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Abstract

Rainfall estimates are important components of water resources applications, especially in agri-
culture, transport. constructing irrigation and drainage systems. This paper aims to stochas-
tically model and forecast the rainfall trend and pattern for a city, each purposively selected in
five states of the South-Western Region of Nigeria. The data collected from Nigerian Meteoro-
logical Agency (NIMET) website are captured with fractional autoregressive integrated moving
average (ARFIMA) and seasonal autoregressive integrated moving average (SARIMA) models.
The autocorrelation function (ACF) and partial autocorrelation function (PACF) are used for
model identification, the models selected are subjected to diagnostic checks for the models ad-
equacy. Several tests: Augmented Dickey Fuller (ADF), Ljung Box and Jarque Bera tests are
used for investigating unit root, serial autocorrelation and normality of residuals, respectively;
the mean square error, root mean square error and mean absolute error are employed in validat-
ing the optimal stochastic model for each city in all states, in which the model with the lowest
error of forecasting of all competing models is suggested as the best. The analyses and findings
suggest SARIMA(1,0,1)(1,1,0) [12], SARIMA(3,0,2)(1,0,0) [12], SARIMA(1,0,0)(1,1,0) [12],
SARIMA(2,0,2)(2,1,0) [12] and SARIMA(0,0,1)(1,1,0) [12] for (Ibadan) Oyo State, (Ikorodu)
Lagos State, (Osogbo) Osun State, (Abeokuta) Ogun State and (Akure) Ondo state, respec-
tively. The seasonal ARIMA (SARIMA) model was proven to be the best optimal stochastic
forecast model for forecasting rainfall in the selected cities. The SARIMA model was, therefore,
recommended as a veritable technique that will assist decision makers (Government, Farmers,
and Policymakers) to establish better strategies “aprior” on the management of rainfall against
upcoming weather changes to ensure increase in agricultural yields for the betterment of the
citizenry and general economic growth.

