Common Fixed Point Results for Asymptotic Quasi-Contraction Mappings in Quasi-Metric Spaces

K. S. Eke ${ }^{1}$, H. O. Olaoluwa ${ }^{2 *}$, J. O. Olaleru ${ }^{3}$
1-3. Department of Mathematics, University of Lagos, Akoka, Lagos, Nigeria.
* Corresponding author: skanayo@unilag.edu.ng, holaoluwa@unilag.edu.ng*, jolaleru@unilag.edu.ng

Article Info

Received: 01 October 2023 Revised: 05 March 2024
Accepted: 08 March 2024 Available online: 15 March 2024

Abstract

In this article, two new classes of pairs $\{T, f\}$ consisting of an asymptotic quasi-contraction T with respect to a map f are introduced. The existence and uniqueness of the common fixed point of such pairs $\{T, f\}$ is then established in the context of a quasi-metric space X, when T and f are weakly compatible. The theorems obtained rely on some conditions on the orbit $O_{T, f}(x, \infty)$ of T at points $x \in X$ with respect to f, and are in fact, improvements of previously known results in the literature of metric-types. An example is given to validate the results obtained.

Keywords: Asymptotic quasi-contraction, Meir-Keeler type mappings, Weakly compatible maps, Orbits, Jungck sequence.
MSC2010: 32H50, 47H10.

1 Introduction

There are many generalizations of the fundamental contraction mapping theorem established by Banach [1] which served as pivotal tool for solving problems in analysis and applied mathematics. For instance see [2-6]. One of the most general contraction mapping was introduced by Ciric [7] in 1971. In 2003, Kirk [8] introduced asymptotic contraction mapping which is a generalization of Banach contraction mapping and established the fixed point of the operator in a complete metric space under certain conditions. Asymptotic contraction map is for example, applied in dynamical system to solve analytical problems. Several works have been carried out in this regard, see [9,10]. Meir-keeler [11] extended Banach contraction principle by proving the following result:

Let (X, d) be a complete metric space and f a self map of X. Assume that for every $\epsilon>0$, there exists $\delta>0$ such that: $\epsilon \leq d(x, y)<\epsilon+\delta$ implies $d(f x, f y)<\epsilon$ for all $x, y \in X$. Then f has a unique fixed point.

[^0]Suzuki [12] combined the works of Kirk [8] and Meir-Keeler [11] to introduce a class of map called asymptotic contraction of Meir-Keeler type (for short, ACMK). In 2008, Singh and Pant [13] extended the result of Suzuki [12] to more genaral maps. Our interest is in the result of Singh et al. [14] on maps that are called generalized asymptotic contraction of Meir-Keeler type (for short, GACMK).

Definition 1.1. Let (X, d) be a metric space, Y a subset of X, and $T, f: Y \rightarrow X$ two maps. The map T is called a generalized asymptotic contraction of Meiler-Keeler ype (in short GACMK) with respect to f if there is a sequence $\left\{\psi_{n}\right\}$ of self-maps on $[0, \infty)$ such that:
$\left(P_{1}\right) \limsup _{n \rightarrow \infty} \psi_{n}(\epsilon) \leq \epsilon$ for all $\epsilon \geq 0$;
$\left(P_{2}\right)$ for each $\epsilon>0$, there exist $\delta>0$ and $\nu \in \mathbb{N}$ such that $\psi_{\nu}(t) \leq \epsilon$ for all $t \in[\epsilon, \epsilon+\delta]$;
$\left(P_{3}\right) d\left(T^{n} x, T^{n} y\right)<\psi_{n}(M(x, y))$ for all $n \in \mathbb{N}$ and $x, y \in X$ with $M(x, y)>0$, where $M(x, y)=\max \left\{d(f x, f y), d(f x, T x), d(f y, T y), \frac{d(f x, T y)+d(f y, T x)}{2}\right\}$.
In the same reference, they stated the following result.
Theorem 1.2. Let (X, d) be a metric space and $T, f: Y \rightarrow X$ such that $T(Y) \subseteq f(Y)$. Let T be a GACMK with respect to f. If $T(Y)$ or $f(Y)$ is a complete subspace of X, then T and f have a coincidence point. Further, if $Y=X$, then T and f have a unique common fixed point provided that T and f commute at a coincidence point.

Recall that the following definitions of coincidence points and weakly compatible mappings:
Definition 1.3. [15] Let X be a set and T and f be two self maps of X. A point x in X is called a coincidence point of T and f if and only if $T x=f x$. We shall call $z:=T x=f x$ a point of coincidence of T and f.

Definition 1.4. [16] Two self maps T and f in a set X are said to be weakly compatible if they commute at their points of coincidence, that is, if $T x=f x$ for some $x \in X$, then $T f x=f T x$.

It should be noted that Definition 1.1 and Theorem 1.2 due to Singh et al. [14] pose a few problems:

1. for $x \in X$ and $n \in \mathbb{N}$, the point $T^{n} x$ is not defined, except if $Y=X$;
2. the function f may not satisfy $f(x)=x$ for all $x \in Y$. Therefore, a sequence ${ }^{1}\left\{x_{n}\right\}$ such that $T x_{n}=f x_{n+1}$ for all $n \geq 0$, may not satisfy $x_{n}=T^{n} x_{0}$ for all $n \geq 0$, an assumption which seem to have been used in several lines of their proof.

