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Abstract

A theoretical approach of B-series is used to analyze the convergence and order of convergence
of a newly introduced class of three-step hybrid methods for integrating systems of special
second order ordinary differential equations (ODEs). A straightforward technique that gen-
erates algebraic order conditions, which is easier to handle than the well known Taylor series
technique, is presented. The validity of the order conditions is tested by deriving a fourth order
method and compared with existing methods in the literature.
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1 Introduction
The problem of interest in this paper is

y′′(x) = f(x, y(x)), y(x0) = y0, y′(x0) = y′0. (1.1)

It occurs in a number of areas in applied sciences including engineering, celestial mechanics, astro-
physics, chemistry, physics, to mention a few. See [1,2]. Its importance generated a lot of interests
on its solution techniques in the last couple of decades, which resulted to a substantial number of
literature on the schemes/methods for obtaining its solutions directly or otherwise [1–23] and the
references therein. One of the schemes that received the most attention lately is the class of hybrid
methods [5]. Earliest of the methods, as noted by Coleman [5], are those due to De Vogelaere [24],
Cash [25], Chawla [26], Coleman [27], Chawla et al. [28], Simos [29] and Tsitouras [30]. Order
conditions for such methods are usually derived by ad hoc expansions in Taylor series which are
specific to the particular method or class of methods under study. The narrative has changed by
the pioneering work of Coleman [5] that offered an alternative approach that is more comprehen-
sive and general for deriving the algebraic order conditions of two-step hybrid methods for solving
(1.1) directly. This approach is very much similar to those of Runge-Kutta (RK) and Runge-Kutta
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Nytröm (RKN) methods. With this approach in place, two-step hybrid methods of higher order
could be obtained with relative ease, as the ambiguity associated with derivation of order conditions
of higher order methods using Taylor series approach is no longer there. It is important to mention
that two-step hybrid method is similar to the famous RKN method, with a little difference. For
instance, while RKN method is one-step method that is applied in a block fashion of two equations
to obtain approximate solution of the problem and its derivative at each step of integration, two-
step hybrid method uses two previous information of a solution to obtain the solution without its
derivative at each step of integration. This feature of the method is identified to be the main reason
for its improved efficiency and accuracy [31]. Hence, the motivation to develop a class of three-step
hybrid methods recently by [32]. The new method relies solely on the Taylor series approach for its
order conditions, which has limitations as noted above. It is on this ground a theoretical approach
to its order conditions like that obtainable in [5] is proposed in this paper.

The method under consideration here has the following form [32]:

yn+1 =
3

2
yn −

1

2
yn−2 + h2

s∑
i=1

bif(xn + cih, Yi),

Yi =
1

2
(2 + ci)yn −

1

2
ciyn−2 + h2

s∑
i=j

ai,jf(xn + cjh, Yj), (1.2)

where yn+1 and yn−2 are approximations for y(xn+1) and y(xn−2), respectively. ai,j , bi and ci are
coefficients of the method and they are real.

The remaining part of the paper is organized as follows: in section 2, basic theory related to
the method is presented. Order of convergence of the method is analyzed via local truncation error
in section 3. Order conditions of the method are derived and presented together with simplifying
assumption in section 4. In section 5, fourth order method is derived and analyzed. And conclusion
is given in section 6.

2 Basic Theory
In this section, rooted trees related to second order ODEs and the associated B-series theory are
presented as analyzed in [5] exactly to help in the analysis of the proposed approach to order
conditions in this paper.

Definition 2.1. (Set T2) Suppose τ and τ1 are empty tree (vertex-less tree) and tree of order one.
Let T2 be set of trees associated with second order ODEs. T2 is defined as follows:

(i) τ and τ1 are elements of T2 i.e τ, τ1 ∈ T2;

(ii) t = [t1, ..., tm]2 ∈ T2 if ti ∈ T2 ∀ i = 1, ...,m.

Remark 2.2. Definition 2.1 gives the membership of the set T2, starting from tree with order zero.
The next definition would shed light on what is meant by order of a tree and some other coefficients
of the terms in B-series expression. Order of a tree t, denoted by ρ(t), is simply the number of its
vertices.

Definition 2.3. The order, ρ : T2 → N, of a tree t is defined recursively as follows:

(i) ρ(τ) = 0, ρ(τ1) = 1, ρ(τ2) = 2;

(ii) for t = [tµ1

1 , ..., tµm
m ]2 ∈ T2, ρ(t) = 2 +

∑
i=1

µiρ(ti). The set of all T2 order q is denoted by T2q.