Keywords: Optimum Forecast, ARFIMA, SARIMA, Model Diagnostics, Residuals.
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1 Introduction
Rainfall estimates are important components of water resources applications. Accurate rainfall fore-
casting provides information for any water resources planning systems like transport, agriculture,
irrigation schemes, city and environmental plans, reservoir operation strategies, flood and drought
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analysis, and for designing and maintaining of hydraulic structures. Nigeria, being an agrarian
country, depends highly on climate. Forecast of rainfall will in the long-run ensure stable, sufficient
and adequate moisture that can generate growth, efficiency and stability in agricultural yields since
all national crop production, agricultural activities as a whole depend heavily on the distribution
and quantity of rainfall. There is no doubt that water resources are essential renewable resources
which are the basis for development and existence of a society ( [1] Usoro and Awakessien, 2018).
Nigeria is divided into two major parts; the southern and the northern region. Each of the parts
has three sub-regions, which makes it a total of six regions in the country, which are; North-East,
North-West, North Central, South-East, South-West and South-South regions. Each of these re-
gions have different features that describe the economic activities, settlements and way of life of
the inhabitants. It is indisputable that the amount of rainfall recorded in the southern part of
the country is much more than that of the northern part, thereby having a great impact on the
type of vegetation in the region. The southern part, for instance, has coastal areas with rainforest
and mangrove vegetation whose amount of rainfall are not equal, which is also applicable in the
northern part of the country.
Forecasting of rainfall has so many advantages such as helping people plan for when to do certain
activities that are influenced by weather, to help people with health related issues to plan the day,
to help businesses plan for transportation hazards that can result from the weather as related to
driving and flying for example, and most importantly to help farmers and gardeners plan for crop
irrigation and protection, among others. After crops have been planted, the minimization or eradi-
cation of crop failure during the early stages depend heavily on the amount of rainfall. In addition,
wise decisions would be taken with regards to the need for irrigation and the timings, utilization of
hydro-electric power, the conservations of water strategies for dams, all depends on reliable rainfall
forecast. More so, a reasonable knowledge of the data on rainfall assists in the forecasting of length
of growing or rainy season, which is most useful in the selection of crop varieties, crop matching and
crop sequences. Several authors have written on SARIMA models adopting several methods such
as the non-parametric methods (Artificial Neural Networks) and Parametric Methods (Exponential
smoothing, Extrapolation of trend curves, the Holt-Winters forecasting procedure and Box Jenkins
procedure). Forecasting rainfall is a very difficult task in the modern world, as a result of facing
major environmental problem of global warming which has rendered previously employed meth-
ods less effective as a result of changing patterns and variability in rainfall ( [2] Box and Jenkins,
1976). [3] Tariq and Abbasabd (2016) used a SARIMA model for Nyala station (Sudan), which was
considered appropriate for forecasting monthly rainfalls. [4] Valipour (2015) proved the appropri-
ateness of SARIMA model for long-term runoff forecasting in the United States as compared to the
ARIMA models. [5] Umar, et al. (2014) adopted a non-seasonal ARIMA (1, 2, 1) models for rainfall
data in North-Eastern Nigeria and observed that the seasonality of the data cannot be captured.
Additive and multiplicative methods of decomposing trends, seasonal and cyclical variations in the
rainfall data were applied by [6] Abdulrahim, et al. (2013) in Sokoto rainfall data. They observed a
high concentration of rainfall in the months of June, July and August, while decrease in the rainfall
was observed in March, April and October in the analysis of precipitation indicating the farmers’
period of growing crops.
In the South-South region of Nigeria, [7] Etuk, et al. (2013) fitted a long-range SARIMA(5, 1, 0)(0,
1, 1)12 model to rainfall data in Port Harcourt and observed that the fitted model was not equally
fair because of the order of the non-seasonal autoregressive part. [8] Ekwe, et al. (2014) analyzed
the trend and seasonal behaviour of rainfall data in Nasarawa State using the regression analysis
for the period of 20 years (1993-2012) and discovered that the highest rainfall occurred in 1996, and
lowest in 2010 with the highest amount of rainfall value recorded in August. [9] Yaya, et al. (2015)
fitted trend and seasonal models to a rainfall data from different meteorological stations in the
six geographical zones in Nigeria. In the analyses, there existed seasonality pattern in the rainfall
across the six zones in the country. In each of the zones, there are increasing amount of rainfall,
according to their findings. The trend component with the model Y = b0 + b1X was isolated first
and after that Ut = Φ12Ut−12 + εt was used to fit the data after the trend removal. The behaviours
of the residuals from the fitted models were not shown to indicate adequacy of the models. They
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conclude that it is not possible for one particular model to be adequate in fitting rainfall data in
all the zones. The prediction result can be a guide leading to very important theory evidence for
the agricultural managers to make pertinent decisions ( [10] Guifen, et al., 2010). [11] Olatayo and
Taiwo (2014) introduced three fundamental different approaches for designing a model, the statisti-
cal method based on autoregressive integrated moving average (ARIMA), the emerging fuzzy time
series (FST) model and the non-parametric method (Theil’s regression) and observed that ARIMA
(1, 2, 1) was used to derive the weights and the regression coefficients, while the Theil’s regression
was used to fit a linear model.
The motivation and objective of this paper is to select the optimal stochastic model(s) from the
different seasonal autoregressive integrated moving average (SARIMA) models and fractional au-
toregressive integrated moving average (AFRIMA) models, for forecasting rainfall in the South
West Region of Nigeria. The South-Western Region as a whole will greatly benefit from the success
of this study by having an insight of the behaviour, pattern or trend of rainfall. Information will
also be available to the Government and community to prepare for any form of disasters that can
be caused by excessive and/or scarcity of rainfall. The five cities identified and selected for this
study are predominantly agricultural dependent, it would be of utmost importance to the farmers,
and there would be a significant increase in the yield if there is a timely access to reliable forecast
of rainfall data in these cities. The remainder of this paper is organized as follows. Section 2
introduces the theory about the models. Section 3 presents modelling strategy used for the two
models, describes the chosen tests and how the forecasting accuracy are evaluated. In Section 4,
results and discussion for the data sets of monthly rainfall are presented. Section 5 concludes the
paper by summarizing the results.

2 Model
(a) Seasonal ARIMA (SARIMA) Models
A time series is said to be homogeneous non-stationarity if (1−B)dyt is stationary for some value of
d ≥ 1. Seasonal autoregressive integrated moving average (SARIMA) models are an adaptation of
autoregressive integrated moving average (ARIMA) models to specifically fit seasonal time series.
Seasonal differencing in this model reduces the periodic intensity and makes a series static. The
SARIMA model is applied to the time series yt with the following expression ( [12] Brockwell and
Davis, 1991):

Φ(Bs)φ(B)4d 4Ds yt = θo + Θ(Bs)θ(B)εt. (2.1)

