
International Journal of Mathematical Sciences and
Optimization: Theory and Applications

Vol. 8, No. 1, pp. 117 - 128
https://doi.org/10.6084/m9.figshare.20653785

Modeling and simulation of isothermal reactive liquid
chromatography for two component elution-effects of

core-shell particles

Ugochukwu David Uche1*, Mercy Uche2, Folakemi Okafor3, Kate Utalor4

1-4 Department of Mathematics Programme, National Mathematical Centre Abuja, Nigeria
* Corresponding author: duj_uche@yahoo.com

Article Info
Received: 19 August 2022 Revised: 11 June 2022
Accepted: 15 June 2022 Available online: 30 August 2022

Abstract

In this work, semi-analytical solutions obtained by a combination of analytical and numeri-
cal procedure based on the numerical Hankel and Laplace transform inversions and solution
of same model using high resolution finite volume numerical method are presented. These
solutions are obtained for two-dimensional general rate models for isothermal liquid chromato-
graphic reactors of cylindrical geometry packed with core-shell particles for an irreversible
chemical reaction. This task is aimed at investigating the performance of the two-dimensional
chromatography column under isothermal operating condition with the use of core-shell par-
ticles. The semi-analytical solutions are obtained considering the first-type and second-type
boundary conditions. The use of core-shell particles is observed to produce less diffusive and
sharper peaks but separation of chemical components is not significantly improved when com-
pared with the results for porous particles.

Keywords: Liquid chromatography, general rate model, chemical reaction, semi-analytical solu-
tions, numerical solutions.
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1 Introduction
Liquid chromatography is a separation technique that has been shown to be very useful in bio-
chemical, fine chemicals, pharmaceutical, biological and food processing industries [1,2]. In reactive
chromatography, conversion of reactants and components separation occur simultaneously within
a chromatographic reactor and this process lead to production of products with high degree of pu-
rity [3]. The process has witnessed the development and application of different types and shapes of
particles which are in various forms including fully porous, nonporous and core-shell particles [4–7].

Modeling the liquid chromatography process mathematically has largely contributed in the
process development and improvement [1, 2, 8]. Several mathematical models have been used to
describe the process of liquid chromatography. Most notable amongst them are the equilibrium

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://ijmso.unilag.edu.ng/article

117

https://doi.org/10.6084/m9.figshare.20653785
http://ijmso.unilag.edu.ng/article


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

Vol. 8, No. 1, pp. 117 - 128
https://doi.org/10.6084/m9.figshare.20653785

dispersive model (EDM), the lumped kinetic model (LKM) and the general rate model (GRM) and
they range from the simplest to complex forms [1, 2, 9–11].

Linear one-dimensional (1D) and two-dimensional (2D) models of non-reactive and reactive
chromatography have been solved by several authors [11–16]. In the current study, the analysis
on two-dimensional general rate model (2D-GRM) studied in [17] for columns packed with fully
porous particles is extended to the analysis of linear two-component reactive 2D-GRM considering
columns packed with core-shell particles. Semi-analytical solutions of the model for irreversible
reaction are derived for first-type (Dirichlet) and second-type (Danckwerts) boundary conditions
by applying the Hankel transformation, Laplace transformation, eigen-decomposition technique
and conventional solution technique for ordinary differential equations (ODEs) [18–20]. Numerical
solutions are obtained by using high resolution finite volume scheme [21, 22] to the same model
equations and are compared with the semi-analytical solution.

