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Abstract [10] modified the idea of [2] in which they introduced a shape parameter to an exponential model to 

obtain the weighted exponential distribution. In this article, we introduced two shape parameters 
to the existing weighted exponential distribution to develop the beta weighted exponential 
distribution using the logit of beta function by [12].  We studied the statistical properties of the 
new distribution. Parameter estimation was done by the method of maximum likelihood estimation 
with R software code. We then used a data set on survival times of guinea pigs injected with 
different amount of tubercle bacilli to compare properties of well-known distributions with those of 
the new distribution. Our comparison showed the new distribution as the much more flexible and 
versatile.  
 
 1   Introduction        Introducing shape parameter(s) into an exponential model is nothing new and 
there are various ways of achieving this. The use of logit of Beta distribution was 
introduced by [12] and quite a number research works have been based on this approach. 
. An extension of exponential distribution was provided by [14]   also using the logit of 
Beta distribution. [9] explored the generalized exponential distribution to provide an 
alternative to exponential and Weibull distributions. [2] initiated a method of obtaining 
weighted distributions from independently identically distributed (i.i.d.) random 
variables Y1 and Y2 based on the expression 

( ) = ( ) ( ) ( ), >  0      (1.1) 
where f(y) and F(y) were the pdf and cdf  of Y respectively and  was an unknown 
parameter. [10] slightly modified Azzalini’s approach to obtain the 
 
Weighted Exponential (WE) distribution defined as  

( ) = ( ) ,,  >  0    (1.2) 

where  and  were unknown parameters. 
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2   Material and Method 2.1 The Beta Weighted exponential (BWE) Distribution 2.2 The Probability Density Function (pdf) of BWE Distribution 
 

We upgraded the model by [10] using the logit of beta link function method of [12] that 
has been used extensively in literature. [8]   investigated on beta Weibull distribution, [1]  
proposed the beta pareto distribution, [4]   studied some statistical properties of 
exponentiated weighted Weibull distribution, [3] also analyzed life length of components 
estimates with beta-weighted Weibull distribution among others; they all used the 
method of logit of beta link function in their work. The link function is given as 

 ( ) = ( , ) [ ( )] [1 − ( )] ( ), a, b >  0       (2.2.1) 

where 

( ) = (1 + ) [exp(− ) (1 − exp(− )] 

( ) = [(1 + )(1 − exp(− ) + exp − (1 + ) − 1] 

where, 
, and > 0 are shape and scale parameter; ( )   ( )  are pdf and cdf 
respectively of parent distribution, i.e. weighed exponential distribution 
We substitute the  ( ) and  ( ) in (2.2.1) to obtain the pdf of beta weighted 
exponential probability density function as 

( ) = 1
( , )

(1 + )(1 − exp(− ) + exp − (1 + ) − 1  

1 − (1 + )(1 − exp(− )) + exp − (1 + ) − 1  

(1 + ) exp(− ) (1 − exp(− ))  

   , , , ,  ≈ ( , , , , > 0)  (2.2.2) 
where  was  shape parameter,    was scale parameter,     were additional 
shape parameters.  Expression (2.2.2) is the  of the proposed BWE distribution.  
We set   
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( ) = ( ) = (1 + )(1 − exp(− )) + exp − (1 + ) − 1  
to obtain 

= ( ) [ ( )( ( )] ( )( ( )) ( )   (2.2.3) 
Then expression (2.2.2) becomes  

( ) = ( , ) [ ( )] [1 − ( )] ( )  (2.2.4) 

Figure 1 to 5 below show the PDF of BWE at values of a=100,50,20,10,5; b=6,5,3,2.5,2
; =1.5; and  =2  

 Fig 1. Plot of  PDF of BWE at (a,b) = (100,6)      Fig 2. Plot of PDF of BWE at (a,b) = (50,5)  

         Fig 3. Plot of PDF of BWE at (a,b) = (20,3) Fig 4. Plot of PDF of BWE at (a,b) = (10,2.5) 

             Fig 5 Plot of PDF of BWE at (a,b) = (5,2) 

 