These models, SARIMA (p, d, q)× (P,D,Q)s contain non-seasonal and season components, where
s is the seasonal length, for example s = 12 for monthly data; B is the lag operator and εt is
assumed to be a Gaussian white-noise process with mean zero and variance σ2; φ(B) = 1− φ1B −
φ2B

2 − ... − φpBp is the autoregressive process of order p. The process is stationary if the roots
of 1− φ1B − φ2B2 − ...− φpBp = 0, lie outside a unit circle. The partial autocorrelation function
(PACF) vanishes after lag p; θ(B) = 1 − θ1B − θ2B

2 − ... − θpB
p is the moving average order

q (MA(q). The MA(q) process is always stationary because 1 − θ1B − θ2B2 − ... − θpBp < ∞.
The process is invertible if the roots of 1 − θ1B − θ2B2 − ... − θpBp = 0, lie outside a unit circle;
Φ(Bs) = 1 − Φ1B

s − Φ2B
2s − ... − ΦpB

ps and Θ(Bs) = 1 − Θ1B
s − Θ2B

2s − ... − ΘpB
ps are the

seasonal autoregressive and seasonal moving average models components. The difference operator
is 4d where d specifies the order of differencing and the seasonal difference operator is 4Ds where D
is the order of seasonal differencing. The difference operators are applied to transform the observed
non-stationary time series yt to the stationary process y∗t with the following equation:

y∗t = (1−B)d(1−Bs)Dyt (2.2)

is the backshift operator such that Bdyt = yt−d.
For the state-space model and forecasting of integrated processes, the fact that the observed variable
can be replaced by the differenced variable as in Equation (2.2) is used. [13] Box, et al. (2008)
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propose that the SARIMA (p, d, q)×(P,D,Q)s for yt can be seen as a special form of the equivalent
representation of as an ARMA (p+ sP, q + sQ) written as

φ(B)∗y∗t = θ0 + θ(B)∗εt. (2.3)

The AR part [φ(B)∗] in this model is derived by multiplying the autoregressive lag polynomials
φ(B) and Φ(Bs). Hence, it is

φ(B)∗ = φ(B)Φ(Bs) = (1− φ1B − φ2B2 − ...− φpBp)(1− Φ1B
s − Φ2B

2s − ...− ΦpB
ps). (2.4)

For the MA part [θ(B)∗], multiply the moving average lag polynomials θ(B) and Θ(Bs) which give

θ(B)∗ = θ(B)Θ(Bs) = (1− θ1B − θ2B2 − ...− θpBp)(1−Θ1B
s −Θ2B

2s − ...−ΘpB
ps). (2.5)

(b) Autoregressive fractionally integrated moving average (ARFIMA)
ARFIMA models are time series models that generalize ARIMA models by allowing non-integer
values of the differencing parameter. These models are useful in modelling time series with long
memory in which deviations from the long-run mean decay more slowly than an exponential decay.
The acronyms "ARFIMA" or "FARIMA" are often used, although it is also conventional to simply
extend the "AFRIMA (p, d, q)" notation for models, by simply allowing the order of differencing,
d, to take fractional values. An ARFIMA model shares the same form of representation as the
ARIMA (p, d, q) process, specifically(

1−
p∑
i=1

ΦiB
i

)
(1−B)dXt =

(
1 +

p∑
i=1

ΘiB
i

)
εt. (2.6)

In contrast to the ordinary ARIMA process, the "difference parameter", d, is allowed to take non-
integer values.

3 Methodology
The self-projecting time series uses only the time series data of the activity to be used to generate
forecasts. This approach is typically useful for short to medium-term forecasting. The underlying
goal of the Box-Jenkins forecasting method is to find an appropriate formula so that the residuals
are as small as possible and exhibit no pattern. Box and Jenkins bases the model selection on three
stages: identification, estimation and diagnostic checking.
The identification part then begins by finding the appropriate order of integration in level, that
is, d. This order will be found with two unit root tests, the Augmented Dickey-Fuller (ADF) test
and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test. [14] Kwiatkowski et al. (1992) state that
these two tests can be said to complement each other. The Augmented Dickey-Fuller (ADF) test is
used to test the null hypothesis of a unit root against the alternative of stationarity and it is based
on the following model ( [15] Dickey and Fuller, 1979):