2 The governing equations
We consider an isothermal adsorption column filled with spherical particles of radius Rp. Let the
time coordinate be denoted by t, let z represent the axial coordinate along the column length and
let r represent the radial coordinate along the radius of the column. We assume that the injected
solute travels along the column axis in the z-direction by convection and axial dispersion, while
it spreads along the column radius by radial dispersion. Furthermore, we assume the following
particular injection conditions in order to amplify the effects of mass transfer in the radial direction
by introducing a new parameter r̃ to split the inlet cross section of the column into an inner
cylindrical zone and an outer annular ring or outer zone. Thus, there are three possible ways of
sample injection into the column, these are through the inner zone, the outer zone, and through the
whole cross-section. The latter case occurs if r̃ is set equal to the radius of the column denoted by
Rc. In the latter case, where no initial radial gradients are introduced into the column, the model
equation becomes a simpler one-dimensional general rate model (1D-GRM) [23]. The classical mass
balance equations for the liquid or mobile phase of adsorption in the column are given as

∂c1
∂t

+ u
∂c1
∂z

= Dz,1
∂2c1
∂z2

+Dr,1

(
∂2c1
∂r2

+
1

r

∂c1
∂r

)
− 3

Rp
Fkext,1 (c1 − cp,1(rp = Rp)) , (2.1)

∂c2
∂t

+ u
∂c2
∂z

= Dz,2
∂2c2
∂z2

+Dr,2

(
∂2c2
∂r2

+
1

r

∂c2
∂r

)
− 3

Rp
Fkext,2 (c2 − cp,2(rp = Rp)) , (2.2)

where for i = 1, 2, ci is the concentration of ith component in the bulk of fluid, cp,i is the concen-
tration of the same component in the particle pores, u is the interstitial velocity, Dz,i is the axial
dispersion coefficient of ith component, and F = (1− ε)/ε is the phase ratio with ε as the external
porosity. Moreover, Dr,i represents the radial dispersion coefficient and kext,i is the external mass
transfer coefficient of ith component. Lastly, rp denotes the radial coordinate of spherical particles
of radius Rp.
For irreversible chemical reaction of the form (A→ B), the corresponding mass balance equations
inside the particles pores are given as

εp
∂cp,1
∂t

+ (1− εp)
∂qp,1
∂t

=
εpDp,1

r2
p

∂

∂rp

(
r2
p

∂cp,1
∂rp

)
− (1− εp)υ1qp,1, (2.3)

εp
∂cp,2
∂t

+ (1− εp)
∂qp,2
∂t

=
εpDp,2

r2
p

∂

∂rp

(
r2
p

∂cp,2
∂rp

)
− (1− εp)υ1qp,1, (2.4)

where Dp,i is the pore diffusivity of the ith component, εp is the internal porosity and υ1 is the
reaction rate constant for component 1. The equilibrium linear adsorption isotherm is expressed as

qp,i = aicp,i, i = 1, 2, (2.5)
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where ai denotes the linear adsorption constant.
To further simplify the notations and reduce the number of variables, the following dimensionless

variables are introduced:

x =
z

L
, τ =

ut

L
, ρ =

r

Rc
, ρp =

rp
Rp

, P ez,i =
Lu

Dz,i
, P eρ,i =

R2
cu

Dr,iL

ζi =
kextRp
Dp,i

, ηi =
εpDp,iL

R2
pu

, ξi = 3ζiηiF , ωi =
L

u
υi. (2.6)

Here, L is the characteristic column length, Pez,i and Peρ,i are the axial and radial peclet numbers,
ζi is the mass transfer coefficient, ωi is the dimensionless reaction rate constant of the ith component,
ηi and ξi, are the dimensionless constants. Using the above dimensionless variables in Eqs. (2.1) to
(2.2) for two components reaction (i.e i = 1, 2), we obtain

∂c1
∂τ

+
∂c1
∂x

=
1

Pez1

∂2c1
∂x2

+
1

Peρ1

(
∂2c1
∂ρ2

+
1

ρ

∂c1
∂ρ

)
− ξ1

[
c1 − cp,1|ρp=1

]
, (2.7)

∂c2
∂τ

+
∂c2
∂x

=
1

Pez2

∂2c2
∂x2

+
1

Peρ2

(
∂2c2
∂ρ2

+
1

ρ

∂c2
∂ρ

)
− ξ2

[
c2 − cp,2|ρp=1

]
, (2.8)

a∗1
∂cp,1
∂τ

=
η1

ρ2
p

∂

∂ρp

(
ρ2
p

∂cp,1
∂ρp

)
− a1(1− εp)ω1cp,1, (2.9)

a∗2
∂cp,2
∂τ

=
η2

ρ2
p

∂

∂ρp

(
ρ2
p

∂cp,2
∂ρp

)
+ a2(1− εp)ω1cp,1, (2.10)

where a∗i = εp + ai(1− εp), i = 1, 2.
The above Eqs.(2.7)-(2.10) have been formulated for columns packed with fully porous particles.

