
International Journal of Mathematical Analysis and
Optimization: Theory and Applications

Vol.1, pp. 33-54

Coupled best proximity points of generalised
Hardy-Rogers type cyclic (ω)-contraction

mappings

Johnson Olaleru1, Victoria Olisama 2*, Mujahid Abbas 3

1. Department of Mathematics, University of Lagos. Nigeria.
2. Department of Mathematics, University of Lagos. Nigeria.
3 Department of Mathematics and Applied Mathematics, University of Pre-

toria, Lynn-wood street, Pretoria 0002, South Africa.
*Corresponding author: vicolisama@yahoo.com

Abstract
In this paper, we introduce generalized Hardy-Rogers type cyclic (ω)-

contraction mappings which generalizes the cyclic, Kannan, Chatterjea
and Reich contraction mappings. We establish the existence and unique-
ness of coupled best proximity points of such mappings in the framework
of b-metric space. Some examples are presented to support the results
proved herein. Our results generalize and extend various comparable re-
sults in the existing literature. An application of our result to establish
the existence of a solution of a differential equation is presented.

1 Introduction
Fixed point theory provides useful techniques for solving a variety of applied
problems in many branches of mathematics such as computer science, engineer-
ing, chemistry, biology, economics and statistics (see[11,25]).
The Banach contraction principle [7] is an elegant and powerful result which
initiated a new area of research known as metric fixed point theory. Extensions
of Banach contraction principle have been obtained either by generalizing the
distance properties of underlying domain or by modifying the contractive con-
dition on the mappings. Bakhtin [6] first introduced the concept of a b-metric
space as a generalisation of metric space and then proved Banach Contraction
Principle in the setup of such spaces. This served as a motivation for many
reseachers to obtain results on the variational principle for single valued and
multi-valued operators in b-metric spaces (see [5,8,9,12,13]).

Geraghty [15] introduced the class of mappings:

S =
{
ψ : [0,∞)→ [0, 1) : lim

n→∞
tn = 0 whenever lim

n→∞
ψ(tn) = 1

}
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and obtained an interesting extension of Banach Contraction Principle as fol-
lows.

Theorem 1.1 Let X be a complete metric space and f : X → X. If there
exists ψ ∈ S such that

d(fx, fy) ≤ ψ(d(x, y))d(x, y)

holds for all x, y ∈ X. Then f has a unique fixed point x∗ ∈ X and for each
x ∈ X, the sequence {fn(x)} ( called Picard sequence ) converges to x∗.

Another generalisation of the Banach Contraction Principle is due to Bhaskar
and Lakshmikanthan [16]. They introduced the concept of the mixed monotone
property and obtained some coupled fixed point results satisfying certain con-
tractive conditions. They applied their results to establish the existence and
uniqueness of a solution of a periodic boundary value problem. Afterwards,
several authors studied and extended coupled fixed point results in [16] to dif-
ferent directions (see, e.g. [1,2,23,24,26,31]).
Let A and B be nonempty subsets of a metric space X and T : A→ B. A point
x∗ in A such that d(x∗, Tx∗) = 0 holds is called a fixed point of T. A point
x∗ in A such that d(x∗, Tx∗) = inf{d(a, Tx∗) : a ∈ A}, that is, x∗ ∈ A is the
closest point to Tx∗ ∈ B is called an approximate fixed point of T . The study
of conditions that ensure existence and uniqueness of approximate fixed point
of a mapping T is an important area of research.

Suppose that 4AB = d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}. A point x∗ is
called a best proximity point of T if d(x∗, Tx∗) = 4AB . If A ∩ B = φ, fixed
point problem defined by a pair (A,B) and a mapping T has no solution. If
we take A = B, then a best proximity point problem reduces to fixed point
problem. From this perspective, best proximity point problem can be viewed as
a natural generalization of fixed point problem. since d(x, fx) ≥ 4AB for all x
in A, then the global minimum of the mapping x 7−→ d(x, fx) is attained at the
best proximity point (see [14,27]). Best proximity results deal with sufficient
conditions such that the non-linear programming (or minimization) problem

min
x∈A

d(x, fx) has at least one solution.

The theory of best proximity point has proved to be durable and useful in solving
real world problems in nonlinear analysis, optimization, economics, game theory,
and so forth.

Best proximity point theory of a cyclic contraction map has been studied
by many authors. For results regarding cyclic contractive conditions when the
intersection of the sets is nonempty, (see [19,25,28]). In [14], Eldred and Veera-
mani extended the cyclic contractive condition above to the case when A∩B is
empty and proved the existence of best proximity point. For further results in
this area see [3,20,22].

Sintunavarat and Kumam [32] introduced the concept of a coupled best prox-
imity point and proved the existence and uniqueness of coupled best proximity
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point in metric and uniformly convex Banach spaces.
Recently, Amini-Harandi et al.[4] recently introduced a new class of cyclic gen-
eralised contraction maps. They gave an existence result for a best proximity
point of such mappings in uniformly convex Banach spaces.

Motivated by the work in [4] and [32], we introduce a generalised Hardy-
Rogers type cyclic (ω)-contraction map in b-metric spaces and establish the
existence and uniqueness of coupled best proximity point for such maps.

2 Preliminaries
The following definitions and results will be needed in the sequel.

A normed space (X, ‖ · ‖) is said to be:

1 Strictly convex if for all x, y ∈ X with ‖x‖ = ‖y‖ = 1 and x 6= y, we have

‖x+ y

2
‖ < 1.

2 Uniformly convex if for any ε with 0 < ε ≤ 2, there exists δ > 0 such that for
all x, y ∈ X with ‖x‖ = ‖y‖ ≤ 1 and ‖x−y‖ ≥ ε, we have ‖x+ y

2
‖ < 1−δ.

Note that a uniformly convex space X is strictly convex but the converse
does not hold in general.

Let A and B be nonempty subsets of a metric space (X, d),
Definition 2.1 ([32]). An ordered pair (A, B) is said to have the property
UC if the following condition holds:
For any sequences {xn} and {zn} in A and a sequence {yn} in B satisfying
d(xn, yn)→ d(A,B) and d(zn, yn)→ d(A,B), we have d(xn, zn)→ 0.

