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Abstract

In this paper, we study Ulam-Hyers-Rassias stability of solutions for nonlocal stochastic
Volterra equations. Sufficient conditions for the existence and stability of solutions are de-
rived using the Gronwall lemma. The advantage of our model equation is that it allows for
additional measurements leading to better results compared to models with local initial condi-
tions. Examples are solved to illustrate the applications of the results.
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1 Introduction
The study of Volterra differential and integral equations with classical initial conditions have been
of interest due to their several applications in various fields of science such as semiconductors,
population dynamics, heat conduction, fluid flow, etc., see [1, 2, 7, 9–20, 23]. Differential equations
with nonlocal and functional conditions have become an active area of research. The study of
nonlocal problems is driven not only by theoretical interest but also because they occur naturally
when modelling real-world applications. For example several phenomena in engineering, physics
and life sciences can be described by employing differential equations subject to nonlocal initial
conditions. See [3–6, 9, 13, 15, 17, 20–23]. However, there are not much literature on the theory of
stochastic Volterra equations with nonlocal conditions (see [17, 19, 23] and the references therein).
Some properties of the solutions to differential equations of Volterra type were studied by [2, 8, 9,
11, 12, 14, 16, 17, 23]. [7, 8, 10–12] analised some types of stability (Ulam, Hyers-Ulam, and Hyers-
Ulam-Rassias) for nonlinear integro-differential Volterra equations and Volterra integral equations
by using fixed-point arguments and the Bielecki metric techniques. [14] extended the work of [8] to
a class of nonlinear stochastic integral equation of Volterra type. Of interest here is the work of [14],
where existence and stability of the solution of stochastic Volterra integral equation is guaranteed
if the following conditions are satisfied: given a group G1, a metric group (G2, d), and ε > 0, there
exists a δ > 0 such that the map f : G1 → G2 satisfies ρ(f(xy), f(x)f(y)) > δ ∀ x, y ∈ G1, then
a homomorphism T : G1 → G2 exists and is stable provided a solution exists for such a problem.
Ulam-Hyers-Rassias (U-H-R) stability of a nonlocal stochastic Volterra integral equation (NSVIE)
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is studied. We use Gronwall’s lemma and some other analytical tools to establish the results. Our
results extend and improve corresponding theorems in the existing literature concerning stochastic
Volterra equations. In the sequel, we give some background definitions and some technical results
in section 2, while section 3 is devoted to proving the main theorem and in section 4, we present
some examples.

2 Preliminaries
We introduce and study the stability of the following nonlocal stochastic Volterra equation

dyt = F (t, yt)dt+G(t, yt)dWt

y(0) = y0 + g(y), t ∈ [0, T ]. (2.1)

F (t, y) and G(t, y) are Σt-measurable functions. g(y(.)) is the nonlocal condition. Wt is a Brownian
motion defined on a given probability space. y0 is an Σ0-measurable random variable independent
of Wt, and yt ∈ C.
Let (Ω,Σ,P) be a complete probability space equipped with a filtration {Σt}0≤t≤T and let ‖.‖p =

(E|.|p)
1
p be the norm of the space Lp(Ω,P), p > 0.

Let C := C(I, Lpad(Ω,Σ,P)) : I → Lpad(Ω,Σ,P) denote the space of all continuous stochastic
processes x(t, ω) such that each x(t, ω) is adapted to the filtration {Σt} and E(

∫ t
0
|x(s)|pds) <∞,

I := [0, T ].
Equation (2.1) is better understood in integral form as

yt = y0 + g(y(.)) +

∫ t

0

F (s, ys)ds+

∫ t

0

G(s, ys)dWs, t ∈ I (2.2).

Definition 2.1. Let v > 0. The problem (2.2) is said to be Ulam-Hyers-Rassias (U-H-R) stable
with respect to ε > 0 if for every solution yt ∈ C of the inequality∥∥∥∥yt − [y0 + g(y(.))]−

∫ t

0

F (s, ys)ds+

∫ t

0

G(s, ys)dWs

∥∥∥∥
p

≤ ε, (2.3)

we can find another solution zt ∈ C of (2.2) such that

‖yt − zt‖p ≤ vε, t ∈ I.

Definition 2.2. The problem (2.2) is said to be Ulam-Hyers-Rassias (U-H-R) stable with respect
to ϕ(t) if we can find a constant Mϕ > 0 such that for every solution yt ∈ C of the inequality∥∥∥∥yt − [y0 + g(y(.))]−

∫ t

0

F (s, ys)ds+

∫ t

0

G(s, ys)dWs

∥∥∥∥
p

≤ ϕ(t), (2.4)

there exists another solution zt ∈ C of (2.2) such that

‖yt − zt‖p ≤Mϕϕ(t).