In order to study columns packed with core-shell particles, we follow the same procedure as suggested
by [24]. Figure 1 shows a sketch of a spherical core-shell particle, with core radius fraction ρcore =
Rcore/Rp. For fully porous particles ρp ranges from 0 to 1, while for core-shell particles it ranges

=200,1mm
core-shell.eps

Figure 1: Schematic diagram of a core-shell particle.

from ρcore = Rcore/Rp to 1. Thus, for arbitrary core radius fraction ρcore 6= 0, ρcore ≤ ρp ≤ 1
for core-shell particles. While for fully porous particles, ρcore=0. Hence we replace the ρp-axis by
0 ≤ γ ≤ 1, where the dimensionless radial axis is

γ =
ρp − ρcore

1− ρcore
⇒ ρp = γ(1− ρcore) + ρcore. (2.11)

By substituting the above Eq.(2.11) into Eqs. (2.7)-(2.10), we now obtain the required governing
equations for columns packed with core-shell particles given below as

∂c1
∂τ

+
∂c1
∂x

=
1

Pez1

∂2c1
∂x2

+
1

Peρ1

(
∂2c1
∂ρ2

+
1

ρ

∂c1
∂ρ

)
− ξ1 [c1 − cp,1|γ=1] , (2.12)

∂c2
∂τ

+
∂c2
∂x

=
1

Pez2

∂2c2
∂x2

+
1

Peρ2

(
∂2c2
∂ρ2

+
1

ρ

∂c2
∂ρ

)
− ξ2 [c2 − cp,2|γ=1] , (2.13)

(1− ρcore)2a∗1
∂cp,1
∂τ

= η1

(
∂2cp,1
∂γ2

+
2(1− ρcore)

(γ(1− ρcore) + ρcore)

∂cp,1
∂γ

)
− a1(1− εp)ω1cp,1, (2.14)

(1− ρcore)2a∗2
∂cp,2
∂τ

= η2

(
∂2cp,2
∂γ2

+
2(1− ρcore)

(γ(1− ρcore) + ρcore)

∂cp,2
∂γ

)
+ a2(1− εp)ω1cp,1. (2.15)
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The above equations have the following initial conditions:

ci(ρ, x, 0) = 0, 0 ≤ x ≤ 1, 0 ≤ ρ ≤ 1, (2.16)
cp,i(γ, ρ, x, 0) = 0, 0 ≤ x ≤ 1, 0 ≤ ρ ≤ 1, 0 ≤ γ ≤ 1. (2.17)

Along the column radius, the following boundary conditions for Eqs. (2.12) and (2.13), considering
the symmetry of radial profile and impermeability of the column wall, are used at ρ = 0 and ρ = 1:

∂ci(ρ = 0, x, τ)

∂ρ
= 0 ,

∂ci(ρ = 1, x, τ)

∂ρ
= 0 , i = 1, 2. (2.18)

Also, the following boundary conditions are used for Eqs. (2.12) and (2.13), at both ends of the
column for concentration pulses of finite width injected as Danckwerts inlet BCs:

For injection in the inner circular region, they are expressed as:

ci(ρ, x = 0, τ)− 1

Pez,i

∂ci(ρ, x = 0, τ)

∂x
=

{
cinj
i , if 0 ≤ ρ ≤ ρ̃ and 0 ≤ τ ≤ τinj ,

0 , ρ̃ < ρ ≤ 1 or τ > τinj .
(2.19)