In this paper, our aim is to provide an ammendment of the maps of Singh et al. [14] and establish an ensing common fixed point theorem in the framework quasi-metric spaces. The following are needed definitions in the setting of quasi-metric spaces:

Definition 1.5. [17] Let X be a non-empty set. A function $d: X \times X \rightarrow[0, \infty)$ is said to be a quasi-metric on X if for any $x, y, z \in X$ the following holds:
(i) $d(x, y)=0$ if and only if $x=y$;
(ii) $d(x, z) \leq d(x, y)+d(y, z)$.

In such case, (X, d) is said to be a quasi-metric space.
Definition 1.6. [17-20] Let (X, d) be a quasi-metric space. A sequence $\left\{x_{n}\right\}$ in X is said to be:
(i) forward-convergent to some $x \in X$ (called the forward limit) if $\forall \epsilon>0 \exists N_{\epsilon} \in \mathbb{N}$: $d\left(x_{n}, x\right)<\epsilon$ $\forall n \geq N_{\epsilon}$; in other words, $\left\{x_{n}\right\}$ in X is forward-convergent to x if $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0$.

[^1](ii) backward-convergent to some $x \in X$ (called the backward limit) if $\forall \epsilon>0 \exists N_{\epsilon} \in \mathbb{N}$: $d\left(x, x_{n}\right)<$ $\epsilon \forall n \geq N_{\epsilon}$; in other words, $\left\{x_{n}\right\}$ in X is backward-convergent to x if $\lim _{n \rightarrow \infty} d\left(x, x_{n}\right)=0$.
(iii) convergent to some $x \in X$ if it is both forward-convergent and backward-convergent to x.
(iv) forward Cauchy (or left K-Cauchy) if $\forall \epsilon>0 \exists N_{\epsilon} \in \mathbb{N}$: $d\left(x_{n}, x_{n+k}\right)<\epsilon \forall n \geq N_{\epsilon} \forall k \in \mathbb{N}$.
(v) backward Cauchy (or right K-Cauchy) if $\forall \epsilon>0 \exists N_{\epsilon} \in \mathbb{N}$: $d\left(x_{n+k}, x_{n}\right)<\epsilon \forall n \geq N_{\epsilon} \forall k \in \mathbb{N}$.
(vi) Cauchy (or p-Cauchy) if $\forall \epsilon>0 \exists N_{\epsilon} \in \mathbb{N}$: $d\left(x_{n}, x_{m}\right)<\epsilon \forall n \geq N_{\epsilon} \forall k \in \mathbb{N}$. In other words, $\left\{x_{n}\right\}$ is Cauchy if it is forward Cauchy and backward Cauchy.
Definition 1.7. [21] A quasi-metric space X is said to be complete if every Cauchy sequence in X is convergent in X.

2 Generalized Asymptotic Contractions of Meir-Keeler type with respect to some functions

In the next section, we give ammend the definition of a generalized asymptotic contraction of MeirKeeler type as proposed by Singh et al. [14], then prove a common fixed point theorem in complete quasi-metric space.

2.1 Jungck sequence and orbits with respect to f

Suppose X is a non-empty set, Y is a non-empty subset of X, and $T, f: Y \rightarrow X$ such that $T(Y) \subseteq f(Y)$.

Choosing $x_{0} \in Y$, one can define a Jungck sequence $\left\{x_{n}\right\}$ of points in Y such that

$$
\begin{equation*}
T x_{n}=f x_{n+1}, \quad n=0,1,2, \ldots \tag{2.1}
\end{equation*}
$$

If f is the inclusion map, that is, such that $f(x)=x$ for any $x \in Y$, then by repetitive application of (2.1), the sequence $\left\{x_{n}\right\}$ is such that $x_{n}=T^{n} x_{0}$, or more generally, $x_{n+k}=T^{n} x_{k}$ for any $n, k \geq 0$, with the convention that T^{0} is the identity function on Y.

If f is not necessarily the inclusion map, and $x \in X$, the sequence of sets $\left\{\left(T f^{-1}\right)^{n}(x)\right\}_{n \geq 0}$ is defined as follows:

$$
\left(T f^{-1}\right)^{n}(x)= \begin{cases}\{x\} & \text { if } n=0 \tag{2.2}\\ \{T u: f(u)=x\} & \text { if } n=1 \\ \left\{T u: f(u) \in\left(T f^{-1}\right)^{n-1}(x)\right\} & \text { if } n>1\end{cases}
$$

Given that $\emptyset \neq T(Y) \subseteq f(Y)$, each $\left(T f^{-1}\right)^{n}(x)$ is non-empty and for $n>1$,

$$
\left(T f^{-1}\right)^{n}(x)=\left\{\begin{array}{l|l}
T u & \begin{array}{c}
\exists u_{1}, u_{2}, \cdots, u_{n-1} \in Y, f(u)=T u_{1}, f\left(u_{n-1}\right)=x \\
\text { and if } n>2, f\left(u_{1}\right)=T u_{2}, \ldots, f\left(u_{n-2}\right)=T u_{n-1}
\end{array} \tag{2.3}
\end{array}\right\}
$$

The Jungck sequence $\left\{x_{n}\right\}$ defined in (2.1) is such that for all $n, k \geq 0, T x_{n+k} \in\left(T f^{-1}\right)^{n}\left(T x_{k}\right)$, and in particular, $T x_{n} \in\left(f^{-1} T\right)^{n}\left(T x_{0}\right)$ and $T x_{n+1} \in\left(T f^{-1}\right)\left(T x_{n}\right)$.