The following are some examples of pairs of nonempty subsets (A,B) satis-
fying the the property UC:
Example 2.2 ([32]).

a Every pair (A,B) of nonempty subsets of a metric space (X, d) with d(A,B) =
0.

b Every pair (A,B) of nonempty subsets of uniformly convex Banach space X
when A is convex.

c Every pair (A,B) of nonempty subsets of strictly convex Banach space when
A is convex and relatively compact and the closure of B is weakly compact.

Definition 2.3 ([32]). An ordered pair (A, B) is said to have the property
UC∗ if (A,B) has property UC and the following holds:
For any sequences {xn} and {zn} in A and a sequence {yn} in B, we have

d(zn, yn)→ d(A,B)
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For every ε > 0 there exists n0 ∈ N such that d(xm, yn)→ d(A,B)+ε for all
m > n ≥ n0 implies that there exists n1 ∈ N such that d(xm, zn)→ d(A,B) + ε
for all m > n ≥ n1.

Definition 2.4 ([14]). Let A and B be nonempty subsets of a metric space
(X, d) and T : A→ B a mapping. A point x ∈ A is said to be a best proximity
point of T if d(x, Tx) = d(A,B).

Eldred and Veeramani [14] extended Banach contraction principle to the case
of non-self mappings and proved the existence of a best proximity point.
Definition 2.5([14]) LetA andB be nonempty subsets of a metric space (X, d),
a map T : A∪B → A∪B such that T (A) ⊆ B and T (B) ⊆ A is a cyclic contrac-
tion if d(T (x), T (y)) ≤ k(d(x, y)) + (1− k)d(A,B), k ∈ [0, 1).

Bhaskar and Lakshmikanthan [16] gave the following definition and proved an
interesting generalization of Banach contraction principle.
Definition 2.6 ([16]). Let A be a nonempty subsets of a metric space X and
F : A× A→ A. A point (x, x′) ∈ A× A is called a coupled fixed point of F if
x = F (x, x′) and x′ = F (x′, x).

Sintunavarat and Kumam [32] introduced the coupled best proximity point as
follows:
Definition 2.7 ([32]). Let A and B be nonempty subset of a metric space X
and F : A×A→ B. A point (x, x′) ∈ A×A is called a coupled best proximity
point of F if d(x, F (x, x′)) = d(x′, F (x′, x)) = d(A,B).

To extend the coupled fixed point results to the case of nonself mappings, Sin-
tunavarat and Kumam [32] modified the concept of cyclic contraction maps as
follows :
Definition 2.8 ([32]). Let A and B be nonempty subset of a metric space X,
F : A × A → B and G : B × B → A. An ordered pair (F,G) is said to be a
cyclic contraction if there exists α ∈ [0, 12 ) such that

d(F (x, x′), G(y, y′)) ≤ α[d(x, y) + d(x′, y′)] + (1− 2α)d(A,B)

holds for any (x, x′) ∈ A×A and (y, y′) ∈ B ×B.

Geraghty [15] extended the concept of contraction mappings by replacing the
contractive constant with a function and proved the following fixed point theo-
rem:
Theorem 2.9 ([15]). Let (X, d) be a complete metric space and T : X → X
a map. If for any x, y ∈ X, we have

d(Tx, Ty) ≤ α(d(x, y))d(x, y),

where α : [0,∞) → [0, 1) is any mapping which satisfies lim
s→t+

supα(s) < 1 for

each t ∈ (0,∞). Then T has a fixed point.
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Recently, Amini-Harandi et al., ([4]) introduced the concept of a generalised
cyclic contraction for a pair of non self mappings as follows:
Definition 2.10 ([4]). Let A and B be nonempty subsets of a metric space
(X, d). A mapping T : A ∪ B → A ∪ B is a generalised cyclic contraction if
T (A) ⊆ B, T (B) ⊆ A and for any x ∈ A and y ∈ B, we have

d(Tx, Ty) ≤ α(d(x, y))d(x, y) + [1− α(d(x, y))d(A,B)],

where α : [d(A,B),∞)→ [0, 1) is any mapping which satisfies

lim
s→t+

supα(s) < 1

for each t ∈ [d(A,B),∞).
If in above definition, for each t ∈ [d(A,B),∞), we set α(t) = k, where

k ∈ [0, 1), then T is called a cyclic contraction.

Karapinar and Erhan [19] obtained best proximity point results employing
the concept of cyclic contraction analogues to Kannan [18], Chatterjea [10] and
Reich [30] contraction mappings.
We extend the above definition in the following way:
Definition 2.11. Let A and B be nonempty subset of a metric space X,
F : A × A → B and G : B × B → A. An ordered pair (F,G) is said to be a
cyclic generalised contraction map if for each (x, x′) ∈ A×A and (y, y′) ∈ B×B,
we have

d(F (x, x′), G(y, y′)) ≤ φ(d(x, y), d(x′, y′))[(d(x, y) + d(x′, y′))]

+(1− 2φ(d(x, y), d(x′, y′))d(A,B) (2.1)

where φ : [d(A,B),∞) × [d(A,B),∞) → [0, 12 ) is any mapping which satisfies
lim

(s,s′)→(t,t′ )
supφ(s, s′) < 1

2 for each (t, t
′
) ∈ [d(A,B),∞)× [d(A,B),∞).

If φ(t, t′) = k for each (t, t′) ∈ [d(A,B),∞)× [d(A,B),∞) where k ∈ [0, 12 ), then
(F,G) is a cyclic contraction.

Olaleru and Olisama [26] recently defined and proved results on coupled best
proximity points of Kannan type, Chatterjea type, Reich type and Hardy-Rogers
type as an extension of the results in [19].
Definition 2.12. Let A and B be nonempty subset of a metric space (X, d),
F : A×A→ B and G : B ×B → A. An ordered pair (F,G) is said to be:

(K) Kannan type cyclic contraction if there exists α ∈ [0, 12 ) such that

d(F (x, x′), G(y, y′)) ≤ α[d(x, F (x, x′)) + d(y,G(y, y′))] + (1− 2α)d(A,B)

holds for all (x, x′) ∈ A×A and (y, y′) ∈ B ×B.
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(C) Chatterjea type cyclic contraction if there exists α ∈ [0, 12 ) such that

d(F (x, x′), G(y, y′)) ≤ α[d(y, F (x, x′)) + d(x,G(y, y′))] + (1− 2α)d(A,B)

holds for all (x, x′) ∈ A×A and (y, y′) ∈ B ×B.