While, for the injection through outer annular region, they are expressed as

ci(ρ, x = 0, τ)− 1

Pez,i

∂ci(ρ, x = 0, τ)

∂x
=

{
cinj
i , if ρ̃ < ρ ≤ 1 and 0 ≤ τ ≤ τinj ,

0 , 0 ≤ ρ ≤ ρ̃ or τ > τinj ,
(2.20)

together with the Neumann conditions at the outlet of a finite length column

∂ci(ρ, x, τ)

∂x

∣∣∣∣
x=1

= 0 , i = 1, 2. (2.21)

Here, cinj
i is the inlet concentration of component i. The Danckwerts boundary condition tends to

Dirichlet boundary conditions for large values of Pez,i.
For Eqs. (2.14) and (2.15), the boundary conditions at γ = 0 and γ = 1 are expressed as

∂cp,i
∂γ

∣∣∣∣
γ=0

= 0,
∂cp,i
∂γ

∣∣∣∣
γ=1

= (1− ρcore)ζi(ci − cp,i|γ=1), i = 1, 2. (2.22)

3 Semi-analytical solutions
The above chromatographic model along with associated initial and boundary conditions is an-
alytically solved by successive implementation of the finite Hankel and Laplace transforms. The
zeroth-order finite Hankel transform of ci(ρ, x, τ) is defined as [18,19]

ci,H(λn, x, τ) = H[ci(ρ, x, τ)] =

1∫
0

ci(ρ, x, τ)J0 (λnρ) ρdρ . (3.1)

The inverse Hankel transform is given as

ci(ρ, x, τ) = 2ci,H(λn = 0, x, τ) + 2

∞∑
n=1

ci,H(λn, x, τ)
J0(λnρ)

|J0(λn)|2
. (3.2)

The Hankel transformation of Eqs. (2.12) and (2.13) with respect to coordinate ρ gives

∂ci,H
∂τ

+
∂ci,H
∂x

=
1

Pez,i

∂2ci,H
∂x2

− λ2
n

Peρ,i
ci,H − ξi (ci,H − cpi,H |γ=1) . (3.3)
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Here, for i = 1, 2, ci,H(λn, x, τ) and cpi,H(λn, x, τ) are the zeroth-order finite Hankel transforms
of ci(ρ, x, τ) and cp,i(γ, ρ, x, τ), respectively. The Laplace transformation of Hankel transformed
function ci,H is defined as [19]

c̄i,H(λn, x, s) =

∞∫
0

e−stci,H(λn, x, t)dt, s ≥ 0. (3.4)

After applying the Laplace transformation on Eq. (3.3) with respect to τ and assuming that the
initial concentration is zero, we get

1

Pez,i

∂2c̄i,H
∂x2

− ∂c̄i,H
∂x

−
(
s+

λ2
n

Peρi

)
c̄i,H − ξi (c̄i,H − c̄pi,H |γ=1) = 0. (3.5)

Here, c̄i,H denotes the Hankel and Laplace transformed i-th concentration.
Applying the Laplace transform on Eqs. (2.14) and (2.15) and rearranging, we obtain

d2

dγ2
[(γ(1− ρcore) + ρcore)c̄p,1]−

[
a∗1s+ a1ω1(1− εp)

η1

]
(1− ρcore)2[γ(1− ρcore) + ρcore]c̄p,1 = 0,

(3.6)

d2

dγ2
[(γ(1− ρcore) + ρcore)c̄p,2]− a∗2s

η2
(1− ρcore)2[γ(1− ρcore) + ρcore]c̄p,2

+
a1ω1(1− εp)

η2
(1− ρcore)2[γ(1− ρcore) + ρcore]c̄p,1 = 0. (3.7)

The general solution of Eq. (3.6) is given as:

c̄p,1(γ, ρ, x, s) =
1

[γ(1− ρcore) + ρcore]