(iii) α(τ) = α(τ1) = α(τ2) = 1;
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(iv) if t = [tµ1

1 , ..., tµm
m ]2 ∈ T2, with ti distinct for different i and different from τ , then

α(t) = (ρ(t)− 2)!

m∏
i=1

1

µi!

(
α(ti)

ρ(ti)!

)µi

.

It is important to associate each tree, t, to a corresponding elementary differential, F (t). The
next definition does that.

Definition 2.4. The function F on T2 is defined recursively by

(i) F (τ) (y, y′) = y, F (τ1) (y, y′) = y′, and F (τ2) (y, y′) = f(y);

(ii) if t = [t1, ..., tm]2 ∈ T2, then

F (t) (y, y′) = f (m)(y) (F (t1) (y, y′) , ..., F (tm) (y, y′)) .

B-series can now be defined as follows:

Definition 2.5. See [5]. Let β be a mapping from T2 to set of real numbers R, with β(τ) = 1. The
B2-series with coefficient function β is a formal series of the form

B(β, y) = y + hα(τ1)β(τ1)y′ + ... =
∑
t∈T2

hρ(t)

ρ(t)!
α(t)β(t)F (t) (y, y′).

At this point it is important to state the lemma that says h2f(.) applied to a B-series generates
a B-series. It is adopted from [5] and stated here without proof. The proof can be found in the
same paper.

Lemma 2.6. Let B(β, y) be a B2-series with coefficient function β. Then h2f(B(β, y)) is also a
B2-series, i.e

h2f(B(β, y)) = B(β′′, y),

with
β′′(τ) = β′′(τ1) = 0, β′′(τ2) = 2,

and for all other tree t = [t1, ..., tm]2 ∈ T2,

β′′(t) = ρ(t)(ρ(t)− 1)

m∏
i=1

β(ti).

3 Order of Convergence of the Method
Order of convergence of a numerical method for ODE is assessed via its local truncation error. The
proposed method, being a three-step method, is transformed to a one-step method for simplicity
to obtaining its local truncation error while generality is not lost. Suppose the one-step method is

Gn = Gn−1 + hφ(Gn−1, h), (3.1)

where Gn is a well defined numerical solution whose initial point G0 is generated by some starting
procedure. The first part of eqn (1.2) is written as a system of three equations as follows: let
Fn = yn+1 − yn, so that

yn = yn−1 + Fn−1. (3.2)

That means
Fn =

1

2
(Fn−1 + Fn−2) + h2

∑
i=1

bif(Yi).
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Suppose Hn = Fn+1−Fn

h , so that
Fn = Fn−1 + hHn−1. (3.3)

Hence, the final update equation becomes

Hn +
1

2
Hn−1 = h

∑
i=1

bif(Yi). (3.4)

Eqns (3.2)-(3.4) can be written as (3.1) with

Gn =


yn

Fn

Hn

 and Φ(Gn−1, h) =


1
hFn−1

Hn−1∑
bif(Yi)

 .

Let w be an exact-value function, so that Gn is an approximate form of wn = w(xn, h), then

w(x, h) =


y(x)

y(x+ h)− y(x)

F (x+h)−F (x)
h

 . (3.5)

The local truncation error of the method at point xn is therefore given as

dn = wn − wn−1 − hΦ(wn−1, h), (3.6)

where

Φ(wn−1, h) =


y(xn)−y(xn−1)

h

F (xn)−F (xn−1)
h∑
bif(Yi)

 . (3.7)

Theorem 3.1. For exact starting values, the three-step hybrid method is said to be convergent of
order p if and only if ∀ trees t ∈ T2,

s∑
i=1

biψ
′′
i (t) = 1− (−2)ρ(t)−1, (3.8)

for ρ(t) ≤ p+ 1 but not for some trees of order p+ 2.

Proof. Expand the components of the update stage in eqn (1.2) as B2-series.

B(1, y(xn)) =
3

2
y(xn)− 1

2
B
(

(−2)ρ(t), y(xn)
)

+

s∑
i=1

biB(ψ′′(t), y(xn)). (3.9)

From (3.5)–(3.7), local truncation error of the method becomes

dn =


y(xn)

y(xn+1)− y(xn)

F (xn+1)−F (xn)
h

−


y(xn−1)

y(xn)− y(xn−1)

F (xn)−F (xn−1)
h

− h


y(xn)−y(xn−1)
h

F (xn)−F (xn−1)
h∑
bif(Yi)

 . (3.10)
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First Component of eqn (3.10):

y(xn)− y(xn−1)− y(xn) + y(xn−1) = 0;

Second Component of eqn (3.10):

y(xn+1)− y(xn)− y(xn) + y(xn−1)− hF (xn)− F (xn−1)

h
= 0;

Third Component of eqn (3.10):

dn = H(xn) +
1

2
H(xn−1)− h

∑
bif(Yi). (3.11)

It is obvious that eqn (3.11) takes the one-step form of the update stage of the method, as in eqn
(3.4). Replacing this with the B2-series form of the update stage equation, as in eqn (3.9), the local
truncation error becomes

1

h

(
B(1, y(xn))− 3

2y(xn) + 1
2B
(
(−2)ρ(t), y(xn)

)
−
∑s
i=1 biB(ψ′′(t), y(xn))

)
.