0 1 2 3 4 5

0
5

10
15

The PDF of BWE with a = 100, b=6, c = 1.5 and d = 2

x

Be
tap

df

0 1 2 3 4 5

0
2

4
6

8
10

The PDF of BWE with a = 50, b=5, c = 1.5 and d = 2

x

Be
tap

df

0 1 2 3 4 5

0
1

2
3

4
5

6
7

The PDF of BWE with a = 20, b=2.5, c = 1.5 and d = 2

x

Be
tap

df

0 1 2 3 4 5

0.0
0.5

1.0
1.5

2.0
2.5

3.0
3.5

The PDF of BWE with a = 10, b=3, c = 1.5 and d = 2

x

Be
tap

df

0 1 2 3 4 5

0.0
0.5

1.0
1.5

2.0
2.5

The PDF of BWE with a = 5, b=2, c = 1.5 and d = 2

x

Be
tap

df



INTERNATIONAL JOURNAL OF MATHEMATICAL ANALYSIS AND 
                                    OPTIMIZATION: THEORY AND APPLICATIONS 

                                                                                   VOL. 2015, PP. 55-66 
 

58 
 

2.3  Cumulative Distribution Function (CDF)  
The cumulative distribution function (cdf) of the Beta Weighted Exponential variable Y, 
derived from the pdf defined in equation (2.2.4) is given as   

( ) = ( ) = ( , ) [ ( )] [1 − ( )] ( )     (2.3.1) 
Hence, 

( ) = ( ; , )
( , )     (2.3.2) 

This is an Incomplete Beta function 
Figures 6 and 7 show graphs of cumulative distribution function of the typical Beta 
weighted exponential distribution for some values of the parameters. 
Figures 6 and 7 below are the graph of CDF of BWE Distribution at different values 
[ = 2, = 3, = = 4  = = 2; = 10, = 6, = = 2  = = 1] 

  2.4  Survival Rate Function  
The survival rate function of a random Beta weighted exponential variable Y with 
cumulative distribution function F(y) is given by     
   

( ) = 1 − ( )    (2.4.1) 
From equation (2.3.2), the survival rate function is obtained as 

                    ( ) = ( , ) ( ; , )
( , )    .(2.4.2) 

Figure 8 below is a graph of an example of the survival rate function based on the Beta 
weighted exponential distribution 
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2.5 Hazard Rate Function  
The hazard rate function of a random Beta weighted exponential variable Y is given as  

  ( ) = ( )
( )     (2.5.1) 

Substituting from equations (6) and (8), the hazard rate function simplifies as 
                       ( ) = [ ( )] [ ( )] ( )

( , ) ( ; , )               
(2.5.2) 

where w(y) is as given in equation (2.2.3) 
Figures 8 and 9 are the plots of the survival rate and Hazard Rate Function of BWE 
Distribution 

 Fig. 8 The Survival Rate Function of BWE Distribution   Fig. 9 Hazard Rate Function 
of BWE Distribution  
2.6 The Asymptotic Behaviour 
The limits of the PDF are values of expression (2.2.2) as → ∞ and → 0; it is easy to 
show that the limits of the probability density function (PDF), ( ),  of the Beta 
weighted exponential variable y are given as →∞ ( ) = 0 and → ( ) = 0. 
This confirms that the Beta weighted exponential distribution has mode(s). 
 
2.7 Special Sub-models  
Expression (2.2.2) is important as a generalized model whose sub-models coincide with 
some extant distributions that correspond respectively to special values of the 
parameters. Some of the sub-models include the following 

i. When, in eq. (2.2.2), = = 1 and =  ( = 0,1  = 1), the Beta weighted 
distribution becomes the weighted Weibull distribution [13]  
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ii. Putting = 1in (2.2.2), the generalized models give Lehmann type II exponential 
weighted distribution 

iii. Setting = 1 in expression (2.2.2) reduces the generalized distribution to the 
exponentiated exponential weighted distribution 
Also = = 1 reduces the generalized distribution to the parent distribution 
(weighted exponential) distribution. 