(
A1e

(1−ρcore)
√
α1(s)γ +A2e

−(1−ρcore)
√
α1(s)γ

)
, (3.8)

where, α1(s) =
a∗1s+a1(1−εp)ω1

η1
. Here, A1 and A2 are the constants to be determined using the

boundary conditions given in Eq. (2.22) which gives:

A1,2 = ±
ζ1(ρcore

√
α1(s) + 1)c̄1/2 sinh(1− ρcore)2(

√
α1(s))

[(1− ρcore)(ρcoreα1(s)− 1) + ζ1] + [(1− ρcore)2 + ρcoreζ1]
√
α1(s) coth((1− ρcore)

√
α1(s))

. (3.9)

Thus, the solution in Eq. (3.8) at γ = 1, takes the form

c̄p,1|γ=1 = c̄1f1(s) , (3.10)

where

f1(s) =
ζ1[ρcore

√
α1(s) coth(1− ρcore)(

√
α1(s)) + 1]

[(1− ρcore)(ρcoreα1(s)− 1) + ζ1] + [(1− ρcore)2 + ρcoreζ1]
√
α1(s) coth((1− ρcore)

√
α1(s))

. (3.11)

Now using Eq. (3.10) in (3.7) and solving the resulting equation, we obtain

c̄p,2(γ, ρ, x, s) =
1

[γ(1− ρcore) + ρcore]

(
A3e

(1−ρcore)
√
α2(s)γ

+ A4e
−(1−ρcore)

√
α2(s)γ

)
+
f1(s)(1− εp)(1− ρcore)2ω1c̄1

a∗2s
,

(3.12)

where, α2(s) =
a∗2s
η2

. Applying the boundary conditions in Eq. (2.22) again and evaluating at γ = 1,
we obtain:

c̄p,2|γ=1 = c̄2f2(s) + c̄1g(s) , (3.13)

where

f2(s) =
ζ2[ρcore

√
α2(s) coth(1− ρcore)(

√
α2(s)) + 1]

[(1− ρcore)(ρcoreα2(s)− 1) + ζ2] + [(1− ρcore)2 + ρcoreζ2]
√
α2(s) coth((1− ρcore)

√
α2(s))

(3.14)
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and

g(s) =
a1(1− εp)(1− ρcore)2ω1f1(s)

a∗2s
[1− f2(s)] . (3.15)

Taking the Hankel transform of Eqs. (3.10) and (3.13) with respect to ρ, we get

(c̄p,1)H |γ=1 = c̄1,Hf1(s) , (3.16)
(c̄p,2)H |γ=1 = c̄2,Hf1(s) + c̄1,Hg(s) . (3.17)

Putting Eqs. (3.16) and (3.17) in Eq. (3.5) for i = 1, 2, we obtain

d2c̄1,H
dx2

− Pez1
dc̄1,H
dx

− Pez1φ1 (s, λn) c̄1,H = 0 , (3.18)

d2c̄2,H
dx2

− Pez2
dc̄2,H
dx

− Pez,2φ2 (s, λn) c̄2,H = Pez,2ξ2g(s)c̄1,H , (3.19)

where

φi (s, λn) = s+
λ2
n

Peρ,i
+ ξi (1− fi(s)) i = 1, 2. (3.20)

We represent Eqs. (3.18) and (3.19) in matrix notation and we take Pez,i = Pez, i=1,2. Then, we
obtain

d2

dx2

(
c̄1,H
c̄2,H

)
− Pez

d

dx

(
c̄1,H
c̄2,H

)
−
(
Pezφ1(s, λn) 0
−Pezξ2g(s) Pezφ2(s, λn)

)(
c̄1,H
c̄2,H

)
=

(
0
0

)
. (3.21)

Now we decouple the system by applying the Eigen-decomposition technique. To proceed, we define
the coefficient matrix A of the system as

A =

(
Pezφ1(s, λn) 0
−Pezξ2g(s) Pezφ2(s, λn)

)
. (3.22)

We decompose A into a diagonal matrix using a non-singular matrix B such that the columns of
B are the eigenvectors of A. The eigenvalues are given as