The method is convergent of order p if p is the largest integer such that

dn = O
(
hp+1

)
, (3.12)

∀ n ≥ 0. This is possible only if the B2-series coefficients sum up to zero, i.e

1− (−2)ρ(t)−1 −
s∑
i=1

biψ
′′(t) = 0, for ρ(t) ≤ p+ 1,

or
s∑
i=1

biψ
′′(t) = 1− (−2)ρ(t)−1 for ρ(t) ≤ p+ 1.

Hence, the proof.

Theorem 3.2. The B2-series coefficients ψ of three-step hybrid method ∀ t ∈ T2 with ρ(t) ≥ 2 is

ψi(t) = ci (−2)
ρ(t)−1

+
∑
i,j

ai,jψ
′′
j , (3.13)

where

ψ′′i (t) = ρ(t) (ρ(t)− 1)

m∏
i=1

ψi(ti), (3.14)

and for trees with ρ(t) = 0, 1, the coefficients are respectively given as

ψi(τ) = 1, ψi(τ1) = ci. (3.15)

Proof. Apply B2-series to the components of the internal stage equation of eqn (1.2):

B (ψi, y(xn)) =
1

2
(2 + ci) y(xn)− 1

2
B
(

(−2)ρ(t), y(xn)
)

+ h2
s∑
j=1

ai,jf (Yj).

Applying Lemma 2.6 gives

B (ψi, y(xn)) =
1

2
(2 + ci) y(xn)− 1

2
B
(

(−2)ρ(t), y(xn)
)

+

s∑
j=1

ai,jB
(
ψ′′j , y(xn)

)
,
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or

B (ψi, y(xn)) = y(xn) + ciy
′(xn)− 1

2
B
(

(−2)ρ(t), y(xn)
)

+

s∑
j=1

ai,jB
(
ψ′′j , y(xn)

)
.

Now, equating coefficients of the series for each tree gives:

for τ i.e tree with ρ(t) = 0 : ψi(τ) = 1;

for τ1 i.e tree with ρ(t) = 1 : ψi(τ1) = ci;

for t i.e tree with ρ(t) ≥ 2 : ψi(t) = ci(−2)ρ(t)−1 + ai,jψ
′′
j ,

where

ψ′′j (t) = ρ(t)(ρ(t)− 1)

m∏
i=1

ψj(ti), ∀t ∈ T2,

see Lemma 2.6.

4 The Order Conditions
With the aid of eqns (3.8) and (3.13)–(3.15), derivation of algebraic order conditions of three-step
hybrid method is demonstrated in this section.

4.1 Condition for second order tree
The only tree with this order in T2 is τ2 = [τ ]2: [grow’=up] (0,0)–(0,0.4); [fill=black](0,0.4)circle(0.05);
.

From eqn (3.8):
s∑
i=1

biψ
′′
i (τ2) = 3;

from eqn (3.14):
ψ′′i (τ2) = 2× 1× ψi(τ),

and from (3.15):
ψi(τ) = 1.

∴ the condition is
s∑
i=1

bi =
3

2
, (4.1)

and eqn (3.13) gives

ψi(τ2) = −2ci + 2

s∑
j=1

ai,j . (4.2)

4.2 Condition for third order tree
The tree in T2 with order 3 is t3,1 = [τ1]2: [grow’=up] (0,0)–(0,0.4); [fill=black](0,0.4)circle(0.05);
(0,0.4)–(0.4,0.6); . Following the same procedure, the corresponding order condition is obtained as

s∑
i=1

bici = −1

2
, (4.3)
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and eqn (3.13) gives

ψi(t31) = 4ci + 6

s∑
j=1

ai,jcj . (4.4)

4.3 Condition for fourth order trees
Two of such trees exist in T2: t41 = [τ1, τ1]2:[grow’=up] (0,0)–(0,0.4); [fill=black](0,0.4)circle(0.05);
(0,0.4)–(0.4,0.8); (0,0.4)–(-0.4,0.8); and t4,2 = [τ2]2:[grow’=up] (0,0)–(0,0.4); [fill=black](0,0.4)circle(0.05);
(0,0.4)–(0.4,0.8); (0.4,0.8)–(0,1); [fill=black](0,1)circle(0.05); . The corresponding order conditions
are:

s∑
i=1

bic
2
i =

3

4
, (4.5)

where

ψi(t41) = −8ci + 12

s∑
j=1

ai,jc
2
j . (4.6)