4 yt = α+ βt+ (ρ− 1)yt−1 + δ1 4 yt−1 + ...+ δp−1 4 yt−p+1 + εt (3.1)

where α is a constant, β is the coefficient of a simple time trend, ρ is the parameter of interest, 4 is
the first difference operator, δ1 are parameters and p the lag order of the autoregressive process. The
choice of including the intercept and/or the time trend should be made beforehand. The lagged
differenced variables are included to account for possible serial correlation that would otherwise
appear in the error term fit which is assumed to be approximately a white noise process ( [16]
Banerjee et al., 1993). What is tested is the null hypothesis of a unit root, that is, ρ = 1 against
the alternative hypothesis of stationarity |ρ| < 1. The test statistic that is used is based on the
t-statistic

DFT =
ρ̂− 1

SEρ̂
(3.2)
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where the estimated value of the test statistic should be compared to the value of the relevant
critical value of the Dickey-Fuller test ( [16] Banerjee et al., 1993).
The Kwiatkowski et al. (KPSS) test was developed in 1992 and assumes the following model:

yt = γt + rt + εt (3.3)

where γ is the coefficient of a simple time trend, ε ∼ N(0, σ2
ε) and rt is a random walk, that is,

rt = rt−1+ut, where ut is a white noise process with mean zero and variance σ2
u and r0 is considered

to be the intercept. The null hypothesis that σ2
u implies testing that the time series is either level

(γ = 0) or trend stationary (γ 6= 0) against the alternative that it is non-stationary. The test
statistic is then derived by first fitting yt depending on only an intercept, or an intercept and a
trend. The resulting residuals et are then used to derive a consistent estimate of the variance

s2(l) = T−1
T∑
i=1

e2t + 2T−1
l∑

s=1

w(s, l) +

T∑
t=s+1

etet−s. (3.4)

In this equation, w(s, l) = 1− s
1+l is the Bartlett window and guarantees that the estimated variance

is non-negative. The bandwidth l is decided by the Newey-West automatic with the Bartlett kernel
( [17] Schwert, 2009). The next step is to derive the partial sum series of the residuals, that is

St =

T∑
i=1

et, t = 1, 2, 3, ..., T. (3.5)

The results in Equations (3.4) and (3.5) are then used to derive the Lagrange multiplier based
KPSS test statistic

ηµ =
ηµ
S2(l)

= T−1
∑
s2t

s2(l)
. (3.6)

where the critical values can be found in [14] Kwiatkowski et al. (1992).
The integration order in season, D, is found with the Canova-Hansen (CH) test and the Hylleberg-
Engle-Granger-Yoo (HEGY) test. These tests are used to evaluate the seasonal stationarity of each
time series and have been shown to complement each other ( [18] Hylleberg, 1995).The Canova and
Hansen (CH) test was developed in 1992 and is used to test the null hypothesis that the time series
process is stationary with deterministic seasonality against the alternative that it has a seasonal
unit root. It is closely related to the KPSS test since both are based on the Lagrange Multiplier
(LM) statistic. This test assumes the following model:

yt = µ+ x′tβ + St + et (3.7)

where yt is the modelled time series, xt is a vector of explanatory variables which can be lagged values
of y, St is a deterministic seasonal component of period s = 12 for monthly data and et ∼ N(0, σ2)
is white noise and uncorrelated with xt and St. It should be noted that the time series that is
used for this test is assumed stationary in level. If no explanatory variables are included then the
error et will be the difference between the modelled process and its seasonal component St. The
requirements of et are not strict but it should not appear to have tendencies for serial correlation,
heteroskedasticity or seasonal behaviour. Further, the seasonal component can be written like this

St = d′tα (3.8)

where dt is a seasonal dummy indicator for the 12 lags and α is a parameter vector representing
the seasonal effects. The seasonal component can then be equivalently written on a trigonometric
representation, that is

St =

q∑
j=1

f ′jtγj (3.9)
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where q = s
2 = 6 for monthly data, for j < q, fjt = [cos((j/q)πt), sin((j/q)πt)] and for j = q,

fjt = cos(πt). Thus the following vectors of s− 1× 1 objects can be specified as follows:

ft =


f_1t
f_2t
.
.
.

f_qt



γ =


γ1
γ2
.
.
.
γq


will then lead to Equation (3.9) being equivalently written as

St = f ′tγ. (3.10)

Putting Equation (3.10) in Equation (3.7) then leads to the model being specified in the following
way:

yt = µ+ xTt β + fTt γ + et. (3.11)