λi = Pezφi(s, λn) i = 1, 2 (3.23)

and the corresponding eigenvectors are expressed as

x1 =

[
1

−ξ2g(s)
φ1(s,λn)−φ2(s,λn)

]
, x2 =

[
0
1

]
. (3.24)

Based on the above eigenvalues, the transformation matrix B can be expressed as

B =

(
1 0

−ξ2g(s)
φ1(s,λn)−φ2(s,λn) 1

)
. (3.25)

Using the matrix B, we can formulate the following linear transformation[
c̄1,H
c̄2,H

]
=

(
1 0

−ξ2g(s)
φ1(s,λn)−φ2(s,λn) 1

)[
b̄1,H
b̄2,H

]
. (3.26)

Applying the above linear transformation on Eq. (3.21), we get

d2

dx2

(
b̄1,H
b̄2,H

)
− Pez

d

dx

(
b̄1,H
b̄2,H

)
−
(
λ1 0
0 λ2

)(
b̄1,H
b̄2,H

)
=

(
0
0

)
. (3.27)
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Eq. (3.27) represents a system of two independent ODEs with their explicit solutions given as

b̄1,H(ρ, x, s) = C1e
m1x + C2e

m2x,

b̄2,H(ρ, x, s) = D1e
n1x +D2e

n2x. (3.28)

where

m1,2 =
1

2
Pez ±

1

2

√
Pe2

z − 4φ1(s, λn) , n1,2 =
1

2
Pez ±

1

2

√
Pe2

z − 4φ2(s, λn). (3.29)

In the above equations, upper sign is chosen for index 1 and lower sign is chosen for index 2. Next
we use the inlet and outlet boundary conditions described in Eqs. (2.19) (or (2.20)) and (2.21) to
obtain values for the constants of integration Ci and Di, i = 1, 2. First we consider the case where
Pez is large and x =∞, which gives the Dirichlet inlet and outlet boundary conditions.

Thus, the Hankel transformations of Eqs. (2.19) (or for outer zone injection (2.20)) and (2.21),
for Dirichlet inlet and outlet boundary conditions, are given as

ci,H(λn, x = 0, τ) =

{
cinj
i F (λn) , if 0 ≤ τ ≤ τinj ,

0 , if τ > τinj ,
(3.30)

∂ci,H(λn, x, τ)

∂x

∣∣∣∣
x=∞

= 0 , i = 1, 2. (3.31)

For injection at the inner zone, F (λn) is given as

F (λn) =

{
ρ̃2

2 , if λn = 0 ,
ρ̃
λn
J1 (λnρ̃) , if λn 6= 0 ,

(3.32)

while for injection at the outer annular zone, it becomes

F (λn) =

{ (
1
2 −

ρ̃2

2

)
, if λn = 0 ,

− ρ̃
λn
J1 (λnρ̃) , if λn 6= 0 .

(3.33)

After applying the Laplace transformation on boundary conditions in Eqs. (3.30) and (3.31), we
obtain

c̄i,H(λn, x, s) = cinj
i

F (λn)

s

(
1− e−sτinj

)
,

∂c̄i,H
∂x

∣∣∣∣
x=∞

= 0 , i = 1, 2. (3.34)

Applying the linear transformation on Eq. (3.34), we obtain

b̄1,H(λn, x, s) = cinj
1

F (λn)

s

(
1− e−sτinj

)
,

∂b̄1,H
∂x

∣∣∣∣
x=∞

= 0 , (3.35)

b̄2,H(λn, x, s) = cinj
2

F (λn)

s

(
1− e−sτinj

)
+

ξ2g(s)

φ1(s, λn)− φ2(s, λn)
b̄1,H

∂b̄2,H
∂x

∣∣∣∣
x=∞

= 0 . (3.36)

Using the above boundary conditions in Eq. (3.28), we derive

Ci = 0 ,
(1− e−sτinj)

s
F (λn)cinj

1 , (3.37)

Di = 0 ,
(1− e−sτinj)

s
F (λn)

