1, x2, . . . , xn) and (y1, y2, . . . , yn) by

∑n
i=1 xiyi. In particular, 〈X,X〉 = ‖X‖2.

3 Preliminary results
In this section, we state without proofs some standard results needed in the proofs of our main
results.

Lemma 3.1. Let A be a real symmetric positive definite n× n matrix. Then, for X ∈ Rn

δa‖X‖2 ≤ 〈AX,X〉 ≤ ∆a‖X‖2, (3.1)

where δa and ∆a are respectively the least and greatest eigenvalues of the matrix A.

Proof. See ( [26], [27])

Remark 3.2. It should be note that a similar case where H(X) is not necessarily differentiable for
a certain third order differential equations was considered by [Afuwape [9], Meng [15]].
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4 Stability
In this section, we consider the following equation.

Ẍ +AẊ +H(X) = 0, (4.1)

or its equivalent system:
Ẋ = Y, Ẏ = −AY −H(X). (4.2)

Theorem 4.1. Suppose that H(0) = 0 and that,

(i) there exists an n× n real continuous operator B(X,Y ) for any vectors X,Y ∈ Rn such that,

H(X) = H(Y ) +B(X,Y )(X − Y ), (4.3)

whose eigenvalues λi(B(X,Y )), (i = 1, 2, . . . , n) satisfy

0 < δb ≤ λi(B(X,Y )) ≤ ∆b; (4.4)

(ii) the constant symmetric matrix A has positive eigenvalues for any vectors X,Y ∈ Rn and

0 < δa ≤ λi(A) ≤ ∆a. (4.5)

Then, the trivial solution of Eq. (4.1) or system (4.2) is asymptotically stable.

Proof. The main tool in proving our result is the differentiable function V = V (t,X, Y ) defined by

2V (t,X, Y ) = 〈β(1− β)δ2aX,X〉+ 〈αδaY, Y 〉+ (1− β)2‖Y + δaX‖2, (4.6)

where α > 0, 0 < β < 1 are some constants.

Clearly, V(t,0,0) = 0 and

2V (t;X,Y ) ≥ 〈β(1− β)δ2aX,X〉+ 〈αδaY, Y 〉.

Thus, there exist a positive constant K = min{β(1− β)δ2a; αδa}, such that,

2V (t,X, Y ) ≥ K{‖ X ‖2 + ‖ Y ‖2} (4.7)

for all t ≥ 0, X, Y. From (4.7), V (t;X,Y ) = 0 if and only if ‖X‖2 + ‖Y ‖2 = 0 and V (t;X,Y ) > 0
if and only if ‖X‖2 + ‖Y ‖2 6= 0. It then follows that,

V (t;X,Y )→ +∞ as ‖X‖2 + ‖Y ‖2 → +∞.

Next, we derive the derivative of V along the trajectories of the system (4.2) and show that it is
negative definite for X 6= 0 and Y 6= 0. By differentiating V , we obtain

V̇(4.2) = 〈β(1− β)δ2aX,Y 〉+ 〈αδaY,−AY −H(X)〉+ (1− β)2〈Y + δaX,−AY −H(X) + δaY 〉
≤ −αδ2a〈Y, Y 〉 − (1− β)2δa〈X,H(X)〉+ (1− β)δ2a〈X,Y 〉 − (1− β)2δa〈X,AY 〉
− αδa〈Y,H(X)〉 − (1− β)2〈Y,H(X)〉
≤ −αδ2a〈Y, Y 〉 − (1− β)2δa〈X,H(X)〉 − {αδa + (1− β)2}〈Y,H(X)〉
− 〈δa(1− β){A(1− β)− δaI}X,Y 〉.

We can write V̇ as
V̇(4.2) ≤ −U1 − U2 − U3 (4.8)
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where
U1 =

1

2
αδ2a〈Y, Y 〉+

1

2
(1− β)2δa〈X,H(X)〉,

U2 =
1

4
αδ2a〈Y, Y 〉+

1

4
(1− β)2δa〈X,H(X)〉+ 〈δa(1− β){A(1− β)− δaI}X,Y 〉

and
U3 =

1

4
αδ2a〈Y, Y 〉+

1

4
(1− β)2δa〈X,H(X)〉+ {αδa + (1− β)2}〈Y,H(X)〉.