For the second tree we have
s∑
i=1

bic
2
i =

3

4
, (4.7)

provided the condition of third order tree (4.3) is satisfied. Eqn (3.13) gives

ψi(t42) = −

8ci + 24

 s∑
j=1

ai,jcj −
s∑
j,k

ai,jaj,k

 . (4.8)

Hence, the algebraic order conditions of the method up to trees of order six are derived and presented
in Table1 using the second order ODEs rooted trees presented in p. 205 of [5].

4.4 Simplifying Assumptions
As it is with two-step hybrid methods and other multistage methods, order conditions are a col-
lection of equations that show the relationship between coefficients of the methods. Some of the
equations are repetition of the others provided some conditions that are genuinely set up are satis-
fied. In this subsection, such conditions are formulated to reduce the number of independent order
conditions of three-step hybrid method.

Theorem 4.1. For a three-step hybrid method (see eqn (1.2)) with stage order q, the simplifying
condition that reduces independent order conditions is∑

ai,jc
κ
j =

cκ+2
i − (−2)κ+1ci
(κ+ 1)(κ+ 2)

. (4.9)

Proof. From eqn (1.2), the approximation of the solution, y(x), of problem (1.1) at point xn + cih
is Yi(xn). That is to say the exact value of the solution at this point is y(xn + cih).

Suppose the difference of these values is taken, that is

Yi(xn)− y(xn + cih) = O
(
hq+1

)
. (4.10)

Expressing eqn (4.10) in B2-series gives

B(ψi, y(xn))−B(c
ρ(t)
i , y(xn)) = O

(
hq+1

)
,

where q is the stage order of the method. Therefore,

ψi(t) = c
ρ(t)
i . (4.11)
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Table 1: Order Conditions
t ρ(t) Order condition
τ 0 -

τ1 1 -

τ2 2
∑
bi = 3

2

t3,1 3
∑
bici = − 1

2

t4,1 4
∑
bic

2
i = 3

4

t4,2
∑
biai,j = − 1

8

t5,1 5
∑
bic

3
i = − 3

4

t5,2
∑
biciai,j = 3

8

t5,3
∑
biai,jcj = 5

24

t6,1 6
∑
bic

4
i = 11

10

t6,2
∑
bic

2
i ai,j = 11

20

t6,3
∑
biciai,jcj = 41

60

t6,4
∑
biai,jai,k = 3

16

t6,5
∑
biai,jc

2
j = − 87

360

t6,6
∑
biai,jaj,k = 21

240

Twice differentiation of eqn (4.11) gives

ψ′′i (t) = ρ(t)(ρ(t)− 1)c
ρ(t)−2
i . (4.12)

Now, substituting eqns (4.11) and (4.12) in (3.13) gives

∑
ai,jc

ρ(t)−2
j =

c
ρ(t)
i − (−2)ρ(t)−1ci
ρ(t)(ρ(t)− 1)

.

Let ρ(t)− 2 = κ, then ∑
ai,jc

κ
j =

cκ+2
i − (−2)κ+1ci
(κ+ 1)(κ+ 2)

.

Hence, the proof.

5 Fourth Order Method
To obtain a method of order four, a set of order conditions of trees up to order five is required
according to Theorem 3.1. This will involve a system of seven equations, see Table 1. As such, at
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least seven parameters are required to solve the system. Suppose the stage of the method is to be
four, that is, s = 4. It means the system would be solved in eleven unknown parameters, which
is in order as the number of unknowns is greater than the number of the equations. The specific
coefficients are summarized in Butcher-like tableau as follows:

Table 2: General coefficients of four stage fourth order three-step hybrid method
-2 0 0 0 0

0 0 0 0 0

c3 a3,1 a3,2 0 0

c4 a4,1 a4,2 a4,3 0

b1 b2 b3 b4

Seven equations against eleven unknowns gives four free parameters. The choice of optimal
values of these parameters might be a bit tasking. This leads to imposition of simplifying assumption
(4.9) to reduce the number of independent equations leaving only the equations of order conditions
generated by trees τ2 and tN1, N = 3, ... and to increase the number of the overall equations, so
that the number of free parameters reduces. Putting α = 0, 1 reduces the equations to the four
equations associated to τ2 and t3,1, t4,1 and t4,1. The resulting equations are solved to obtain the
method as follows:

Table 3: Specific coefficients of four stage fourth order three-step hybrid method
-2 0 0 0 0

0 0 0 0 0

− 19
21 − 26657

111132 − 28405
111132 0 0

117
220

99085054731
215515520000

154111151571
178034560000 − 1335209777811

2047397440000 0

4245
102488

10093
17784

7195797
11601476

117128000
432526653

Note that the aim of deriving the fourth order method in this section is to validate the order
conditions derived, as stated earlier. No detail analysis of the method as regards to numerical
properties like stability etc. is given in the paper.