(R) Reich type cyclic contraction if there exists α ∈ [0, 13 ) such that

d(F (x, x′), G(y, y′)) ≤ α[d(x, y) + d(x, F (x, x′)) + d(y,G(y, y′))]

+(1− 3α)d(A,B)

holds for all (x, x′) ∈ A×A and (y, y′) ∈ B ×B.

(HR) Hardy- Rogers type cyclic contraction if there exists α ∈ [0, 16 ) and

d(F (x, x′), G(y, y′)) ≤ α[d(x, y) + d(x′, y′) + d(x, F (x, x′)) + d(y,G(y, y′))

+d(x,G(y, y′)) + d(y, F (x, x′))]

+(1− 6α)d(A,B) (2.2)

holds for all (x, x′) ∈ A×A and (y, y′) ∈ B ×B.
Suppose,

Ω = {ω : [d(A,B),∞)× [d(A,B),∞)→ [0,
1

6
),

lim
(s,s′)→(t,t′)

supω(s, s′) <
1

6

for each (t, t′) ∈ [d(A,B),∞)× [d(A,B),∞) }

To extend Definition 2.12(HR) and to unify the comparable results in
([4,11,19, 22, 31]), we introduce a generalised Hardy-Rogers cyclic (ω)-
contraction as follows:
Definition 2.13. Let A and B be nonempty subsets of a metric space
X, F : A × A → B and G : B × B → A. A pair (F,G) is said to be
a generalised Hardy- Rogers cyclic (ω)-contraction if there exists ω ∈ Ω
such that

d(F (x, x′), G(y, y′)) ≤ ω(d(x, y), d(x′, y′))[d(x, y) + d(x′, y′) + d(x, F (x, x′))

+d(y,G(y, y′)) + d(x,G(y, y′)) + d(y, F (x, x′))]

+[1− 6ω(d(x, y), d(x′, y′))]d(A,B) (2.3)

holds for any (x, x′) ∈ A×A and (y, y′) ∈ B ×B
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If ω(d, d′) = α, then (F,G) is a Hardy-Rogers type cyclic contraction as
in Definition 2.12(HR).

The following example shows that the cyclic Hardy-Rogers type contrac-
tion map (HR) may have a best proximity point but the same is not true
for the generalised Hardy-Rogers type cyclic (ω)-contraction map.

Example 2.14. Let X = [1,∞) equipped with a usual metric, A = [0, 2]
and B = [1,−2]. Obviously, d(A,B) = 1. Define mappings F : A×A→ B
and G : B × B → A by F (x, x′) = y and G(y, y′) = x, respectively. Let
ω : [d(A,B),∞) × [d(A,B),∞) → [0, 16 ) be defined by ω(t, t′) = t

1+6t . If
we take d(x, y) = d(x′, y′) and ω(d(x, y), d(x′, y′)) = 1

7 in (2.3), we obtain
that

d(x, y) ≤ 1

7
[4d(x, y)] +

1

7
d(A,B)

=
1

3
d(A,B) < d(A,B),

a contradiction and hence (F,G) has no best proximity point.
Now a natural question arises that under what conditions on (F,G) or
ω, the existence of best proximity point of a pair (F,G) is guaranteed.
Before we give answer to this question, we present the definition of a b-
metric space as follows.
Definition 2.15([6]). Let X be a non empty set and s ≥ 1 be a given
real number. A map d : X × X → R is said to be a b-metric if for any
x, y, z ∈ X, the following conditions are satisfied:
(i) d(x, y) > 0 with x 6= y and d(x, y) = 0 if and only if x = y.
(ii) d(x, y) = d(y, x).
(iii) d(x, y) ≤ s[d(x, z) + d(z, y)].

The pair (X, d) is called a b-metric space.
If we take s = 1, then we have a definition of a metric space.

The following example shows that a b-metric is a generalisation of a metric.
Example 2.16. Consider X = R2. Define a mapping d : R2 × R2 → R by
d(x, y) = | x1−y1| 2 where x = (x1, x1), y = (y1, y1). Then (X, d) is a b-metric
space but not a metric space. Indeed, for x, y, z ∈ R2. Set
a = x− z, b = z − y so x− y = a+ b. Using the inequality

(u+ v)2 ≤ (2 max{u, v})2 ≤ 22(u2 + v2),

we have,

| x− y| 2 = | a+ b| 2 ≤ (| a| + | b| )2 = 4(| x− z| 2 + | x− y| 2)

for any a, b > 0. That is,

d(x, y) ≤ s[d(x, z) + d(z, y)]
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with s > 1. On the other hand, by inequality, (u+v)2 > u2 +v2 for all a, b > 0,
we get that

| x− y| 2 = | a+ b| 2 = (a+ b)2 > a2 + b2

= (x− z)2 + (z − y)2 = | x− z| 2 + | x− y| 2

for all x > z > y. Therefore (iii) in (2.4) is not satisfied when s = 1, and
hence (X, d) is not a metric space.

Now we state and prove the following lemma to justify the main result.
Lemma 2.17. Let A and B be nonempty subsets of a metric space (X, d) and
(F,G) generalised Hardy- Rogers cyclic (ω)-contraction. If for (x0, y0) ∈ A×A,
we define {

x2n+1 = F (x2n, y2n)
y2n+1 = F (y2n, x2n)

and{
x2n+2 = G(x2n+1, y2n+1)
y2n+2 = G(y2n+1, x2n+1)

where n ∈ N∪{0}, then d(x2n, x2n+1)→ d(A,B) and d(y2n, y2n+1)→ d(A,B).