In what follows, we will show that U2 ≥ 0 and U3 ≥ 0. Let K1 and K2 be any two strictly positive
constants which are carefully chosen, we have

〈δa(1− β)
(
A(1− β)− δaI

)
X,Y 〉

= ‖K−11 δa(1− β)(A(1− β)− δaI)X +
1

2
K1Y ‖2 −K−21 δ2a(1− β)2

(
A(1− β)− δaI

)2‖X‖2 − 1

4
K2

1‖Y ‖2

≥ −K−21 δ2a(1− β)2
(
A(1− β)− δaI

)2‖X‖2 − 1

4
K2

1‖Y ‖2

and

〈(αδa + (1− β)2)H(X), Y 〉

= ‖K−12 (αδa + (1− β)2)H(X) +
1

2
K2Y ‖2 −K−22 (αδa + (1− β)2)2‖H(X)‖2 − 1

4
K2

2‖Y ‖2

≥ −K−22 (αδa + (1− β)2)2‖H(X)‖2 − 1

4
K2

2‖Y ‖2.

Thus,

U2 ≥ −
1

4
K2

1‖Y ‖2 −K−21 δ2a(1− β)2
(
A(1− β)− δaI

)2‖X‖2 +
1

4
αδ2a〈Y, Y 〉+

1

4
(1− β)2δa〈X,H(X)〉

≥ 1

4

(
αδ2a −K2

1

)
〈Y, Y 〉+

1

4
(1− β)2δa

(
δb − 4K−21 δa∆2

aβ
2
)
〈X,X〉,

where we have applied Eq. (4.3) with Y = 0, H(Y ) = 0 and Lemma 3.1. Therefore, for all
X,Y ∈ Rn ,

U2 ≥ 0,

if K2
1 ≤ αδ2a with

∆2
a ≤

K2
1δb

4δaβ2
≤ αδaδb

4β2
.

Also,

U3 ≥
1

4
αδ2a〈Y, Y 〉+

1

4
(1− β)2δa〈X,H(X)〉 −K−22 (αδa + (1− β)2)2‖H(X)‖2 − 1

4
K2

2‖Y ‖2.

On applying Eq. (4.3) with Y = 0, H(0) = 0 and Lemma 3.1, we have

U3 ≥
1

4
(αδ2a −K2

2 )〈Y, Y 〉+
1

4

(
δaδb(1− β)2 −

4
(
αδa + (1− β)2

)2
∆2

b

K2
2

)
〈X,X〉.

Thus, for all X,Y ∈ Rn ,
U3 ≥ 0,

if K2
2 ≤ αδ2a with

∆2
b ≤

K2
2δaδb(1− β)2

4
(
αδa + (1− β)2

)2 ≤ αδ3aδb(1− β)2

4
(
αδa + (1− β)2

)2 .
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Lastly, we are left with the estimate for U1. From (4.8) and (4.3), we have

U1 =
1

2
αδ2a〈Y, Y 〉+

1

2
(1− β)2δa〈X,H(X)〉

=
1

2
αδ2a〈Y, Y 〉+

1

2
(1− β)2δa〈X,BX〉

≥ 1

2
αδ2a〈Y, Y 〉+

1

2
(1− β)2δaδb〈X,X〉

≥ δ2{‖X‖2 + ‖Y ‖2},

where δ2 = 1
2 min{αδ2a; (1− β)2δaδb}.

Therefore,
V̇(4.2) ≤ −δ2{‖X‖2 + ‖Y ‖2} ≤ 0. (4.9)

So far, we have been able to show that the trivial solution is stable. Now, consider the set defined
by

W = {(X,Y ) : V̇ (X,Y ) = 0}.

By applying LaSalle’s invariance principle (see [5]), we observe that (X,Y ) ∈W implies that

X = Y = 0. (4.10)

This, i.e (4.10), shows that the largest invariant set contained in W is (0, 0) ∈ W. Therefore, we
conclude that the trivial solution of system (4.2) or Eq. (4.1) is asymptotically stable and this
completes the proof of Theorem 4.1.

Example 4.2. As a special case of equation (1.1) with n = 2, we provide the following example.
In (1.1), let

X =

(
x1
x2

)
, A =

(
4 1
1 4

)
and H(X) =

(
b1 b2
b2 b1

)(
x1
x2

)
= BX,

where b1, b2 are constants satisfying 0 < b2 < b1. Then, by some simple calculations, 0 < δa = 3 ≤
λi(A) ≤ ∆a = 5, and 0 < δb = b1 − b2 ≤ λi(B) ≤ ∆b = b1 + b2.
Thus, all the conditions of the theorem are satisfied.