5.1 Numerical Test
The aim of this subsection is to verify numerically the convergence order of the method as established
in Theorem 3.1 using the derived method as a specific example.

• ThHM4(4): The three-step four stage fourth order hybrid method derived in this section.

• FHM4(3): The two-step three-stage fourth order hybrid method derived in Franco [31].

• FHM5(4): The two-step four-stage fifth order hybrid method derived in Franco [31].

5.2 Results and Discussion
Maximum error is the biggest of the errors recorded when a problem is solved in a given interval of
solution with a given step-size h.
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Problem 1 (Homogeneous Problem)

d2y(x)

dx2
= −y(x), y(0) = 0, y′(0) = 1,

Exact solution: y(x) = sin(x),

Source: [17].x ∈ [0, 100].

Problem 2 (Inhomogeneous Problem)

d2y(x)

dx2
= −y(x) + x, y(0) = 1, y

′
(0) = 2.

Exact solution: y(x) = sin(x) + cos(x) + x.

Source: [1].x ∈ [0, 100]

Problem 3 (Duffing Problem)

y′′ + y + y3 = F cos(vx), y(0) = 0.200426728067,

y′(0) = 0. where F = 0.002 and v = 1.01.

Exact solution: y(x) =

4∑
i=0

υ2i+1 cos[(2i+ 1)vx],

where υ1 = 0.200179477536, υ3 = 0.246946143× 10−3,

υ5 = 0.304014× 10−6, υ7 = 0.374× 10−9, and

υ9 < 10−12 α = 1.

Source: [20].x ∈ [0, 100]

Table 4: Maximum Error for Problem 1
h FHM4(3) ThHM4(4) FHM5(4)

0.25 5.300900× 10−04 2.716900× 10−04 4.780000× 10−06

0.125 3.310000× 10−05 4.250000× 10−06 1.495546× 10−07

0.0625 2.060000× 10−06 6.637301× 10−08 4.676539× 10−09

0.03125 1.290024× 10−07 1.037274× 10−09 1.463207× 10−10

0.015625 8.062982× 10−09 1.552958× 10−11 5.215000× 10−12

Table 5: Maximum Error for Problem 2
h FHM4(3) ThHM4(4) FHM5(4)

0.25 7.753200× 10−04 3.942300× 10−04 6.670000× 10−06

0.125 4.815000× 10−05 6.180000× 10−06 2.086749× 10−07

0.0625 3.010000× 10−06 9.656097× 10−08 6.536830× 10−09

0.03125 1.878102× 10−07 1.520130× 10−09 2.096200× 10−10

0.015625 1.185461× 10−08 2.265000× 10−11 1.182300× 10−10

The accuracy of the proposed method alongside those of existing hybrid methods (FHM4(3),
FHM5(4)) is tested on different test problems listed to confirm the order of convergence of the
method numerically, as postulated in Theorem 3.1. The errors recorded are shown in Tables 4–6. It
is clear that the errors of the proposed method correspond to those of FHM4(3) for all the problems,
which shows that the method has fourth order accuracy. Although it appears to be more accurate
than the FHM4(3) as step-size decreases to the extent that it approaches the accuracy of FHM5(4),
which is a fifth order method.
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Table 6: Maximum Error for Problem 3
h FHM4(3) ThHM4(4) FHM5(4)

0.25 9.770000× 10−05 1.764500× 10−04 9.260000× 10−06

0.125 6.240000× 10−06 4.360000× 10−06 5.916277× 10−07

0.0625 3.948210× 10−07 1.205372× 10−07 2.265073× 10−08

0.03125 2.482881× 10−08 3.548960× 10−09 7.523360× 10−10

0.015625 1.562831× 10−09 1.133479× 10−10 1.866150× 10−11

6 Conclusion
A new approach to algebraic order conditions of a class of three-step hybrid methods, which is more
robust and reliable than the ah hoc Taylor series approach is proposed. The order conditions are
derived and presented using the proposed technique. In the process, condition for convergence of
the three-step hybrid method is provided and proved. This is further confirmed numerically by a
specific example of a fourth order method.
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