Notice that when f is a bijection on Y, each $\left(T f^{-1}\right)^{n}(x)$ is the singleton. In the special case where $f(x)=x$ for all $x \in Y,\left(T f^{-1}\right)^{n}(x)=\left\{T^{n} x\right\}$ for each $n \geq 0$ and $x \in Y$.

In literature, orbits of self-maps and orbital completeness have been defined as follow:

Definition 2.1. [22] Let $T: X \rightarrow X$ be a self mapping on a metric space. For each $x \in X$ and for any positive whole number n, define the sets:

$$
O_{T}(x, n)=\left\{x, T x, T^{2} x, T^{3} x, \cdots, T^{n} x\right\}
$$

and

$$
O_{T}(x, \infty)=\left\{x, T x, T^{2} x, T^{3} x, \cdots, T^{n} x, \cdots\right\}
$$

The set $O_{T}(x, \infty)$ is called the orbit of T at x and the metric space X is called T - orbitally complete if every Cauchy sequence in $O_{T}(x, \infty)$ is convergent in X.

The following definition is an extension of the concepts of orbits and orbital completeness for maps for which Jungck sequences are defined:

Definition 2.2. Let $T, f: Y \rightarrow X$ be a two mappings defined on a subset Y of a set X, for which $T(Y) \subseteq f(Y)$. For each $x \in X$ and for any positive whole number n, the set

$$
O_{T, f}(x, n):=\left\{z \mid \quad z \in\left(T f^{-1}\right)^{i}(x), 0 \leq i \leq n\right\}=\bigcup_{i=0}^{n}\left(T f^{-1}\right)^{i}(x)
$$

will be called the n-orbit of T at x with respect to f, while the set

$$
O_{T, f}(x, \infty):=\left\{z \mid \quad z \in\left(T f^{-1}\right)^{i}(x), i \geq 0\right\}=\bigcup_{i=0}^{\infty}\left(T f^{-1}\right)^{i}(x)
$$

will be called the orbit of orbit of T at x with respect to f.
If X is endowed with a quasi-metric d, then X is called $\{T, f\}$-orbitally complete if every Cauchy sequence in $O_{T, f}(x, \infty)$ is convergent in X.
It immediately follows that the well-known concepts of orbits and orbital completeness of a map T are obtained when $f(x)=x$ for all $x \in Y$. Motre precisely, $O_{T, f}(x, n)$ becomes $O_{T}(x, n)$ and $O_{T, f}(x, \infty)$ becomes $O_{T}(x, \infty)$.

2.2 GACMK re-introduced

We can then re-introduce the definition of Generalized Asymptotic Contraction of Meir-Keeler type (GACMK) with respect to a function f :

Definition 2.3. Let (X, d) be a quasi-metric space, Y a subset of X, and $T, f: Y \rightarrow X$ two mappings. The map T is called generalized asymptotic contraction of Meir - Keeler type (GACMK, simply) with respect to f if there exists a sequence $\left\{\psi_{n}\right\}$ of functions from $[0, \infty)$ into itself satisfying the following:
$\left(\mathrm{G}_{1}\right) \limsup _{n \rightarrow \infty} \psi_{n}(\epsilon) \leq \epsilon$ for all $\epsilon>0$;
$\left(\mathrm{G}_{2}\right)$ for each $\epsilon>0$ there exist $\delta>0$ and $\nu \in \mathbb{N}$ such that $\psi_{\nu}(t) \leq \epsilon$ for all $t \in[\epsilon, \epsilon+\delta]$;
$\left(\mathrm{G}_{3}\right)$ For all $n \in \mathbb{N}$, and $x, y \in Y$ such that $M(x, y)>0$,

$$
\begin{equation*}
d(u, v)<\psi_{n}(M(x, y)) \tag{2.4}
\end{equation*}
$$

for all $u \in\left(T f^{-1}\right)^{n-1}(T x), v \in\left(T f^{-1}\right)^{n-1}(T y)$, where:

$$
\begin{equation*}
M(x, y)=\max \left\{d(f x, f y), d(f x, T x), d(f y, T y), \frac{d(f x, T y)+d(f y, T x)}{2}\right\} \tag{2.5}
\end{equation*}
$$

Remark 2.4.

1. It should be noted that Definition 2.3 differs with Definition 1.1 proposed by Singh et al. [14] in that the inequality (2.4), $d(u, v)<\psi_{n}(M(x, y))$, holds for any $u \in\left(T f^{-1}\right)^{n-1}(T x)$ and $v \in\left(T f^{-1}\right)^{n-1}(T y)$ rather than for $u=T^{n} x$ and $v=T^{n} y$ (which would only exist if $Y=X$).
2. Suppose $f(x)=x$ for all $x \in Y$, then for any $x, y \in Y$, we have that

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2}\right\}
$$

and $(u, v)=\left(T^{n} x, T^{n} y\right)$ for all $n \in \mathbb{N}, u \in\left(T f^{-1}\right)^{n-1}(T x)$, and $v \in\left(T f^{-1}\right)^{n-1}(T y)$. Under this condition, for any $n \in \mathbb{N}, d\left(T^{n} x, T^{n} y\right)<\psi_{n}(M(x, y))$ for $x, y \in Y$ such that $M(x, y)>0$, and
(i) if $\max \{d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)\}=d(x, y)$ in (iii) of Definition 2.3, T becomes an asymptotic contraction of Meir-Keeler type (or simply, ACMK) discussed in by Suzuki [12];
(ii) the case where $M(x, y)=\max \{d(x, y), d(x, T x), d(y, T y)\}$ for all $x, y \in X$ is discussed by Singh and Pant [13].