Proof. For each n ∈ N, we have

d(x2n, x2n+1)

= d(F (x2n, y2n), G(x2n−1, y2n−1)

≤ ω(d(x2n, x2n−1), d(y2n, y2n−1))[d(x2n, x2n−1)

+d(y2n, y2n−1)) + d(x2n, F (x2n, y2n))

+d(x2n−1, G(x2n−1, y2n−1)) + d(x2n, G(x2n−1, y2n−1))

+d(x2n−1, F (x2n, y2n))] + [1− 6ω(d(x2n, x2n−1), d(y2n, y2n−1))]d(A,B).

and

d(y2n, y2n+1) = d(F (y2n, z2n), G(y2n−1, z2n−1))

≤ ω(d(y2n, y2n−1), d(z2n, z2n−1))[d(y2n, y2n−1)

+d(z2n, z2n−1)) + d(y2n, F (y2n, z2n))

+d(y2n−1, G(y2n−1, z2n−1)) + d(y2n, G(y2n−1, z2n−1))

+d(y2n−1, F (y2n, z2n))] + [1− 6ω(d(y2n, y2n−1), d(z2n, z2n−1))]d(A,B).

If we put d2n = d(x2n, x2n+1) + d(y2n, y2n+1), ω(d(x2n, x2n−1), d(y2n, y2n−1)) =

8
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ω(x2n, y2n) and ω(xn, yn) + ω(yn, zn) = ηn, then taking the sum of above in-
equalities above, we obtain that

d2n ≤ (ω(x2n, y2n) + ω(y2n, z2n))[d2n−1 + d2n−1 + d2n + d2n−1

+[2− 6(ω(x2n, y2n) + ω(y2n, z2n))]d(A,B)

= 3η2nd2n−1 + η2nd2n + 2(1− 3η2n)d(A,B).

and

d2n−1 ≤ (ω(x2n, y2n) + ω(y2n, z2n))[d2n−2 + d2n−2 + d2n−1 + d2n−2]

+[2− 6(ω(x2n, y2n) + ω(y2n, z2n))]d(A,B)

= 3η2nd2n−2 + η2nd2n−1 + 2(1− 3η2n)d(A,B)

=
3

1− η2n
η2nd2n−2 +

2

1− η2n
(1− 3η2n)d(A,B).

Now

d2n ≤ 3η2n(
3

1− η2n
η2nd2n−2 +

2

1− η2n
(1− 3η2n)d(A,B)) + η2nd2n

+2(1− 3η2n)d(A,B)

≤ 3η2n(
3

(1− η2n)2
η2nd2n−2 +

2

(1− η2n)2
(1− 3η2n)d(A,B))

+
2

1− η2n
(1− 3η2n)d(A,B)

≤ 3η2n[η2nd2n−2 + 2(1− 3η2n)d(A,B) + 6(1− 3η2n)d(A,B)]

≤ 3η22nd2n−2 + 6(1− 3η2n)(1 + 3η2n)d(A,B)

≤ η22nd2n−2 + 2(1− η22n)d(A,B)

That is,
d2n ≤ η22nd2n−2 + 2(1− η22n)d(A,B).

As {ηn} is a sequence in [0, 13 ),

d2n ≤ (
1

3
)2d2n−2 + 2(1− (

1

3
)2)d(A,B).

Continuing this way, we have

d2n ≤ (
1

3
)nd0 + 2(1−(

1

3
)n)d(A,B).

Note that, d(A,B) ≤ d(x2n,xn+1) and d(A,B) ≤ d(y2n, yn+1) ∀n. Indeed,
x2n, y2n ∈ A and x2n+1, y2n+1 ∈ B. Thus, we have 2d(A,B) ≤ d2n and hence

(
1

3
)nd0 + 2(1−(

1

3
)n)d(A,B) ≥ d0 ≥ 2d(A,B).
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On taking limit as n → ∞, we obtain that lim
n→∞

d2n = 2d(A,B), that is,
lim

n→∞
[d(x2n, x2n+1) + d(y2n, y2n+1)] = 2d(A,B).

Since, d(A,B) ≤ d(x2n, x2n+1) and d(A,B) ≤ d(y2n, y2n+1)) and hence

d(x2n, x2n+1)→ d(A,B) and d(y2n, y2n+1)→ d(A,B).

3 Coupled Best Proximity Point Results
We start with the following result.
Theorem 3.1. Let A and B be nonempty closed subsets of a complete b-metric
space X, (F,G) a generalized Hardy-Rogers type cyclic ω-contraction pair. Sup-
pose that (A,B) and (B,A) satisfy the property UC. If for (x0, x

′
0) ∈ A × A,

we define

x2n+1 = F (x2n, x
′
2n) , x′2n+1 = F (x′2n, x2n),

x2n+2 = G(x2n+1, x
′
2n+1) and x′2n+2 = G(x′2n+1, x2n+1)

for all n ∈ N ∪ {0}. Then x2n → x, x′2n → x′, x2n−1 → y and x′2n−1 → y′

as n → ∞. Moreover, (x, x′) ∈ A × A and (y, y′) ∈ B × B are coupled best
proximity points of F and G, respectively.

Proof. If d(A,B) = 0, then we obtain the coupled fixed points of F and
G in the same way as in [2] and the result follows. Assume that d(A,B) > 0.
Now by (2.3), we have

d(x2n+1, x2n) = d(F (x2n, x
′
2n), G(x2n−1, x

′
2n−1))

≤ ω(d(x2n, x2n−1), d(x′2n, x
′
2n−1))[d(x2n, x2n−1)

+d(x′2n, x
′
2n−1) + d(x2n, F (x2n, x

′
2n))

+d(x2n−1, G(x2n−1, x
′
2n−1))

+d(x2n, G(x2n−1, x
′
2n−1)) + d(x2n−1, F (x2n, x

′
2n))]

+[1− 6ω(d(x2n, x2n−1), d(x′2n, x
′
2n−1))]d(A,B) (3.1)

for each n ∈ N . Since (A,B) has property UC, d(x2n, x2n+2)→ 0 and d(x′2n, x
′
2n+2)→

0.Also, (B,A) satisfies property UC, d(x2n−1, x2n+1)→ 0 and d(x′2n−1, x
′
2n+1)→

0. Note that

ω(d(x2n, x2n−1), d(x′2n, x
′
2n−1)) <

1

6
, d(x2n, x2n−1) ≥ d(A,B),

10
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and

ω(d(x2n, x2n−1), d(x′2n, x
′
2n−1))[d(x2n, x2n−1) + d(x′2n, x

′
2n−1)