Lemma 2.1 (Gronwall Lemma) Let ϕ(t), ψ(t) ∈ C([0, T ],+ ), where ϕ(t) is nondecreasing. If
u(t) ∈ C([0, T ],+ ) is a solution of the following inequality

u(t) ≤ ϕ+

∫ t

0

ψ(s)u(s)ds, s, t ∈ [0, T ],

then

u(t) ≤ ϕexp
(∫ t

0

ψ(s)ds

)
, s, t ∈ [0, T ].
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The following result guarantees the existence of a unique continuous solution of problem (2.2).
Theorem 2.2. Assume that F (t, y), G(t, y) and g(y) are real valued-measurable functions on C
and F (t, y), G(t, y) satisfy the Lipschitz and linear growth conditions in y. Suppose that also, the
nonlocal initial condition y0 +g(y) is such that ‖y0 + g(y)‖p <∞. Then the nonlocal problem (2.2)
has a unique continuous solution yt on [0, T ].
Proof: The proof is simply an adaptation of the proof of Theorem 1 in [14], to this present setting.
Theorem 2.3. ([14]) Let p ≥ 2 and let f ∈ C be such that

E

[∫ b

a

|f(t)|2dt

]
<∞,

then

E

∣∣∣∣∣
∫ b

a

f(t)dWt

∣∣∣∣∣
p

≤ γ1.E

[∫ b

a

|f(t)|pdt

]
, (2.5)

where γ1 =
(
p(p−1)

2

) p
2

(b− a)
p−2
2 .

We state the following assumptions for y, z ∈ C and a, b ∈ I.
(H1) F (t, y) and G(t, y) are measurable functions taking values in I × C.
Let K > 0, L > 0, and Lg > 0 be positive constants such that
(H2) |F (t, y)− F (t, z)| ≤ K|y − z|, |G(t, y)−G(t, z)| ≤ K|y − z|;
(H3) F (t, y) ≤ L(1 + |y|), G(t, y) ≤ L(1 + |y|);
(H4) |g(y(.))− g(z(.))| ≤ Lg|y − z|, ζ := maxy∈C ||g(y(.)||;
(H5) (1− Lg) < 1.
(H6) Let ϕ(t) > 0 and ϕp(t) be a non decreasing function.

3 Major Results
In this section, we discuss the existence of solution of the nonlocal problem (2.2) and the Ulam-
Hyers-Rassias (U-H-R) stability.
Theorem 3.1. Assume that the hypotheses (H1)-(H6) are satisfied. Then the nonlocal problem
(2.2),
(i) has a unique continuous solution zt ∈ C and
(ii) has the U-H-R stability with respect to ϕ ∈ C.
Proof.
(i) By the Lyapunov’s inequality ([18]), ‖.‖2 ≤ ‖.‖p . Therefore,
‖y0 + ζ‖2 ≤ ‖y0 + ζ‖p holds for all p ≥ 2. Thus, equation (2.2) has a unique continuous solution
zt.
Next we prove that zt ∈ C.
If zt is a continuous solution of (2.2), then

zt = z0 + g(y(.)) +

∫ b

a

F (s, zs)ds+

∫ b

a

G(s, zs)dWs.

By assumption (H3) and the inequality (a+ b+ c)p ≤ 3p−1(ap + bp + cp), we obtain

|zt|p ≤ 4p−1{|z0|p + |g(z)|p

+

∣∣∣∣∣
∫ b

a

F (s, zs)ds

∣∣∣∣∣
p

+

∣∣∣∣∣
∫ b

a

G(s, zs)dWs

∣∣∣∣∣
p

}. (3.1)
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(3.2)

Next, we treat the right- hand side of (3.1) term by term as follows.

E|z0|p + |g(z)|p ≤ E|z0|p + E|ξ|p.

∣∣∣∣∣
∫ b

a

F (s, zs)ds

∣∣∣∣∣
p

≤

(∫ b

a

L(1 + |zs|)ds

)p

≤ Lp2p−1

((∫ b

a

ds

)p
+

(∫ b

a

|zs|ds

)p)

≤ Lp2p−1

(
(b− a)p +

(∫ b

a

|zs|ds

)p)
. (3.2)

Applying Holder’s inequality to the last term on the right-hand side of (3.2) yields

∫ b

a

|zs|ds ≤

(∫ b

a

ds

) p−1
p
(∫ b

a

|zs|pds

)1/p

≤ (b− a)
p−1
p

(∫ b

a

|zs|pds

)1/p

,

and ∣∣∣∣∣
∫ b

a

F (s, zs)ds

∣∣∣∣∣
p

≤ Lp2p−1(b− a)p−1

(
(b− a) +

∫ b

a

|zs|pds

)
.

Now applying (2.5) to the last term on the right-hand of (5.1) yields

E

∣∣∣∣∣
∫ b

a

G(s, zs)dWs

∣∣∣∣∣
p

≤ γ1E

∫ b

a

|G(s, zs)|pds

≤ γ1L
pE

∫ b

a

(1 + |zs|)pds

≤ γ1L
pE

∫ b

a

2p−1(1 + |zs|p)ds

≤ γ1L
p2p−1

(
(b− a) +

∫ b

a

E|zs|pds

)
.