2.3 A fixed point theorem

Now we prove the following theorem on the existence and uniqueness of the common fixed point of a pair $\{T, f\}$ where T is a GACMK with respect to f.

Theorem 2.5. Let (X, d) be a quasi-metric space and $T, f: Y \rightarrow X$ such that $T(Y) \subseteq f(Y)$. Let T be a GACMK with respect to f, i.e., such that for all $n \in \mathbb{N}$ and $x, y \in Y$ such that $M(x, y)>0$,

$$
d(u, v)<\psi_{n}(M(x, y))
$$

for any $u \in\left(T f^{-1}\right)^{n-1}(T x)$ and $v \in\left(T f^{-1}\right)^{n-1}(T y)$, where

$$
M(x, y)=\max \left\{d(f x, f y), d(f x, T x), d(f y, T y), \frac{d(f x, T y)+d(f y, T x)}{2}\right\}
$$

and $\left\{\psi_{n}\right\}$ is a sequence of self-maps on $[0, \infty)$ such that:
$\left(\mathrm{G}_{1}\right) \limsup _{n \rightarrow \infty} \psi_{n}(\epsilon) \leq \epsilon$ for all $\epsilon \geq 0$;
$\left(\mathrm{G}_{2}\right)$ for each $\epsilon>0$, there exist $\delta>0$ and $\nu \in \mathbb{N}$ such that $\psi_{\nu}(t) \leq \epsilon$ for all $t \in[\epsilon, \epsilon+\delta]$.
Suppose further that:
$\left(\mathrm{G}_{4}\right)$ any two distinct elements z_{1}, z_{2} in $O_{T, f}(x, \infty), \frac{d\left(z_{1}, z_{2}\right)}{2}<d\left(z_{2}, z_{1}\right)$.
If $T(Y)$ or $f(Y)$ is a complete subspace of X, then T and f have a coincidence point. Further, if $Y=X$, then T and f have a unique common fixed point provided that T and f commute at a coincidence point.

Proof. Let $x_{0} \in Y$ be arbitrary chosen. Since $T(Y) \subset f(Y)$, we can define a Jungck sequence $\left\{x_{n}\right\}$ of points in Y, and a sequence $\left\{y_{n}\right\}$ in X such that

$$
y_{n}=T x_{n}=f x_{n+1}, \quad n=0,1,2, \ldots
$$

This means that

$$
\begin{equation*}
T x_{n+k} \in\left(T f^{-1}\right)^{n}\left(T x_{k}\right) \quad \forall n, k \geq 0 \tag{2.6}
\end{equation*}
$$

and that

$$
\begin{equation*}
d\left(T x_{n+i}, T x_{n+j}\right)<\psi_{n+1}\left(M\left(x_{i}, x_{j}\right)\right) \quad \text { for all } n \geq 0 \text { and } i, j \text { with } M\left(x_{i}, x_{j}\right)>0 \tag{2.7}
\end{equation*}
$$

First step: We prove by cases that T and f have a coincidence point if $T(Y)$ or $f(Y)$ is complete.
If there is $n \geq 0$ such that $T x_{n}=T x_{n+1}$, then x_{n+1} is a coincidence point of T and f, since $f x_{n+1}=T x_{n+1}$. Suppose now that $T x_{n} \neq T x_{n+1}$ for all $n \geq 0$.

For any $n \geq 0$, we have $d\left(f x_{n+1}, T x_{n+1}\right)=d\left(T x_{n}, T x_{n+1}\right)>0$, hence $M\left(x_{i}, x_{j}\right)>0$ for any distinct $i, j \geq 0$.

For any $n \geq 1$,

$$
\begin{align*}
d\left(T x_{n}, T x_{n+1}\right) & <\psi_{1}\left(M\left(x_{n}, x_{n+1}\right)\right) \\
& \leq M\left(x_{n}, x_{n+1}\right) \\
& =\max \left\{d\left(T x_{n-1}, T x_{n}\right), d\left(T x_{n}, T x_{n+1}\right), \frac{d\left(T x_{n-1}, T x_{n+1}\right)}{2}\right\} \tag{2.8}\\
& \leq \max \left\{d\left(T x_{n-1}, T x_{n}\right), d\left(T x_{n}, T x_{n+1}\right)\right\}
\end{align*}
$$

hence for all $n \geq 1$,

$$
\begin{cases}M\left(x_{n}, x_{n+1}\right) & =d\left(T x_{n-1}, T x_{n}\right) \tag{2.9}\\ d\left(T x_{n}, T x_{n+1}\right) & <d\left(T x_{n-1}, T x_{n}\right) .\end{cases}
$$

Thus, the sequence $\left\{d\left(T x_{n}, T x_{n+1}\right)\right\}_{n \geq 0}$ is decreasing and bounded below hence converges to some $\alpha \geq 0$, and $d\left(T x_{n}, T x_{n+1}\right)>\alpha$ for all $n \geq 0$.