This representation is good because it presents the seasonal components as cyclical where γj is the
parameter for the seasonal frequency jπ/q connected to each cyclical process ft for each seasonal
component St. It is also important to note that inclusion of lagged variables of yt in xt could
potentially lead to seasonal unit roots being captured. This could lead to the null hypothesis not
being rejected, since the alternative hypothesis is that the time series has a seasonal unit root. Thus
since no included lags could lead to the error term et being serially correlated the number must be
decided with caution. The test statistic is then derived by

L =

T∑
i=1

F̂ ′tA(A′ΩfA)−1A′F̂t (3.12)

where F̂t =
T∑
t=1

ftêt with êt being the residuals from the estimation of the model in Equation (3.7),

Ωf is the long-run covariance matrix of ftet and A is specified to test for the seasonal unit root
at one or a number of seasonal lags. If stationarity is rejected at all frequencies then seasonal
differencing should be performed to make the time series stationary. The test statistic is then
showed to asymptotically follow the Von Misses goodness-of-fit distribution with critical values
presented in [19] Canova and Hansen (1992) which the estimated value is compared to.
The HEGY test is an extension on theory from the Dickey-Fuller test to test for seasonal unit
roots and was developed by [20] Hylleberget al. (1990). In their paper they developed the test
for quarterly data and an extension to monthly data was later created by [21] Franses (1991) on
which this section is based. The first step is to present the seasonal difference operator 4s, where it
follows that there should be s = 12 roots on the unit circle for monthly data. This can be described
by the following equation:

4z = (1−B12) = (1−B)(1 +B)(1− iB)(1 + iB)×
[1 + (

√
3 + i)B/2][1 + (

√
3− i)B/2]× [1− (

√
3 + i)B/2][1− (

√
3− i)B/2]×

[1 + (
√

3 + i)B/2][1− (
√

3− i)B/2]× [1− (
√

3 + i)B/2][1 + (
√

3− i)B/2] (3.13)
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where B is the lag operator and all polynomials except (1−B) are connected to seasonal unit roots.
The test is then based on the following equation:

γ∗(B)y8,t = π1y1,t−1 + π2y2,t−1 + π3y3,t−1 + π4y3,t−2 + π5y4,t−1 + π6y4,t−2+π7y5,t−1

+π8y5,t−2 + π9y6,t−1 + π10y6,t−2 + π11y7,t−1 + π12y7,t−2 + µt + εt (3.14)

where is deterministic and specified to include a constant, seasonal dummies and/or a trend, is a
white noise process and is a polynomial of B and the significance of the parameters are what is of
interest. Further the y’s are specified as lagged combinations of the observed time series process as
follows:

y1,f = (1 +B)(1 +B2)(1 +B4 +B8)yt

y2,f = −(1−B)(1 +B2)(1 +B4 +B8)yt

y3,f = −(1−B2)(1 +B4 +B8)yt

y4,f = −(1−B4)(1−
√

3B +B2)(1 +B2 +B4)yt

y5,f = −(1−B4)(1 +
√

3B +B2)(1 +B2 +B4)yt

y6,f = −(1−B4)(1−B2 +B4)(1−B +B2)yt

y7,f = −(1−B4)(1−B2 +B4)(1 +B +B2)yt

y6,f = (1−B12)yt

(3.15)

The model in Equation (3.14) is then estimated by ordinary least squares with focus on the estimates
of the πs. This is done for the specifications of µt being considered relevant. The t-test are then
used on π̂1 and π̂2 to test the one-sided null hypothesis of a unit root for π̂1 and a seasonal unit root
for π̂2 against the alternative hypothesis of no unit root. For π̂i with i > 2 a seasonal unit root at a
specific frequency is only present when it occurs for connected pairs of parameters. Thus, it follows
that the F -test is used to the joint two-sided null hypothesis of a unit root on the connected pairs,
(π̂3, π̂4), (π̂5, π̂6), (π̂7, π̂8), (π̂9, π̂10) and (π̂11, π̂12) against the alternative that there are seasonal
unit roots. Critical values for all these tests can be found in [21] Franses (1991). Non-rejection of
the null hypothesis of a seasonal unit root for the test of π̂1 and all the connected pairs would imply
that seasonal differencing of the series should be performed.
The next part is to find the autoregressive orders p and P and the moving average orders q and
Q. The correlogram is first used to make guesses for appropriate orders ( [2] Box and Jenkins,
1976). The correlogram is used to check the randomness of the data. Box and Jenkins states that
the autocorrelation function (ACF) and partial autocorrelation function (PACF) can be used to
identify the ordersp, q, P,Q for a SARIMA model ( [13] Boxet al., 2008). The ACF at lag k is given
by ( [22] Harvey, 1989) as