3  Moments and Generating Function (mgf) 
We derived the moment generating function  of our generalized  Beta Weighted 
Exponential (BWE) distribution from the works of [11]  which was also used in [3] to 
obtain the moment generating function (MGF)  of beta generated distributions.  The 
MGF ( ) = ( ) was given as  

              ( ) = ( , ) ∑ (−1) − 1 [ ( )] ( ) ( )∞
∞∞  (3.1) 

Substituting  ( ) and   ( ) as defined below  
( ) = (1 + ) [exp(− ) (1 − exp(− )] 

( ) = [(1 + )(1 − exp(− )) + exp − (1 + ) ] 
into the MGF ( ) in equation (3.1) gave  

( ) = 1
( , ) (−1) − 1∞ ∞

∞
 

 [( )( ( ) ( ) ] ( )  
   ( ) [ ( )( ( )]     (3.2) 

 
[13] gave the rth noncentral moment of the class of Weighted Weibull distribution ( . ; ) as  

          ′ = ( ) =  (1 + )Γ( ) 1 − (1 + )                   (3.3) 
which, for = 1,  like in the case on hand, reduces to  
 

        ′ = ( ) =  (1 + )Γ( + 1)[1 − (1 + ) ]                     (3.4) 
 
The rth noncentral moment of the Beta Weighted Weibull distribution would be given as  

( )′ = ∞ ( )  
i.e. 

( )′ = ∞ 1
( , ) [ ( )] [1 − ( )] ( )  
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where           
  ( ) = [ [ ( )]) [ ( )] ], ( ) = , = (1 + ) 
Then,  

( )′ = Γ( )
( , ) ∑ (−1) − 1∞ . 

 
[1 − c(y)] + [ ( )] − 1 ( )∞  

        = [ Γ( + 1)(1 − )]                   (3.5) 
where            = ∑ ( ) [ ( ( )) ( ) ] ( )∞∞

(  , ) ,  
We obtained the first four non-central moments ′  by putting  = 1, 2, 3  4 
respectively in eq. 3.5; e.g. ′  is given as 

′ = ( ) = Γ(2)(1 − )
( , ) (−1) − 1∞

 
Also, central moments , = 1,2,3,4, … … are related to noncentral moments ′  as 

= ∑ ′ ′ , where ′ =  and ′ = 1                                              (3.6) 
 Consequently, the mean and 2nd, 3rd, and 4th moments of the BWE distribution are given 
as   

= ′  
= ′ −  

= ′ − 3 ′ + 2   and 
= ′ − 4 ′ + 6 ′ −3  

where, 
 ′ = [ (1 − )]                     (3.7) 

 = [ Γ(3)(1 − )] = 2 [ (1 − )]  (3.8) 
            = [ Γ(4)(1 − )] = 6 [ (1 − )]  (3.9) 

             = [ Γ(5)(1 − )] = 24 [ (1 − )]   (3.10) 
Moments measures of Skewness,  and of excess kurtosis, , are respectively given as  

=     (3.11) 

= − 3    (3.12) 
Figure 10 below shows plot of Skewness-kurtosis of Survival Time of Guinea Pig Data set  
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 Figure 10: Skewness-kurtosis plot (Survival Time of Guinea Pig Data set)  4  Parameter Estimation 
4.1 Maximum Likelihood Estimation (MLEs) 
The maximum likelihood estimation (MLEs) of the parameter of ( , , , ) 
distribution has been derived from the study of [6] involving the log-likelihood function 
and from [3] and [4]; setting  = ( , , , ) , where = ( , )  where  is a vector of 
parameters. We had likelihood 

( ) = − [ ( , )] + ∑ log[ ( ; )] + ( − 1) ∑ log [ ( ; )] ( −
1) ∑ log [1 − ( ; )]                   (4.1.1) 

( ) = − [ ( , )] + ∑ log[ ( ; )] + ( − 1) ∑ log [ ( ; )]( −
        1) =1 log [1− ; ]                                                                                               (4.1.2) 

 Taking partial derivative of (4.1.2) with respect to ( , , , ), we get 
 ( ) = − ( , ) + ( − 1) ∑ log [ ( ; ]                                         (4.1.3) 

  ( ) = − ( , ) + ( − 1) ∑ log [1 − ( ; ]                                 (4.1.4) 
( ) = ∑ [ ( ; )]

[( ; )] + (a − 1) ∑ log [ ( ; )]
 ( ; ) + (b − 1) ∑ log [ [ ( ; )]