Remark 4.3. Meng [15], considered the Ultimate boundedness results of a certain third order
nonlinear linear differential equation in which the nonlinear term is not necessary differentiable
and gave a similar example to our Example 4.2 above.

5 Boundedness
We now state and prove the result on the boundedness of solutions for the case P (t,X, Y ) 6= 0.

Theorem 5.1. Suppose in addition to the conditions (i) and (ii) of Theorem 4.1, the following
holds:

(iii) for all t,X and Y, there exist a finite constant δ1 > 0 and a continuous function θ = θ(t) such
that the vector P (t,X, Y ) satisfies

‖P (t,X, Y )‖ ≤ θ(t), (5.1)
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where
∫ t

0
θ(s)ds ≤ δ1 <∞ for all t ≥ 0. Then there exists a constant D > 0 such that every solution

(X(t), Y (t)) of (1.2) determined by

X(0) = X0, Y (0) = Y0

satisfies
‖X(t)‖ ≤ D, ‖Y (t)‖ ≤ D (5.2)

for all t ≥ 0, X, Y ∈ Rn.

Proof. To establish this result, we make use of the Lyapunov function defined in (4.6). We note
that under the assumptions of Theorem 5.1, the estimate (4.7) for V (t,X, Y ) is still the same. But
now that P (t,X, Y ) 6= 0, we obtain the following as the derivative of V :

V̇(1.2) ≤ −δ2{‖X‖2 + ‖Y ‖2}+ 〈{αδa + (1− β)2}Y + (1− β)2δaX,P 〉

≤
(
{αδa + (1− β)2}‖Y ‖+ (1− β)2δa‖X‖

)
‖P (t,X, Y )‖

≤ δ3{‖X‖+ ‖Y ‖}‖P (t,X, Y )‖
≤ δ3θ(t){‖X‖+ ‖Y ‖}.

where δ3 = max{{αδa + (1− β)2}; (1− β)2δa}. On applying the inequalities ‖X‖ ≤ 1 + ‖X‖2 and
‖Y ‖ ≤ 1 + ‖Y ‖2, we have

V̇(1.2) ≤ δ3θ(t){2 + ‖X‖2 + ‖Y ‖2}
= 2δ3θ(t) + δ3θ(t){‖X‖2 + ‖Y ‖2}.

By using the inequality (4.7), we have

V̇ (t)(1.2) ≤ 2δ3θ(t) + 2δ3θ(t)K
−1V (t,X, Y ).

Integrating the last inequality from 0 to t, (t > 0) , we obtain

V (t)− V (0) ≤ 2δ3

∫ t

0

θ(s)ds+ 2δ3K
−1
∫ t

0

θ(s)V (s)ds

≤ 2δ1δ3 + δ3K
−1
∫ t

0

θ(s)V (s)ds.

If we let 2δ1δ3 + V (0) = δ4 and 2δ3K
−1 = δ5, we obtain

V (t) ≤ δ4 + δ5

∫ t

0

θ(s)V (s)ds.

Applying Grownwall Bellman’s inequality (see Rao [1]) in the above inequality, we get

V (t) ≤ δ4 exp
(
δ5

∫ t

0

θ(s)ds
)
≤ δ4 exp(δ6) (5.3)

where δ6 = δ1δ5.
Thus, (5.3) implies that all the solutions of the Eq. (1.1) or it’s equivalent system (1.2) are bounded.

Example 5.2. Suppose, in addition to Example 1, we have

P (t;X,Y ) =

(
1

1+et+x2
1+y2

1
1

1+et+x2
2+y2

2

)
.
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It is very clear that

‖P (t;X,Y )‖ ≤ 2

et
= θ(t) and max θ(t) = 2 <∞.∫ ∞

0

θ(s)ds = 2

∫ ∞
0

1

es
ds = 2.

Also, all the conditions of the theorem are satisfied.

Remark 5.3. We have thus far, established stability of the trivial solution and boundedness of all
solutions of the systems (4.2) and (1.2) respectively without imposing differentiability condition on
the vector function H(X) as in papers ( [27], [2]).
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