Suppose $\alpha>0$. Since $0<\alpha<d\left(T x_{0}, T x_{1}\right)$, there are $\delta_{1}>0$ and $\mu_{1} \in \mathbb{N}$ such that $\psi_{\mu_{1}}(t) \leq \alpha$ for all $t \in\left[\alpha, \alpha+\delta_{1}\right]$. By definition of α, there is $\mu_{2} \in \mathbb{N}$ such that $M\left(x_{\mu_{2}}, x_{\mu_{2}+1}\right)=d\left(T x_{\mu_{2}-1}, T x_{\mu_{2}}\right)<$ $\alpha+\delta_{1}$. Therefore, $d\left(T x_{\mu_{2}+\mu_{1}-1}, T x_{\mu_{2}+\mu_{1}}\right)<\psi_{\mu_{1}}\left(M\left(x_{\mu_{2}}, x_{\mu_{2}+1}\right)\right) \leq \alpha$, a contradiction. Thus $\alpha:=\lim _{n \rightarrow \infty} d\left(T x_{n}, T x_{n+1}\right)=0$.
Next we show that $\left\{T x_{n}\right\}$ is forward-Cauchy sequence. Assuming $\left\{y_{n}\right\}$ is not a forward-Cauchy sequence, there exists $\beta>0$ and increasing sequences $\left\{m_{k}\right\}$ and $\left\{n_{k}\right\}$ of positive integers such that for all $k \in \mathbb{N}, m_{k}<n_{k}, d\left(T x_{m_{k}}, T x_{n_{k}}\right) \geq \beta$ and $d\left(T x_{m_{k}}, T x_{n_{k}-1}\right)<\beta$. By the triangle inequality,

$$
d\left(T x_{m_{k}}, T x_{n_{k}}\right) \leq d\left(T x_{m_{k}}, T x_{n_{k}-1}\right)+d\left(T x_{n_{k}-1}, T x_{n_{k}}\right),
$$

and as $k \rightarrow \infty, d\left(T x_{m_{k}}, T x_{n_{k}}\right) \rightarrow \beta$. We also have that:

$$
\begin{aligned}
d\left(T x_{m_{k}}, T x_{n_{k}}\right) & <\psi_{1}\left(M\left(x_{m_{k}}, x_{n_{k}}\right)\right) \\
& =\psi_{1}\left(\max \left\{\begin{array}{l}
d\left(T x_{m_{k}-1}, T x_{n_{k}-1}\right), d\left(T x_{m_{k}-1}, T x_{m_{k}}\right) \\
d\left(T x_{n_{k}-1}, T x_{n_{k}}\right), \frac{d\left(T x_{m_{k}-1}, T x_{n_{k}}\right)+d\left(T x_{n_{k}-1}, T x_{m_{k}}\right)}{2}
\end{array}\right\}\right),
\end{aligned}
$$

hence as $k \rightarrow \infty, \beta \leq \psi_{1}(\beta)<\beta$, a contradiction. Thus $\left\{T x_{n}\right\}$ is a forward-Cauchy sequence.
We may prove similarly that $\left\{T x_{n}\right\}$ is a backward-Cauchy sequence. Indeed, for any $n \geq 0$, we have $d\left(T x_{n+1}, f x_{n+1}\right)=d\left(T x_{n+1}, T x_{n}\right)>0$, hence $M\left(x_{i}, x_{j}\right)>0$ for any distinct $i, j \geq 0$. For any $n \geq 1$,

$$
\begin{align*}
d\left(T x_{n+1}, T x_{n}\right) & <\psi_{1}\left(M\left(x_{n+1}, x_{n}\right)\right) \\
& \leq M\left(x_{n+1}, x_{n}\right) \\
& =\max \left\{d\left(T x_{n}, T x_{n-1}\right), d\left(T x_{n+1}, T x_{n}\right), \frac{d\left(T x_{n+1}, T x_{n-1}\right)}{2}\right\} \tag{2.10}\\
& \leq \max \left\{d\left(T x_{n}, T x_{n-1}\right), d\left(T x_{n+1}, T x_{n}\right)\right\}
\end{align*}
$$

hence for all $n \geq 1$,

$$
\begin{cases}M\left(x_{n+1}, x_{n}\right) & =d\left(T x_{n}, T x_{n-1}\right) \tag{2.11}\\ d\left(T x_{n+1}, T x_{n}\right) & <d\left(T x_{n}, T x_{n-1}\right) .\end{cases}
$$

The sequence $\left\{d\left(T x_{n+1}, T x_{n}\right)\right\}_{n \geq 0}$ is decreasing and bounded below hence converges to some $\gamma \geq 0$, and $d\left(T x_{n+1}, T x_{n}\right)>\gamma$ for all $n \geq 0$. In fact, $\gamma=0$ and $\lim _{n \rightarrow \infty} d\left(T x_{n+1}, T x_{n}\right)=0$. To see this, assume $\gamma>0$. Since $0<\gamma<d\left(T x_{1}, T x_{0}\right)$, there are $\eta_{1}>0$ and $\zeta_{1} \in \mathbb{N}$ such that $\psi_{\zeta_{1}}(t) \leq \gamma$ for all $t \in\left[\gamma, \gamma+\eta_{1}\right]$. By definition of γ, there is $\zeta_{2} \in \mathbb{N}$ such that $M\left(x_{\zeta_{2}+1}, x_{\zeta_{2}}\right)=d\left(T x_{\zeta_{2}}, T x_{\zeta_{2}-1}\right)<\gamma+\eta_{1}$. Therefore, $d\left(T x_{\zeta_{2}+\zeta_{1}}, T x_{\zeta_{2}+\zeta_{1}-1}\right)<\psi_{\zeta_{1}}\left(M\left(x_{\zeta_{2}+1}, x_{\zeta_{2}}\right)\right) \leq \gamma$, a contradiction.