+d(x2n, F (x2n, x
′
2n)) + d(x2n−1, G(x2n−1, x

′
2n−1)) + d(x2n, G(x2n−1, x

′
2n−1))

+d(x2n−1, F (x2n, x
′
2n))] + [1− 6ω(d(x2n, x2n−1), d(x′2n, x

′
2n−1))]d(A,B)

<
1

6
[2d(x2n, x2n−1) + d(x′2n, x

′
2n−1) + d(x2n, x2n+1)]. (3.2)

From (3.1) and (3.2), we have

d(x2n+1, x2n) ≤ 1

6
[2d(x2n, x2n−1) + d(x′2n, x

′
2n−1) + d(x2n, x2n+1)].

Thus,

d(x2n+1, x2n) ≤ 1

5
[2d(x2n, x2n−1) + d(x′2n, x

′
2n−1)]

< d(x2n, x2n−1) + d(x′2n, x
′
2n−1) (3.3)

for each n ∈ N. We conclude that

d(xn+1, xn) ≤ d(xn−1, xn) + d(x′n−1, x
′
n)

for each n ∈ N . Thus {d(xn+1, xn)} is a non increasing sequence of posi-
tive real numbers. Consequently, there exist some real number t0 ≥ d(A,B)
such that {d(xn+1, xn)} converges to t0. Now we claim that t0 = d(A,B).
On the contrary that t0 > d(A,B). Since lim sup(s,s′)→(t0,t′0)

ω(s, s′) < 1
6 and

ω(t0, t
′
0) < 1

6 , there exists t ∈ (0, 16 ) and ε > 0 such that ω(s, s′) ≤ t for all
(s, s′) ∈ [t0, to + ε]× [t′0, t

′
0 + ε′]. If N0 ∈ N is such that t0 ≤ d(xn, xn+1) ≤ t0 + ε

for all n ≥ N0. Then, we have ω(d(xn, xn+1), d(x′n, x
′
n+1)) ≤ t for n ≥ N0. From

(3.1), we get that

d(x2n+1, x2n)

≤ ω(d(x2n, x2n−1), d(x′2n, x
′
2n−1))[2d(x2n, x2n−1) + d(x′2n, x

′
2n−1)

+d(x2n, x2n+1)] + d(A,B)− 6ω(d(x2n, x2n−1), d(x′2n, x
′
2n−1))d(A,B)

≤ t[2d(x2n, x2n−1) + d(x′2n, x
′
2n−1) + d(x2n, x2n+1)− 6d(A,B)] + d(A,B).

Thus,

d(x2n+1, x2n) ≤ t

1− t
[2d(x2n, x2n−1) + d(x′2n, x

′
2n−1)] +

(1− 6t)

1− t
d(A,B)

≤ t

2
d(x2n, x2n−1) + d(x′2n, x

′
2n−1) + (1− t)d(A,B)

11



International Journal of Mathematical Analysis and
Optimization: Theory and Applications

Vol.1, pp. 33-54

for each n ≥ N0. Thus

d(xn, xn+1) ≤ t

2
d(xn, xn−1) + d(x′n, x

′
n−1) + (1− t)d(A,B), n ≥ 2N0. (3.4)

On taking limit as n→∞ on both sides of (3.4), we have

t0 = lim
n→∞

d(xn, xn+1) ≤ d(A,B),

a contradiction. Then it follows that

lim
n→∞

d(xn, xn+1) = d(A,B).

That is, lim
n→∞

d(xn, F (xn, x
′
n)) = d(A,B). Similarly, lim

n→∞
d(yn, G(yn, y

′
n)) =

d(A,B). We now show that for every ε > 0, there exists N such that

d(x2m, x2n+1) ≤ ε+ d(A,B) for all m > n ≥ N. (3.5)

Assume on contrary that there exists ε1 > 0 such that for all k ∈ N , there exists
mk > nk ≥ k such that

d(x2mk, x2nk+1) > ε1 + d(A,B) (3.6)

and
d(x2(mk−1), x2nk+1) < ε1 + d(A,B). (3.7)

It follows from (3.6) and (3.7) that

d(A,B) + ε1 ≤ d(x2mk, x2nk+1)

≤ s[d(x2mk, x2(mk−1)) + d(x2(mk−1), x2nk+1)]

< s[d(x2mk, x2(mk−1)) + d(A,B) + ε1].

On taking limit as k →∞, we have

lim
k→∞

d(x2mk, x2nk+1) = s(ε1 + d(A,B)), s ≥ 1. (3.8)

Let r0 = d(A,B) + ε1. As lim sup(s,s′)→(r0,r′0)
ω(s, s′) < 1

6 and ω(r0, r
′
0) < 1

6 ,
there exists t′ ∈ (0, 16 ) and ε > 0 such that ω(s, s′) ≤ t′
for all (s, s′) ∈ [r0, r0 + ε] × [r′0, r

′
o + ε′]. Taking N0 ∈ N such that r0 ≤

d(x2mk, x2nk+1) ≤ r0 + ε for all k ≥ K0. Thus

ω(d(x2mk, x2nk+1), d(x′2mk, x
′
2nk+1)) ≤ t′

12
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for k ≥ K0. From (3.1) we get that

d(x2mk+1, x2nk+2) ≤ t′(d(x2mk, x2nk+1) + d(x′2mk, x
′
2nk+1) + (1− t′)d(A,B),

(3.9)

k ≥ K0.
By (3.3) and (3.9), we have
d(x2mk, x2nk+1) ≤ s[d(x2mk, x2mk+2) + d(x2mk+2, x2nk+3) + d(x2nk+3, x2nk+1)]
≤ s[d(x2mk, x2mk+2) + d(x2mk+1, x2nk+2) + d(x2nk+3, x2nk+1)]
≤ s[d(x2mk, x2mk+2) + d(x2nk+3, x2nk+1) + t′(d(x2mk, x2nk+1)

+d(x′2mk, x
′
2nk+1) + (1− t′)d(A,B)], (3.10)

for all k ≥ K0. It follows from (3.8) and (3.10) that

s(d(A,B)+ε1) < s2t′(d(A,B)+ε1)+sd(A,B)−s2t′d(A,B) = s(d(A,B)+ t′ε1),

a contradiction. So (3.5) holds.
Now we show that {x2n}, {x′2n}, {x2n+1} and {x′2n+1} are Cauchy sequences.