 ( ; ) ] 
(4.1.5)    

( ) ∑ [ ( ; )]
[( ; )] + (a − 1) ∑ log [ [ ( ; )]

 ( ; ) ] + (b − 1) ∑ log [ [ ( ; )]
 ( ; ) ]  (4.1.6) 

Equations (4.1.3) to (4.1.6) can be solved using iteration method (Newton Raphson) to 
obtain , ,  ,   the MLE of ( , , , ) respectively. 
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5 Result and Discussion 
5.1 Result of Survival Time of Guinea Pig Data 
This study used the data by [10] and studied by [5] on the survival times of guinea pigs 
injected with different amount of tubercle bacilli. The data are given below: 
12 15 22 24 24 32 32 33 34 38 38 43 44 48 52 53 54 54 55 56 57 58 58 59 60 60 60 60 61 
62 63 65 65 67 68 70 70 72 73 75 76 76 81 83 84 85 87 91 95 96 98 99 109 110 121 127 
129 131 143 146 146 175 175 211 233 258 258 263 297 341 341 376. 
 
Figures 11 – 14 shows Normal Quantile Plot, Density Plot, Histogram and Empirical 
Density and Cumulative Distribution plot of the data. 

      

 Fig. 11 Normal quantile of survival times of pigs Fig. 12 Density of survival times of pigs    
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Fig. 13:. Histogram of survival times of pigs             

 Fig. 14 Histogram and Empirical Density of survival times of pigs  
Min 1st  Q Med Mean 3rd Q Max Skewness Kurtosis 
12.00 54.75 70.00 99.82 112.80 376.00 1.7962 5.6144 
Table 1: Descriptive Statistics for survival time of Guinea pigs in days.  

 Model Estimate, Standard Error in Parentheses and p-value in asterisks 
     AIC BIC LogLik 

BWE 1.000e+00  (5.318e-04) <2e-16 *** 
9.619e-01  (7.038e-02) <2e-16 *** 

2.127e-02  (1.774e-03) <2e-16 *** 
5.210e-04  (5.343e-05) <2e-16 *** 

 812.839  821.9457  -402.4195 
EWE when b=1  

1.11031 (5.68100) <2e-16 *** 
 1 2.12286    (1.01403) < 2e-16 *** 

8.59040 (2.96594) 0.00378 ** 
 834.7892  841.6192  -414.3946 

LWE at  a=1  1 1.11031 (5.68100) <2e-16 *** 
2.12286    (1.01403) < 2e-16 *** 

8.59040 (2.96594) 0.00378 ** 
 834.7892  841.6192  -414.3946 

WE When a= =1  

 1       1 1.10281    (1.00401) < 2e-16 *** 
8.73212 (2.96672) 0.01412** 

 846.4306  850.9839  -421.2153 

Table 2: MLEs of the model parameters, the corresponding Standard Error and p-value   5.2 Discussion 
 We estimate parameters of the BWE, EWE, LWE and WE respectively using R 
software codes. Table 1 contains the descriptive statistics of the data set. The skewness 
value clearly reveals some asymmetry in the empirical distribution while the kurtosis 
measures the weight of tails in relation to the normal distribution [7]; the result in the 
Table 1 also shows excess of kurtosis; hence, the data calls for a more robust 
distribution/model that can accommodate all types of risk function as embedded in BWE 
distribution. Figure 10 shows the skewness-kurtosis feature of the data set.  However, 
Figures 1 – 5 show the plot of the PDF of BWE distribution for different values of the 
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parameters; the plots indicate positive and negative skewness i.e. the bathtub shape. 
Figures 6 and 7 show the plots of CDF of the BWE distribution at given values of the 
parameters and Figures 8 and 9 are plots of survival and hazard rates respectively. The 
hazard function is unimodal.  
  Table 2 above features the estimate of parameters ( , , ,  )  the log-likelihood, 
Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). In a 
nutshell, the values of AIC and BIC for the BWE distribution model were smaller than 
for other models; on this score, the BWE model provides a better representation of the 
Guinea pig data set. The asymptotic covariance matrix of the maximum likelihood 
estimates for the BWE distribution, which was generated from the inverse of Fisher’s 
information matrix and is given as  