If one assumes $\left\{T x_{n}\right\}$ is not a backward-Cauchy sequence, there would exist $\epsilon>0$ and increasing sequences $\left\{m_{k}\right\}$ and $\left\{n_{k}\right\}$ of positive integers such that for all $k \in \mathbb{N}, m_{k}<n_{k}, d\left(T x_{n_{k}}, T x_{m_{k}}\right) \geq \epsilon$ and $d\left(T x_{n_{k}-1}, T x_{m_{k}}\right)<\epsilon$. By the triangle inequality,

$$
d\left(T x_{n_{k}}, T x_{m_{k}}\right) \leq d\left(T x_{n_{k}}, T x_{n_{k}-1}\right)+d\left(T x_{n_{k}-1}, T x_{m_{k}}\right)
$$

and as $k \rightarrow \infty, d\left(T x_{n_{k}}, T x_{m_{k}}\right) \rightarrow \epsilon$. Therefore, letting $k \rightarrow \infty$ in the following

$$
\begin{aligned}
d\left(T x_{n_{k}}, T x_{m_{k}}\right) & <\psi_{1}\left(M\left(x_{n_{k}}, x_{m_{k}}\right)\right) \\
& =\psi_{1}\left(\max \left\{\begin{array}{l}
d\left(T x_{n_{k}-1}, T x_{m_{k}-1}\right), d\left(T x_{n_{k}-1}, T x_{n_{k}}\right) \\
d\left(T x_{m_{k}-1}, T x_{m_{k}}\right), \frac{d\left(T x_{n_{k}-1}, T x_{m_{k}}\right)+d\left(T x_{m_{k}-1}, T x_{n_{k}}\right)}{2}
\end{array}\right\}\right),
\end{aligned}
$$

hence as $k \rightarrow \infty, \beta \leq \psi_{1}(\beta)<\beta$, a contradiction. Thus $\left\{T x_{n}\right\}$ is a backward-Cauchy sequence.
The sequence $\left\{T x_{n}\right\}$ is both forward and backward Cauchy hence it is a Cauchy sequence.
If $f(Y)$ is complete, then the Cauchy sequence $\left\{T x_{n}\right\}$ as a Cauchy sequence in $f(Y)$ converges to some element $f(u)$, where $u \in Y$. If there is $n_{0} \geq 0$ such that $M\left(x_{n_{0}}, u\right)=0$, then $f u=T u$. Otherwise, for each $n \in \mathbb{N}$,

$$
\begin{aligned}
d\left(T x_{n}, T u\right) & <\psi_{1}\left(M\left(x_{n}, u\right)\right) \\
& =\psi_{1}\left(\max \left\{d\left(f x_{n}, f u\right), d\left(f x_{n}, T x_{n}\right), d(f u, T u), \frac{d\left(f x_{n}, T u\right)+d\left(f u, T x_{n}\right)}{2}\right\}\right)
\end{aligned}
$$

Taking $n \rightarrow \infty, d(f u, T u) \leq \psi_{1}(\max \{d(f u, T u)\})$, hence $d(f u, T u)=0$ and $f u=T u$. The same conclusion is easily obtained if $T(Y)$ is assumed to be complete.

Second step: We prove that if $Y=X$, then T and f have a unique common fixed point provided T and f are weakly compatible.
$T u=f u$ and T and f are weakly compatible, hence $T f u=f T u$ and in fact, $T T u=T f u=$ $f T u=f f u$.

Suppose $T T u \neq T u$. Then $M(u, T u)>0$ and since $T u \in\left(T f^{-1}\right)^{0}(T u)$ and $T(T u) \in\left(T f^{-1}\right)^{0}(T(T u))$,

$$
\begin{aligned}
d(T u, T T u) & \leq \psi_{1}(M(u, T u)) \\
& =\psi_{1}\left(\max \left\{d(f u, f T u), d(f u, T u), d(f T u, T T u), \frac{d(f u, T T u)+d(f T u, T u)}{2}\right\}\right) \\
& =\psi(\max \{d(T u, T T u)\})
\end{aligned}
$$

Thus $d(T u, T T u)=0$, so $T u=T T u=f T u$. Theorefore, $z:=T u$ is a common fixed point of T and f.

To prove the uniqueness of the common fixed point of T and f, we assume v to be another common fixed point of T and f such that $T u \neq v$. Then:

$$
\begin{aligned}
d(z, v)=d(T z, T v) & \leq \psi_{1}(M(z, v)) \\
& \leq \psi_{1}\left(\max \left\{d(f z, f v), d(f z, T z), d(f v, T v), \frac{d(f v, T z)+d(f z, T v)}{2}\right\}\right) \\
& =\psi_{1}\left(\max \left\{d(z, v), \frac{d(v, z)+d(z, v)}{2}\right\}\right)
\end{aligned}
$$

which implies that

$$
\begin{equation*}
d(z, v)<\frac{d(v, z)+d(z, v)}{2} \tag{2.12}
\end{equation*}
$$

Similarly,

$$
\begin{aligned}
d(v, z)=d(T v, T z) & \leq \psi_{1}(M(v, z)) \\
& \leq \psi_{1}\left(\max \left\{d(f v, f z), d(T v, f v), d(T z, f z), \frac{d(T v, f z)+d(T z, f v)}{2}\right\}\right) \\
& \leq \psi_{1}\left(\max \left\{d(v, z), \frac{d(v, z)+d(z, v)}{2}\right\}\right)
\end{aligned}
$$

which implies that

$$
\begin{equation*}
d(v, z)<\frac{d(v, z)+d(z, v)}{2} \tag{2.13}
\end{equation*}
$$

Combining inequalities (2.12) and (2.13), $d(v, z)+d(z, v)<d(v, z)+d(z, v)$, a contradiction. Thus $z=v$: the common fixed point is unique.