To prove {x2n} is a Cauchy sequence; Assume on contrary that there exists
ε2 > 0, such that for each k ≥ 1, there exists jk > lk ≥ k such that

d(x2jk, x2lk) ≥ ε2. (3.11)

Using Lemma (2.17) and (3.9), we have

d(x2mk, x2nk+1) ≤ s[d(x2mk, x2nk) + d(x2nk, x2nk+1)] and
s(d(A,B) + ε) ≤ sd(A,B),

a contradiction. Hence {x2n} is a Cauchy sequence. Similarly, {x′2n}, {x2n+1}
and {x′2n+1} are Cauchy sequences.
Since (X, d) is a complete b-metric space, there exists x ∈ X such that x2n → x.
Similarly, there exists x′ ∈ X such that x′2n → x′ and y, y′ ∈ X such that
x2n+1 → y and x′2n+1 → y′ respectively.
Now we show that the coupled best proximity point (x, x′) ∈ A × A is unique.
If there is another fixed point a ∈ A, then G(a, a′) = a such that x 6= a.

d(x, a) = d(F (x, x′), G(a, a′))

≤ ω(d(x, a), d(x′, a′)))[d(x, a) + d(x′, a′)

+d(x, F (x, x′)) + d(a,G(a, a′))

+d(x,G(a, a′)) + d(a, F (x, x′))

+[1− 6ω(d(x, a), d(x′, a′))]d(A,B)

≤ ω(d(x, a), d(x′, a′)))[d(x, a) + d(x′, a′) + d(x, a) + d(a, x)

+[1− 6ω(d(x, a), d(x′, a′))]d(A,B).
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Since ω(d(x, a), d(x′, a′)) ≤ t < 1
6 , take x = x′ and a = a′ to obtain that

d(x, a) ≤ t(4d(x, a)) + (1− 6t)d(A,B) and

d(x, a) ≤ 1− 6t

1− 4t
d(A,B) < d(A,B).

Hence, x = a. Similarly, x′ = a′ and (x, x′) ∈ A × A is a unique coupled best
proximity point of F . Similarly, (y, y′) ∈ B ×B is a unique coupled best prox-
imity point of G.

The following example shows that in the statement of Theorem 3.1, the condi-
tion lim sup(s,s′)→(t,t′)ω(s, s′) < 1

6 is necessary.
Example 3.2. Let F : A × A → B and G : B × B → A be defined
by F (x, x′) = 3x+x′

8 and G(y, y′) = 3y+y′

8 for each x ∈ (0,∞), where ω :
[d(A,B),∞) × [d(A,B),∞) → [0, 16 ) satisfies lim sup

(s,s′)→(t,t′)

ω(s, s′) < 1
6 for

each (t, t′) ∈ [d(A,B),∞)× [d(A,B),∞). Note that

d(F (x, x′), G(y, y′)) = | 3x+ x′

8
− (3y + y′)

8
|

= | x+ x+ x+ x′ − y − y − y − y′

8
|

≤ 1

8
| x− y| + | x− y| + | x− y| + | x′ − y′| .

Taking x = G(y, y′) and y = F (x, x′), we have

d(F (x, x′), G(y, y′)) = | 3x+ x′

8
− (3y + y′)

8
|

= | x+ x+ x+ x′ − y − y − y − y′

8
|

≤ 1

8
| x− y| + | x− y| + | x′ − y′|+ | x− F (x, x′)|

+| y −G(y, y′)| + | x−G(y, y′)|

+| y − F (x, x′)|+ (1− 1

8
(8))d(A,B) .

If 18 ≤ ω(d(x, y), d(x′, y′)) < 1
6 , then

d(F (x, x′), G(y, y′)) ≤ ω(d(x, y), d(x′, y′))[| x− y| + | x′ − y′|
+| x− F (x, x′)| + | y −G(y, y)′| + | x−G(y, y′)|
+| y − F (x, x′)| ] + [1− 6ω(d(x, y), d(x′, y′))]d(A,B)

shows that (F,G) is a generalised Hardy-Rogers type cyclic ω-contraction. If

14
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the condition lim sup
(s,s′)→(t,t′)

ω(s, s′) < 1
6 is missing, then

d(F (x, x′), G(y, y′)) ≤ 1

8
[| x− y| + | x′ − y′| + | x− F (x, x′)|

+| y −G(y, y′)| + | x−G(y, y′)|
+| y − F (x, x′)| ]

shows that (F,G) is not a generalised Hardy-Rogers type cyclic
ω-contraction. Also, (F,G) has no coupled best proximity point.

We now give the definition of cyclic Ciric type quasi contraction mapping.
Definition 3.3. Let A and B be nonempty subset of a metric space (X, d),
F : A × A → B and G : B × B → A. An ordered pair (F,G) is said to
be a cyclic Ciric type quasi contraction pair if there exists a mapping ω :
[d(A,B),∞) × [d(A,B),∞) → [0, 1) with lim(s,s′)→(t,t′) supω(s, s′) < 1 such
that

d(F (x, x′), G(y, y′))

≤ ω(d(x, y), d(x′, y′))(M(x, y)) + (1− ω(d(x, y), d(x′, y′)))d(A,B)

holds for all (x, x′) ∈ A×A and (y, y′) ∈ B ×B, where

M(x, y) = max{d(x, y), d(x′, y′), d(x, F (x, x′)), d(y,G(y, y′)),

d(y, F (x, x′)), d(x,G(y, y′))}.