=
2.827714e − 07 −1.020188e − 07  −1.020188e − 07 4.953495e − 03 8.075292e − 08 −7.664858e − 06−4.946238e − 06 −4.955421e − 068.075292e − 08 −4.946238e − 06  −7.664858e − 06 −4.955421e − 06  3.145951e − 06  1.704223e − 071.704223e − 07  2.855199e − 09

 

6 Conclusion 
This article introduced the Beta Weighted Weibull Exponential distribution as a 

generalized model where some extant models are sub-models. The statistical properties 
of the proposed distribution were derived mathematically; these included the moments, 
moment generating function, skewness, kurtosis and maximum likelihood estimation. 
Thus PDF, CDF, survival rate and hazard rate function were plotted using R – software 
code. The Log-Likelihood of beta weighted exponential (BWE) distribution is -402.4195 
and the Log-Likelihood of weighted exponential (WE) distribution is -421.2153, the 
selection criteria i.e. AIC and BIC of the BWE were 812.839 and 821.9457 while AIC and 
BIC of the WE were 846.4306 and 850.9839. The conclusion is that BWE is more efficient 
than WE distribution. The BWE distribution and its natural competitors were applied to 
guinea pig data; the result showed that BWE was a closer and more flexible 
representation of the distribution of the Guinea pig data.  
 
Acknowledgements 
This work was supported by friends. 
 
Competing financial interests 
We declared that no competing financial interests. 
 
 
References 
[1]  Akinsete, A., Famoye, F. and Lee, C., The beta Pareto Distribution. Statistics, 42(6), 547-563.http//dx.doi.org/10.1080/0233180801983876 (2008). 



INTERNATIONAL JOURNAL OF MATHEMATICAL ANALYSIS AND 
                                    OPTIMIZATION: THEORY AND APPLICATIONS 

                                                                                   VOL. 2015, PP. 55-66 
 

66 
 

[2]   Azzalini, A. A class of distribution which includes the normal ones.  Scandinavian.  Journal of Statistics, 12, 171-178. (1985). [3] Badmus, N. I. and Bamiduro, T. A., Life Length of Components estimates with Beta Weighted Weibull Distribution. Journal of Statistics: Advances in Theory and Applications, Volume 11, No. 2, 91-107. (2014). [4] Badmus, N. I and Bamiduro, T. A. Some Statistical Properties of Exponentiated Weighted Weibull Distribution. SOP Transaction Statistics and Analysis. Vol.1, No. 2. 1-11. (2014). [5] Bjerkedal, T. Acquisition of resistance in guinea pigs infected with different doses of virulent tubercle bacilli, American. J. Hyg. 72, 130–148. (1960). [6] Cordeiro, G. M., Alexandra and de Castro, M. Generalized Beta Generated distributions.  ICMA Centre. Discussion Papers in Finance DP 2011-05.  
[7] Delignette-Muller, M. L and Dutang C. An R Package for Fitting 

Distributions, http://cran.r-project.org/package. 1 – 23. (2014). 
[8] Famoye, F,  Lee, C  and  Olugbenga, O. The beta-weibull distribution. Journal of 

Statistical Theory and Applications, 4(2), 121-138. (2005) 
[9] Gupta, R. D. and Kundu, D. Generalized exponential distribution, Aust. N. Z. J. Stat. Vol. 41, 173–188. (1999). [10] Gupta, R. D. and Kundu, D. A new class of weighted exponential distributions, Statistics, 43(6), 621–634. (2009). [11] Hosking, J.R.M. L-moments analysis and estimation of distributions using linear combinations of order statistics. Journal Royal Statistical Society B, 52, 105-124. (1990). [12] Jones, M. C. Families of distributions arising from distributions of order statistics test 13,   1-43. (2004). [13] Mahdy, M. Ramadan. A class of weighted weibull distributions and its properties. Studies in Mathematical Sciences 6(1), 35-45. (2013). [14] Nadarajah, S. and Kotz, S. On the moments of the exponentiatedWeibull distribution. Communication in Statistics. Theory and Methods, 35, 253-256. (2005). 