Note that Theorem 2.5 provides an erratum to the result of Singh et al. [14] in metric spaces:
Theorem 2.6. Let (X, d) be a metric space and $T, f: Y \rightarrow X$ such that $T(Y) \subseteq f(Y)$. Let T be a $G A C M K$ with respect to f, i.e., such that for all $n \in \mathbb{N}$ and $x, y \in Y$ such that $M(x, y)>0$,

$$
d(u, v)<\psi_{n}(M(x, y))
$$

for any $u \in\left(T f^{-1}\right)^{n-1}(T x)$ and $v \in\left(T f^{-1}\right)^{n-1}(T y)$, where

$$
M(x, y)=\max \left\{d(f x, f y), d(f x, T x), d(f y, T y), \frac{d(f x, T y)+d(f y, T x)}{2}\right\}
$$

and $\left\{\psi_{n}\right\}$ is a sequence of self-maps on $[0, \infty)$ such that:
$\left(P_{1}\right) \limsup _{n \rightarrow \infty} \psi_{n}(\epsilon) \leq \epsilon$ for all $\epsilon \geq 0$;
$\left(P_{2}\right)$ for each $\epsilon>0$, there exist $\delta>0$ and $\nu \in \mathbb{N}$ such that $\psi_{\nu}(t) \leq \epsilon$ for all $t \in[\epsilon, \epsilon+\delta]$.
If $T(Y)$ or $f(Y)$ is a complete subspace of X, then T and f have a coincidence point. Further, if $Y=X$, then T and f have a unique common fixed point provided that T and f commute at a coincidence point.
Proof. The Theorem follows from Theorem 2.5. The condition $\left(\mathrm{G}_{4}\right)$ is automatically satisfied in a metric space given the symmetry of a metric.

A careful analysis of the proof of Theorem 2.5 reveals that condition $\left(\mathrm{G}_{4}\right)$ is not necessary if $M(x, y)$ is replaced with $\max \{d(f x, f y), d(f x, T x), d(f y, T y)\}$. Therefore, we have the following result:
Theorem 2.7. Let (X, d) be a quasi-metric space and $T, f: Y \rightarrow X$ such that $T(Y) \subseteq f(Y)$. Let T be a GACMK with respect to f, i.e., such that for all $n \in \mathbb{N}$ and $x, y \in Y$ such that $\{d(f x, f y), d(f x, T x), d(f y, T y)\} \neq\{0\}$,

$$
d(u, v)<\psi_{n}(\max \{d(f x, f y), d(f x, T x), d(f y, T y)\})
$$

for any $u \in\left(T f^{-1}\right)^{n-1}(T x)$ and $v \in\left(T f^{-1}\right)^{n-1}(T y)$, where

$$
M(x, y)=\max \left\{d(f x, f y), d(f x, T x), d(f y, T y), \frac{d(f x, T y)+d(f y, T x)}{2}\right\}
$$

and $\left\{\psi_{n}\right\}$ is a sequence of self-maps on $[0, \infty)$ such that:
$\left(\mathrm{G}_{1}\right) \limsup _{n \rightarrow \infty} \psi_{n}(\epsilon) \leq \epsilon$ for all $\epsilon \geq 0$;
$\left(\mathrm{G}_{2}\right)$ for each $\epsilon>0$, there exist $\delta>0$ and $\nu \in \mathbb{N}$ such that $\psi_{\nu}(t) \leq \epsilon$ for all $t \in[\epsilon, \epsilon+\delta]$.
If $T(Y)$ or $f(Y)$ is a complete subspace of X, then T and f have a coincidence point. Further, if $Y=X$, then T and f have a unique common fixed point provided that T and f commute at a coincidence point.

3 A fixed point theorem for asymptotic quasi-contractions

In this section, we consider the case where there is a real number $c \in(0,1)$ such that $\psi_{n}(t)=c t$ for all $t \in[0, \infty)$ and every $n \in \mathbb{N}$, albeit, $M(x, y)$ is further relaxed.

Theorem 3.1. Let (X, d) be a quasi-metric space and $T, f: Y \rightarrow X$ such that $T(Y) \subseteq f(Y)$. Suppose also that there is $c \in(0,1)$ such that for all $n \in \mathbb{N}$ and $x, y \in Y$ with $M(x, y)>0$,

$$
\begin{equation*}
d(u, v) \leq c M(x, y) \tag{3.1}
\end{equation*}
$$

for any $u \in\left(T f^{-1}\right)^{n-1}(T x)$ and $v \in\left(T f^{-1}\right)^{n-1}(T y)$, where

$$
M(x, y)=\max \left\{\begin{array}{l}
d(f x, f y), d(f y, f x), d(f x, T x), d(T x, f x), d(f y, T y) \tag{3.2}\\
d(T y, f y), d(f x, T y), d(T y, f x), d(f y, T x), d(T x, f y)
\end{array}\right\}
$$

If $T(Y)$ or $f(Y)$ is $\{T, f\}$-orbitally complete, then T and f have a coincidence point. Further, if $Y=X$, then T and f have a unique common fixed point provided that T and f commute at a coincidence point.