Theorem 3.4. Let A and B be nonempty closed subsets of a complete
b−metric space X, (F,G) a generalized Ciric quasi cyclic ω-contraction pair.
Suppose that (A,B) and (B,A) satisfy the property UC. If for (x0, x

′
0) ∈ A×A,

we define

x2n+1 = F (x2n, x
′
2n) , x′2n+1 = F (x′2n, x2n),

x2n+2 = G(x2n+1, x
′
2n+1) and x′2n+2 = G(x′2n+1, x2n+1)

for all n ∈ N ∪ {0}. Then x2n → x, x′2n → x′, x2n−1 → y and x′2n−1 → y′

as n → ∞. Moreover, (x, x′) ∈ A × A and (y, y′) ∈ B × B are coupled best
proximity points of F and G, respectively.
Proof. If d(A,B) = 0, then we obtain the coupled fixed points of F and G in
the same way as in [21]. Assume that d(A,B) > 0. Now
d(x2n+1, x2n) = d(F (x2n, x

′
2n), G(x2n−1, x

′
2n−1))

≤ ω(d(x2n, x2n−1), d(x′2n, x
′
2n−1))[d(x2n, x2n−1), d(x′2n, x

′
2n−1),

d(x2n, F (x2n, x
′
2n)), d(x2n−1, G(x2n−1, x

′
2n−1)),
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d(x2n, G(x2n−1, x
′
2n−1)), d(x2n−1, F (x2n, x

′
2n))]

+(1− ω(d(x2n, x2n−1), d(x′2n, x
′
2n−1)))d(A,B)) (3.12)

for each n ∈ N . Since (A,B) has a property UC, d(x2n, x2n+2) → 0 and
d(x′2n, x

′
2n+2)→ 0. Also, (B,A) has a property UC, we have d(x2n−1, x2n+1)→

0 and d(x′2n−1, x
′
2n+1) → 0. Using ω(d(x2n, x2n−1), d(x′2n, x

′
2n−1)) < 1, and

d(x2n, x2n−1) ≥ d(A,B), we have
ω(d(x2n, x2n−1), d(x′2n, x

′
2n−1)) max[d(x2n, x2n−1), d(x′2n, x

′
2n−1),

d(x2n, F (x2n, x
′
2n)), d(x2n−1, G(x2n−1, x

′
2n−1)), d(x2n, G(x2n−1, x

′
2n−1)),

d(x2n−1, F (x2n, x
′
2n))] + (1− ω(d(x2n, x2n−1), d(x′2n, x

′
2n−1)))d(A,B)

≤ 1

6
max[d(x2n, x2n−1), d(x′2n, x

′
2n−1) ≤ d(x2n, x2n−1) (3.13)

for each n ∈ N . From (3.12) and (3.13), we have

d(x2n+1, x2n) ≤ d(x2n, x2n−1)

for each n ∈ N. Also, we conclude that d(xn+1, xn) ≤ d(xn−1, xn) for each
n ∈ N . Thus {d(xn+1, xn)} is a non increasing sequence of positive real num-
bers. Consequently, there exist some real number t0 ≥ d(A,B) such that
{d(xn+1, xn)} converges to t0 . On the contrary that t0 > d(A,B). Since
lim sup(s,s′)→(t0,t′0)

ω(s, s′) < 1 and ω(t0, t
′
0) < 1, there exists t ∈ (0, 1) and ε > 0

such that ω(s, s′) ≤ t for all (s, s′) ∈ [t0, to+ε]×[t′0, t
′
o+ε′]. IfN0 ∈ N is such that

t0 ≤ d(xn, xn+1) ≤ t0 + ε for all n ≥ N0. Then ω(d(xn, xn+1), d(x′n, x
′
n+1)) ≤ t

for n ≥ N0. Thus

d(x2n+1, x2n) ≤ ω(d(x2n, x2n−1), d(x′2n, x
′
2n−1)) max[d(x2n, x2n−1), d(x′2n, x

′
2n−1)]

+(1− ω(d(x2n, x2n−1), d(x′2n, x
′
2n−1))d(A,B)

≤ t[d(x2n, x2n−1)− d(A,B)] + d(A,B)

On taking limit as n → ∞ on both sides of above inequality, we have t0 =
lim

n→∞
d(xn, xn+1) ≤ d(A,B), a contradiction. Then it follows that

lim
n→∞

d(xn, xn+1) = d(A,B).

That is, lim
n→∞

d(xn, F (xn, x
′
n)) = d(A,B). Similarly, lim

n→∞
d(yn, G(yn, y

′
n)) =

d(A,B). Following arguments similar to those in the proof of Theorem (3.1), we
obtain that {x2n}, {x′2n}, {x2n+1} and {x′2n+1} are Cauchy sequences.
Since (X, d) is a complete b-metric space, there exists x ∈ X such that x2n → x.
Similarly, there exists x′ ∈ X such that x′2n → x′ and y, y′ ∈ X such that
x2n+1 → y and x′2n+1 → y′ respectively.
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Now we show that the coupled best proximity point (x, x′) ∈ A × A is unique.
If there is another fixed point a ∈ A, then G(a, a′) = a such that x 6= a. Now

d(x, a) = d(F (x, x′), G(a, a′))

≤ ω(d(x, a), d(x′, a′))) max[d(x, a), d(x′, a′), d(x, F (x, x′)), d(a,G(a, a′)),

d(x,G(a, a′)) + d(a, F (x, x′)) + [1− 6ω(d(x, a), d(x′, a′))]d(A,B)

≤ ω(d(x, a), d(x′, a′)))[d(x, a) + d(x′, a′) + [1− 6ω(d(x, a), d(x′, a′))]d(A,B).

Since ω(d(x, a), d(x′, a′)) ≤ t < 1
6 , take x = x′ and a = a′ to obtain that

d(x, a) ≤ t(d(x, a)) + (1− 6t)d(A,B) and

d(x, a) ≤ 1− 6t

1− t
d(A,B) < d(A,B).

Hence, x = a and x′ = a′. Therefore (x, x′) ∈ A × A is a unique coupled best
proximity point of F . Similarly, (y, y′) ∈ B ×B is a unique coupled best prox-
imity point of G.