[
cinj
2 +

ξ2g(s)

φ1(s, λn)− φ2(s, λn)
cinj
1

]
i = 1, 2. (3.38)
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By using the values of Ci and Di, together with the transformation in Eq. (3.26), we obtain the
results

c̄1,H(λn, x, s) =
(1− e−sτinj)

s
F (λn)cinj

1 em2x , (3.39)

c̄2,H(λn, x, s) =
(1− e−sτinj)

s
F (λn)cinj

1

[
ξ2g(s)

φ1(s, λn)− φ2(s, λn)

]
(en2x − em2x)

+
(1− e−sτinj)

s
F (λn)cinj

2 en2x . (3.40)

Analytical Laplace inversions of the above equations are not possible due to the complicated nature
of the results. Therefore, numerical Hankel and Laplace inversions are used to get back solutions in
actual time domain [20]. The numerical inversion procedures were implemented in Matlab software.

Next, we consider the much realistic Danckwerts boundary conditions case. The Hankel trans-
formations of Eqs. (2.19), (or (2.20)) and (2.21) are given as

ci,H(λn, x = 0, τ)− 1

Pez,i

∂ci,H(λn, x = 0, τ)

∂x
=

{
cinj
i F (λn) , if 0 ≤ τ ≤ τinj ,

0 , if τ > τinj ,
(3.41)

∂ci,H(λn, x, τ)

∂x

∣∣∣∣
x=1

= 0 i = 1, 2. (3.42)

Here, F (λn) is given by Eq. (3.32) for the inner injection and by Eq. (3.33) for the outer annular
injection.

After applying the Laplace transformation on these boundary conditions, we get

c̄i,H(λn, x = 0, s)− 1

Pez,i

∂c̄i,H(λn, x = 0, s)

∂x
=
cinj
i F (λn)

s

(
1− e−sτinj

)
, (3.43)

∂c̄i,H
∂x

∣∣∣∣
x=1

= 0 . (3.44)

Following the same solution procedure discussed above, we obtain the following results for Danck-
werts BCs:

c̄1,H(λn, x, s) =
[m2 −m1] e(m1+m2x)

[
F (λn)cinj1

s (1− e−sτinj)
]

m2em2

(
1− m1

Pez

)
−m1em1

(
1− m2

Pez

) , (3.45)

c̄2,H(λn, x, s) =
[m1 −m2] e(m1+m2x)

[
F (λn)cinj1

s (1− e−sτinj)
]

m2em2

(
1− m1

Pez

)
−m1em1

(
1− m2

Pez

) [
−ξ2g(s)

φ1(s, λn)− φ2(s, λn)

]

+
(1− e−sτinj)

s

[n1 − n2] e(n1+n2x)
[
cinj
2 +

ξ2g(s)c
inj
1

φ1(s,λn)−φ2(s,λn)

]
F (λn)

n1en1

(
1− n2

Pez

)
− n2en2

(
1− n1

Pez

) . (3.46)

Again, no analytical Laplace inversions of the above equations are possible. Thus, numerical Laplace
inversions are used to get back solutions in actual time domain [20].

4 Numerical case studies
Here, in order to test the correctness and to further get confidence on the obtained semi-analytical
solutions, the semi discrete high resolution finite volume scheme (HR-FVS) of Koren is applied
to numerically approximate the model equations [21, 22]. We also carry out several test cases to
determine the performance and accuracy of the model. The parameters used for the simulation,
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Table 1: Standard parameters used in the test problems.
Parameter Symbol Value

Length of column L 8.0 cm
External porosity εb 0.4
Internal porosity εp 0.333
Interstitial velocity u 2.0 cm/min

Axial dispersion coefficient Dz, (Pez) 2.6667× 10−2cm2/min, (600)
Radial dispersion coefficient Dr, (Peρ) 6.6667× 10−4cm2/min, (15)