rk =
ck
c0

(3.16)

where ck is the following autocovariance function:

ck = T−1
T∑

t=k+1

(yt − y)(yt−k − y), k = 1, 2, 3, ... (3.17)

and c0 is the variance, derived by

c0 = T−1
T∑

t=k+1

(yt − y)2 (3.18)

for the T observations of the process yt with sample mean . The PACF is the autocorrelation
between yt and its lagged process yt+k while excluding all autocorrelations ranging from yt+1 to
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yt+k−1. These are estimated with the use of the derived autocorrelations rj where the following
function is first needed

rj = φ̂k1rj−1 + φ̂k2rj−2 + ...+ φ̂kkrj−k, j = 1, 2, 3, ..., k (3.19)

These target is to extract the parameters φ̂11, φ̂22, ..., φ̂kk where φ̂jj is the partial autocorrelation
for lag j ( [2] Box and Jenkins, 1976). The correlogram includes plots of the sample ACF and
the sample PACF both against the time lags k. For complete randomness, the values at all lags
should be zero. The most important part of the identification procedure is to look for significant
lags meaning the ones lying outside the interval +2

√
T (23 Hamilton, 1994). Further, the ACF and

PACF are used to find appropriate orders for the SARIMA model by using the results in Table
1. It is however assumed that the differencing implied by d and D have been done to the time
series, meaning that the SARIMA (p, d, q) × (P,D,Q)s of has taken its equivalent representation
as a SARMA (p, q)× (P,Q)s of the differenced series ( [2] Box and Jenkins, 1976).

Table 1: ACF and PACF to identify the orders of SARIMA (p, q) × (P,Q)s, only positive lags
are of interest.

Model ACF PACF
AR(p) Exponentially decreasing Spikes to lag p then zero

or damped sine wave
MA(q) Spikes to lag q then zero Exponentially decreasing

or damped sine wave

ARMA(p, q) Exponentially decreasing Exponentially decreasing
or damped sine wave after or damped sine wave after

q − p lags p− q lags

SAR(P) Exponentially decreasing Spikes to lag Ps then zero
or damped sine wave for all
lags times s

SMA(Q)s Spikes for lag Qs then zero Exponentially decreasing
or damped sine wave

SARIMA(P,Q)s Exponentially decreasing Exponentially decreasing
or damped sine wave after or damped sine wave after

lags (Q− P )s lags (P −Q)s

However, this procedure is considered subjective for mixed and seasonal processes. To make the
model selection less subjective some frequently used likelihood based information criterions are
applied. These are the Akaike information criterion (AIC) ( [24] Akaike, 1974), the AIC with
correction (AICc) for small samples and the Bayes information criterion (BIC) ( [25] Schwarz,
1978). It has been shown that AIC has a tendency to choose a model that is over-parametrized.
Further, [26] Burnham and Anderson (2004) suggest that AIC and AICc should be valued over
BIC and [12] Brockwell and Davis (1991) propose that AICc is most fit for selecting orders of
SARIMA models. Thus, the model selected by AICc will be most valued. However, finding the
model that minimizes each criterion would be very time consuming if every model is compared.
Fortunately, [27] Hyndman and Khandakar developed an algorithm in 2008 that can be used to
speed up this selection process.They suggest an iterative time-saving procedure where the model
with the smallest value of some information criterions AIC, AICc or BIC will be found much faster,
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since it is now found without comparing every possible model. To derive these information criterions
the first thing that is needed is the likelihood function, L(Ω̂) where Ω̂ is the maximum likelihood
estimates of the parameters for the SARIMA with n = p+ q + P +Q+ 1 parameters and sample
size T . The criterions are then derived by the following equations:

AIC = −2 log[L(Ω̂)] + 2n

AICc =
2n(n+ 1)

T − n+ 1

BIC = −2 log[L(Ω̂)] + n log T (3.20)