Hence,

E|zt|p ≤ [γ2 + γ3

∫ b

a

E|zs|pds],

where
γ2 = 4p−1

(
E|z0|p + E|ξ|p + Lp2p−1[(b− a)p + γ1(b− a)]

)
and

γ3 = 4p−1
(
Lp2p−1[(b− a)p−1 + γ1]

)
.

Now by Lemma 2.1, we obtain

E|zt|p ≤ γ2e
∫ b
a
γ3ds ≤ γ2e(b−a)γ3 <∞.
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Therefore, zt ∈ C.
(ii) Assume yt is a solution of (2.4) and zt is a solution of (2.2). Then

|yt − zt|p ≤ 4p−1{|yt − [y0 + g(y)]

−
∫ b

a

F (s, ys)ds−
∫ b

a

G(s, ys)dWs|p

+ |g(y)− g(z)|p

+ |
∫ b

a

(F (s, ys)− F (s, zs))ds|p

+ |
∫ b

a

G(s, ys)−G(s, zs)dWs|p} (3.3).

Again, taking the expectation of each term of (3.3) we have

E|yt − [y0 + g(y)] +

∫ b

a

F (s, ys)ds+

∫ b

a

G(s, ys)dWs|p ≤ ϕp(t).

By (H5) we obtain
E|g(y)− g(z)|p ≤ LpgE|y − z|p,

where y0 = z0. By (H2), (H3) and Holder’s inequality, we obtain∣∣∣∣∣
∫ b

a

(F (s, ys)− F (s, zs))ds

∣∣∣∣∣
p

≤

(∫ b

a

K|ys − zs|ds|

)p

≤ Kp

(∫ b

a

ds

)p−1 ∫ b

a

|ys − zs|pds

≤ Kp(b− a)p−1
∫ b

a

|ys − zs|pds.

By applying (2.5), we obtain

E

∣∣∣∣∣
∫ b

a

(G(s, ys)−G(s, zs))dWs

∣∣∣∣∣
p

≤ γ1E

∫ b

a

|G(s, ys)−G(s, zs)|pds

≤ γ1K
p

∫ b

a

E|ys − zs|pds.

Therefore,

E|yt − zt|p ≤ [γ4ϕ
p(t) + γ5

∫ b

a

E|ys − zs|pds],

where γ4 = 4p−1, γ5 = 4p−1Kp((b− a)p−1 + γ1) and (1− Lpg) < 1.
By Lemma 2.1, we get

E|yt − zt|p ≤ γ4ϕp(t)e(
∫ b
a
γ5)ds ≤ γ4ϕp(t)e(γ5(b−a)).

Thus,
E|yt − zt|p ≤Mϕϕ(t),

where Mϕ = γ4
1
p e

(
γ5(b−a)

p

)
. Hence, the nonlocal problem (2.1) has U-H-R stability and the proof

is complete.

52

https://doi.org/10.52968/28302767


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

Vol. 7, No. 2, pp. 48 - 55
https://doi.org/10.52968/28302767

4 Examples
To illustrate the established results, we consider the following nonlocal problems:
1. Given

xt =
η

12
x(η) +

∫ t

0

x3sds+

∫ t

0

x2sdWs. (4.1)

t ∈ [a, b] ≡ [0, 1], 0 < η < 1, and p = 2.
Here F (t, x) = x3, G(t, x) = x2, and g(x) = η

12x(η).
Next, we show that the hypotheses (H1)− (H6) are satisfied.
|F (t, x)− F (t, y)| ≤ |x3 − y3| and |G(t, x)−G(t, y)| ≤ |x2 − y2| with K = 1.
|F (t, x)| ≤ (1 + |x3|) and |G(t, x)| ≤ (1 + |x2|) with L = 1.
|g(x)− g(y)| ≤ 1

12 |x− y|, η < 1 with Lg = 1
12 .

Also, the function ϕ(t) > 0 satisfies the hypothesis (H6) and
1− Lg = 1− 1

12 < 1.
Therefore, the problem (4.1) is stable in the sense of U-H-R.

2. Given

xt =
1

4
x+

∫ t

0

(
3

2
x5s)ds−

∫ t

0

x3sdWs. (4.2)

F (t, x) = 3
2x

5
t , G(t, x) = x3, and g(x) = 1

4x. Here, the hypotheses (H1)− (H6) will hold if

γ5 = 4p−1(Kp
F (b− a)p−1 +Kp

Gγ1),

where KF = 3
2 , KG = 1, L = 1, and Lg = 3

2 . Showing that the problem (4.2) has the U-H-R
stability.

Conclusion
We have used the Gronwall lemma approach to study the existence and U-H-R stability of a con-
tinuous solution of a nonlocal stochastic Volterra integral equation. The established results are
subject to the condition (H5), that is, 1 − Lg < 1. The nonlinear examples have further justified
the application of our model and have enriched the theory of stochastic Volterra equations.
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