Henry’s constant for component 1 a1 2.5
Henry’s constant for component 2 a2 0.5

Dimensionless constant η 2
Dimensionless constant ζ 50

which are taken from the ranges typically found in high performance liquid chromatography (HPLC)
applications, are given in Table 1. We have considered the case where only the reactant (component
1) is injected into the column, and it reacts depending on the coefficient of reaction to produce the
product (component 2). Figure 2 (a) shows the effects of the reaction rate constant ω1 for ρcore = 0.6
and Figure 2 (b) shows the same reaction rate constant effects for ρcore = 0. We see that in both

=75,1mm
omegaeffbeta0pt6.eps

=75,1mm
omegaeffbeta0.eps

Figure 2: Inner zone injection: Effects of ω1 on the concentration profiles for core-shell particles
and fully porous particles.

results for core-shell particles and fully porous particles given in Figure 2, for the case where there
is no reaction (i.e ω1 = 0), component 2 is not produced. We see also that for ρcore = 0.6, the
concentration profiles are narrower and less diffusive compared with the fully porous particles case
for ρcore = 0. It is observed also that in the cases where reaction occurs (i.e ω1 6= 0), more
product is produced in the case of fully porous particles as compared with that of the core-shell
particles. Moreover, it is clear that in both cases, component 1 with a larger adsorption equilibrium
constant elutes later from the column as compared to component 2 which has a smaller value of the
adsorption equilibrium constant. Figure 3 shows the comparison of the analytical and numerical
solutions. The numerical solutions were obtained by applying the suggested high-resolution finite

=75,1mm
ananumbeta0pt6.eps

=75,1mm
ananumbeta0.eps

Figure 3: Inner zone injection: Comparison of analytical and numerical solutions.

volume scheme [21], for a mesh size of 60× 30× 10 and was programmed in C language on a dual-
core Intel processor laptop computer with a random access memory of 8 gigabytes. The numerical
solutions are seen to show good agreements with the analytical solution, thereby increasing our
confidence in the obtained analytical solutions. The effects of the axial dispersion coefficient Pez
on the concentration profiles, obtained from the considered two types of boundary conditions are
shown in Figure 4. For small axial dispersion coefficient Pez = 10, the solutions of both boundary

=75,1mm
bceffectsc1.eps

=75,1mm
bceffectsc2.eps

Figure 4: Inner zone injection: Effects of the axial Peclet number on the concentration profiles
considering the two different boundary conditions.

conditions approach different values and the retention times also increase which in turn reduce the
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column efficiency. Figure 5 illustrates the effects of the radial dispersion coefficient Peρ on the
concentration profiles. Both components were again injected just as in the previous considered
cases and the injection was done from the inner zone. Figure 5 (a) shows that for small Peρ = 1.5,

=75,1mm
perho1pt5.eps

=75,1mm
perho150.eps

Figure 5: Inner zone injection: Effects of Peρ on the concentration profiles.

there is no effect on the concentration profiles due to faster radial dispersion. The effects are clearly
evident in Figure 5 (b) where the concentration profiles reduce at the middle of the column due to
a slow moving radial dispersion for the considered Peρ = 150. In Figure 6 (a), we see that slow

=75,1mm
innerzone3d.eps

=75,1mm
outerzone3d.eps

Figure 6: Inner and outer zone injections effects on the concentration profiles.

radial dispersion causes a large concentration profile at the inner region of the column for inner
zone injection as compared to the case of outer zone injection shown in Figure 6 (b).

5 Conclusion
We have successfully solved two-dimensional linear model equations of reactive liquid chromatog-
raphy for two components considering an irreversible reaction in a column packed with core-shell
particles. The semi-analytical solutions were derived through a combined application of Hankel and
Laplace transforms. The solutions were derived for first-type and second-type boundary conditions.
A high-resolution finite volume scheme was used to numerically approximate the model equations
and both the numerical solutions and the semi-analytical solutions were matched. From the results
of our present study, the use of core-shell particles for small sample or diluted mixture in reactive
chromatography provides no significant advantages over fully porous particles, for good column
performance under isothermal conditions.
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