All non-invertible or non-causal models are rejected. These are found by computing the roots of
the lag polynomials φ(B)Φ(B) and θ(B)Θ(B), if any root is smaller than 1.001 then the model
is rejected. If errors arise when fitting the model with the non-linear optimization routine then
the model is rejected. It is now assumed that a tentative SARIMA (p, d, q) × (P,D,Q)s has been
identified. Thus, the next step is to estimate it with maximum likelihood estimation approach and
then perform diagnostic checks on the residuals. For a good fit these residuals should be distributed
as Gaussian white noise,that is, be random, homoscedastic and normal. The diagnostic checking is
first performed visually with the standardized residuals and sample autocorrelation function. The
Box-Ljung test which is used to test the randomness and serial independence; and the Jarque-
Beratest which tests the normality of the residuals are also tested. For this Box-Ljung test, the
first step is to extract the residuals ε̂t for the fitted model. The T residuals are then used to derive
the sample autocorrelations of the residuals with the following equation:

r̂k =

T∑
t=k+1

ε̂tε̂t−k

T∑
t=1

ε̂2t

, k = 1, 2, ... (3.21)

This equation is used until a set of autocorrelations r̂1, r̂2, ..., r̂m have been obtained. These are then
used to test the null hypothesis of serially independent residuals versus the alternative hypothesis
that they are not serially independent with the following test statistic ( [28] Ljung and Box, 1978):

Q̂(r) = T (T + 2)

m∑
k=1

(T − k)−1r2k (3.22)

which for an appropriate model was shown to be asymptotically distributed as a χ2
1−α(m) where

m is the number of lagged autocorrelations included and α is the selected significance level.The
number of lags should be a function of T , for example, the truncated value of m =

√
T and that

the degrees of freedom should be corrected for SARIMA models to df = m− p− q − P −Q . The
critical value is included in ( [28] Ljung and Box, 1978) and then compared to the value of the test
statistic. The null hypothesis of randomness is rejected for large values of the test statistic.

The Jarque-Bera test is used to test the normality of the residuals. The null hypothesis of
the test is normality and it is tested against the alternative hypothesis of non-normality. The
statistic [29] Jarque and Bera (1980) is written as

JB = T

(
S2

6
+
K2 − 3

24

)
(3.23)

where T is the number of observations, S is theskweness which is the standardized third moment
which if positive decides that it is more likely to observe a bigger number compared to the mean,
S = [E(Yt − µ)3]/[var(Yt)

3/2], and the kurtosis which is the standardized fourth moment shows
the relationship between the amount of density close to the mean and in the tails. If it is bigger
than 3 then we have comparably more density in the tails compared to the normal distribution,
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K = [E(Yt − µ)4]/[var(Yt)
2]. The statistic is assumed to be distributed as a χ2

1−α(2) variable
and the null hypothesis of normality is rejected for large values of the statistic ( [17] Schwert,
2009).The model should pass all these diagnostic checks to be considered well-fitted and appropriate
for forecasting.
In forecasting with the SARIMA (p, d, q) × (P,D,Q)s model, the variable yt, t = 1, 2, ..., T can be
written equivalently as an ARMA (p+sP, q+sQ) for y∗t from Equation (2.2). The forecast function
for the assumed stationary variable y∗t is then written as

(ŷ∗t+1/t − µ) = φ(B)∗(ŷ∗t − µ) + θ(B)∗ε̂t (3.24)

where ε̂t = yt− ŷ∗t+1/t ( [23] Hamilton, 1994). The forecast for lead time γ , meaning the time that
follows after the last observed information, is then derived by

(ŷ∗t+s/t − µ) = φ(B)∗(ŷ∗t+s−1 − µ) + θ(B)∗ε̂t+s−1 (3.25)

That is, the forecast for lead time γ will be derived by the previously observed values of y∗t , previous
forecasts of y∗ and the residuals ε̂t which have been derived for all time points up to the last observed
observation but are equal to zero for the ones where the real values have not yet been observed.
( [23] Hamilton, 1994).

4 Results and Discussion
The monthly data of rainfall of the five cities of the South-West Region of Nigeria: Ibadan and
Ikorodu respectively in Oyo and Lagos States covered a period of 1973-2018, Osogbo and Abeokuta
respectively in Osun and Ogun States covered a period of 1976-2018, while Akure in Ondo State
covered a period of 1982-2018. These data, collected from website of the Nigerian Meteorological
Agency (NIMET) were plotted as shown in Figures 1-5.