Corollary 3.5([32]). Let A and B be nonempty closed subsets of a com-
plete metric space (X, d). If mappings F : A × A → B, and G : B × B → A
satisfy

d(F (x, x′), G(y, y′)) ≤ k

2
[d(x, y) + d(x′, y′)] + (1− k)d(A,B)

for all (x, x′) ∈ A×A and (y, y′) ∈ B×B. Then (p, q) ∈ A×A and (p′, q′) ∈ B×B
are unique coupled best proximity points of F and G, respectively.
Proof. Take, F = G, ω(d(x, y), d(x′, y′)) = k where

d(x, F (x, x′)) = d(y,G(y, y′)) and F (x, x′) = G(y, y′).

Since b-metric space is the generalisation of a metric space. The result follows
from Theorem 3.1.

Corollary 3.6([29]). Let A and B be nonempty closed subsets of a complete
metric space (X, d), and T : A ∪ B → A ∪ B. If T is any one of the following
types:
(1) Kannan type cyclic contraction
(2) Chatterjea type cyclic contraction
(3) Reich type cyclic contraction and
(4) Ciric type cyclic contraction, then T has a unique best proximity point.

Corollary 3.7. Let (X, d) be a complete metric space and T : X → X. If
for any x, y ∈ X, we have

d(Tx, Ty) ≤ α(d(x, y))d(x, y)

where α : [0,∞) → [0, 1) satisfies lim sups→t+ α(s) < 1 for each t ∈ (0,∞).
Then T has a fixed point.
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Corollary 3.8([4]). Let A and B be nonempty closed subsets of a complete
metric space (X, d), and T : A∪B → A∪B a generalised contraction map, that
is, for any x, y ∈ X, we have

d(Tx, Ty) ≤ α(d(x, y))d(x, y) + (1− α)d(A,B).

Then T has a best proximity point.
Proof. The proof follows from Theorem 3.1 if we take
d(x′, y′) = d(x, F (x, x′)) = d(y,G(y, y′)) = d(x,G(y, y′)) = d(y, F (x, x′))
= 0.

Corollary 3.9([34]). Let (X,d) be a complete metric space and T:X→ X. If
for any x, y ∈ X, with x 6= y, we have

d(Tx, Ty) < max[d(x, y),
d(x, T (x)) + d(y, T (y))

2
,
d(x, T (y), d(y, T (x))

2
].

Then T has a unique fixed point.

4 Application
We give the following application of the main result:
Let A,B be nonempty subsets of X, X = L2 ([0, 1]), a space of integrable
functions, where

‖f‖ = [

∫
f2(t)dt]

1
2 , and d(f, g) = ‖f − g‖

for f, g ∈ X. Let

A = {f ∈ X : −2 ≤ f(t) ≤ −1}, and B = {g ∈ X : 2 ≤ g(t) ≤ 3}.

Clearly, d(A,B) = inff∈A,g∈B [
∫ 1

0
(f − g)2(t)dt]

1
2 = 3. Let

√
3 ≤ s ≤ 12

√
3 + 1

3

and ω(t, t′) = t
√
3

18 , where (t, t′) ∈ (d(A,B),∞) × (d(A,B),∞). Define F :
A×A→ B and G : B ×B → A by

F (f, u) =
t

18
[−2sf(t) + f(t)− su(t)] + 1 and (4.1)

G(g, v) =
t

18
[−g(t)− sv(t)− sG(g, v) +G(g, v)]− 1 (4.2)
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Note that

d(F (f, u), G(g, v)) = ‖F (f, u)−G(g, v)‖

= ‖ t
18

[−2sf(t) + f(t)− su(t)]− t

18
[−sg(t)− sv(t)

−sG(g, v) +G(g, v)] + 2‖

= ‖ t
18

[sf(t)− sg(t) + su(t)− sv(t)

+sf(t)− sG(g, v) + f(t)−G(g, v)] + 2‖

≤ 1

18
‖t‖[s‖f − g‖+ s‖u− v‖+ s‖f −G(g, v)‖+ s‖f − F (f, u)‖

+s‖F (f, u)− g‖+ s‖g −G(g, v)‖] + 2

≤ s

18
‖t‖[‖f − g‖+ ‖u− v‖+ ‖f −G(g, v)‖+ ‖f − F (f, u)‖

+‖F (f, u)− g‖+ ‖g −G(g, v)‖] + 2.

Thus,

d(F (f, u), G(g, v)) ≤ s

18
[d(f, g) + d(u, v) + d(f,G(g, v))

+d(f, F (f, u) + d(F (f, u), g) + d(g,G(g, v))][

∫ 1

0

(t2dt)
1
2 ] + 2.

Also, ω(d(f, g), d(u, v) = 1
18 , where ‖t‖ = 1√

3 and s =
√

3, we have

d(F (f, α), G(g, u)) ≤ ω(d(f, g), d(u, v))[d(f, g) + d(u, v) + d(f,G(g, v)) + d(f, F (f, u)

+d(F (f, u), g) + d(g,G(g, v))] + (1− 6ω(d(f, g), d(u, v)))d(A,B).

Hence, (F,G) is a Hardy-Rogers type cyclic ω-contraction.

Now, we show that an initial value problem:
dy

dt
= t

18 [−2sy+y−sz)]+1, y(0) = 0

has a unique solution valid for all x ∈ [0, 1]. That is, there is one and only func-
tion f : [0, 1]→ R with the property that f ′(t) = t

18 [−2sf(t)+f(t)−su(t))]+1
for all t ∈ [0, 1] and f(0) = 0. Define F : Lp × Lp → R by F (f, u) = 2, for
s = 6

√
3+ 1

3 , f = −1 and u = −1 in (4.1). Clearly, F has a unique coupled best
proximity point (−1,−1). So d(f, F (f, u)) = d(u, F (u, f)) = d(A,B) solve the
initial value problem under consideration if and only if (−1,−1) is the coupled
best proximity pair of F . Similarly, (−1,−1) is the coupled best proximity pair
of G. Since, (F,G) is a Hardy-Rogers cyclic ω-contraction, (F,G) has only one
coupled best proximity point which is (−1,−1).
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Open Question.
Some authors have shown that results on coupled fixed point results can be
retrieved from known results on fixed point and vice-versa (see[31]). Can we
deduce results on coupled best proximity point from known results on best prox-
imity points and vice-versa?
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