Figures 1-5 reveal that the time plots are not stationary and may have heavy seasonality due to the
fluctuating pattern in the series within the sampled periods. These non-stationarity may be due to
irregular variation, seasonal variation and/or other cyclic fluctuations present in the data. These
call for transformation of the data as presented on Figures 6-10.
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The plots of the first differenced series show a cyclic and seasonal pattern movement from the
beginning of 2016 to the beginning of 2019. This implies that the transformed series seem to
present some stability in means with approximately constant variances. The model(s) selection and
some tests were performed and presented in Tables 2 and 3.
Table 2: Model Identification using Kwiatkowski–Phillips–Schmidt–Shin (KPSS) Test
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Table 2 displays some set of competing models identified and selected using KPSS test based on
Akaike information criterion (AIC) and Bayesian information criterion (BIC). The asterisks (*) are
the SARIMA models selected as the best for the five purposively selected cities from the five states
of South West Region of Nigeria with minimum values of AIC and BIC. Having selected the mod-
els, the stationarity, normality and serial correlation tests were conducted and presented on Table 3.

Table 3: Tests for Stationary, Normality and Serial Correlation on Selected Models

From Table 3, the Augmented Dickey Fuller shows that there is significant stationarity in the models,
since the p-value (0.01) is lesser than alpha level of significance (0.05). The bracketed results of the
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Jarque-Bera tests are relatively small indicating that the null hypothesis of normally distributed
residuals cannot be rejected for any of the models at 5% significance level. The Box-Ljung is also
performed for each model with the number of autocorrelation lags specified as and with degrees of
freedom correction for the number of parameters being estimated. The null of randomness cannot
be rejected for any of the residuals on the 5% significance level, which is good. Thus, all models
seem well-fitted enough and should be suitable for forecasting.
Table 4: Parameter Estimation for Selected SARIMA Models

Table 5: Parameter Estimation for Selected AFRIMA Models
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The fitted SARIMA models are found in Table 4. The parameters of the selected SARIMA
models seem to be statistically significant considering the low standard error values of their param-
eter and the estimates lie within the 97.5% confidence intervals. Also, the autocorrelation function
(ACF) values for the models are low suggesting statistically good fit for the models. Thus, the
mean absolute scale error (MASE), mean absolute error (MAE), root mean square error (RMSE)
and Error of Autocorrelation function (ACF) are also checked to ascertain the predictive power of
these models. The lower these values are, the more these models can be relied upon in making
evidence-based decision and prospective planning. The log-likelihood values are very large confirm-
ing the predictive power of the models. All models were proven to be quite well-fitted according to
the results of the diagnostic checks. The next step is to extract the residuals and first perform a
visual evaluation of each model fit and then execute some statistical tests considering their normal-
ity and randomness. Plots of the standardized residuals are found in Figures 11, 12, 13, 14 and 15
for all cities. The residuals seem quite homoscedastic and have a mean very close to zero, thus we
move on to forecasting. Table 5 reveals that the log likelihood are high and the p-values of all the
parameters of the different models are lesser than the level of significance alpha (0.05). Hence, the
parameters of the models are all statistically significant except for Ikorodu where the parameters
(d, ar.ar1, ar.ar3) are not statistically significant. These AFRIMA models, though statistical sig-
nificant, could not capture the empirical features (seasonality and cyclical) in the selected rainfall
data. Thus, the paper uses SARIMA models for forecasting the rainfall. The forecast values in the
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selected cities in South West Region of Nigeria are presented in the Appendix

According to the graphical review of the forecasts, both models seem to produce approximately equal
forecasts. That is, the model being more accurate seem to differ from month to month. However,
the error measures gave an indication for the SARIMA models producing better forecasts. It can
be noted that the values for all the models are within 95% confidence limits. This means that
all models performed better compared to the no-change model which just guesses that the next
observation will be equal to the present one. That this measure is smaller than one can probably be
seen as the minimum requirement for the models being considered to have some kind of predictive
ability.
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Conclusion
This paper studied the properties, pattern and trend of rainfall in five agricultural dependent
cities in South West Region of Nigeria. The time series data were modelled using the techniques of
fractional autoregressive integrated moving average (ARFIMA). The adopted models with minimum
value of information criterions are considered as the best ( [24] Akaike, 1974). In addition, MSE,
RMSE, MAE, MPE were also employed to authenticate the accuracy, adequacy and predictive
efficiency of the model as a function of reliability on the estimate of the models. The ACF plots of
the residuals of the models were examined to see whether the residuals of the model were white noise.
Finally, the seasonal ARIMA (SARIMA) has proven to be the best technique for forecasting rainfall
in the cities investigated by providing optimal stochastic forecast models. The SARIMA models
identified and selected are therefore recommended as very useful techniques that will assist the
government, farmers and policymakers in decision making and management of rainfall to increase
agricultural yields and set up priorities for equipping themselves against upcoming weather changes.
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Appendix: Forecast values for all Cities in five States of South West of Nigeria
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