Proof. Let $x_{0} \in Y$ be arbitrary chosen. Since $T(Y) \subset f(Y)$, we can define a Jungck sequence $\left\{x_{n}\right\}$ of points in Y such that

$$
T x_{n}=f x_{n+1}, \quad n=0,1,2, \ldots
$$

Step 1: Suppose $T(Y)$ or $f(Y)$ is $\{T, f\}$-orbitally complete. We want to show that T and f have a coincidence point. We distinguish two cases:

Case 1: If there is $n \geq 0$ such that $T x_{n}=T x_{n+1}$, then x_{n+1} is a coincidence point of T and f, since $f x_{n+1}=T x_{n+1}$.

Case 2: Suppose now that $T x_{n} \neq T x_{n+1}$ for all $n \geq 0$. For any $n \geq 0$, we have $d\left(f x_{n+1}, T x_{n+1}\right)=$ $d\left(T x_{n}, T x_{n+1}\right)>0$, hence $M\left(x_{i}, x_{j}\right)>0$ for any distinct $i, j \geq 0$.

If we let $D(x, y)=\max \{d(x, y), d(y, x)\}$ for all $x, y \in X$, the pair (X, D) is a metric space and conditions (3.12) and (3.4) become for all $x, y \in X$ such that $N(x, y)>0$:

$$
\begin{equation*}
D(u, v) \leq c N(x, y) \tag{3.3}
\end{equation*}
$$

for all $u \in\left(T f^{-1}\right)^{n-1}(T x)$ and $v \in\left(T f^{-1}\right)^{n-1}(T y)$, where

$$
\begin{equation*}
N(x, y)=\max \{D(f x, f y), D(f x, T x), D(f y, T y), D(f x, T y), D(f y, T x)\} \tag{3.4}
\end{equation*}
$$

Let $n \geq 2$ and $i, j \geq 1$ such that $1 \leq i<j \leq n$.
Since $T x_{i} \in\left(T f^{-1}\right)^{i-1}\left(T x_{1}\right), T x_{j} \in\left(T f^{-1}\right)^{i-1}\left(T x_{j-i+1}\right)$, and $M\left(x_{1}, x_{j-i+1}\right)>0$, we have that

$$
\begin{align*}
D\left(T x_{i}, T x_{j}\right) & \leq c N\left(x_{1}, x_{j-i+1}\right) \\
& \leq c \max \left\{\begin{array}{l}
D\left(T x_{0}, T x_{j-i}\right), D\left(T x_{0}, T x_{1}\right), D\left(T x_{j-i}, T x_{j-i+1}\right) \\
D\left(T x_{0}, T x_{j-i+1}\right), D\left(T x_{j-i}, T x_{1}\right)
\end{array}\right\} \tag{3.5}\\
& \leq c \operatorname{diam}\left(O_{T, f}\left(T x_{0}, n\right)\right)
\end{align*}
$$

where

$$
\operatorname{diam}\left(O_{T, f}\left(T x_{0}, n\right)\right):=\sup \left\{D\left(z_{1}, z_{2}\right): z_{1}, z_{2} \in O_{T, f}\left(T x_{0}, n\right)\right\}
$$

In particular, for all $n \geq 2$,

$$
D\left(T x_{1}, T x_{n}\right) \leq c \operatorname{diam}\left(O_{T, f}\left(T x_{0}, n\right)\right)
$$

Given $\left.n \geq 1, O_{T, f}\left(T x_{0}, n\right)\right)$ is finite hence, there is $m \in\{2,3, \cdots, n\}$ such that

$$
\begin{equation*}
D\left(T x_{0}, T x_{m}\right)=\operatorname{diam}\left(O_{T, f}\left(T x_{0}, n\right)\right) \tag{3.6}
\end{equation*}
$$

Now, for $n \geq 3$,

$$
\begin{aligned}
D\left(T x_{1}, T x_{m}\right) & \leq c N\left(x_{1}, x_{m}\right) \\
& =c \max \left\{\begin{array}{l}
D\left(T x_{0}, T x_{m-1}\right), D\left(T x_{0}, T x_{1}\right), D\left(T x_{m-1}, T x_{m}\right) \\
D\left(T x_{0}, T x_{m}\right), D\left(T x_{m-1}, T x_{1}\right)
\end{array}\right\}
\end{aligned}
$$

hence $m>2$,

$$
\max \left\{\begin{array}{l}
D\left(T x_{0}, T x_{m-1}\right), D\left(T x_{0}, T x_{1}\right), D\left(T x_{m-1}, T x_{m}\right) \\
D\left(T x_{0}, T x_{m}\right), D\left(T x_{m-1}, T x_{1}\right)
\end{array}\right\}=D\left(T x_{0}, T x_{m}\right)
$$

so $D\left(T x_{1}, T x_{m}\right) \leq c D\left(T x_{0}, T x_{m}\right)$ and

$$
\begin{aligned}
D\left(T x_{0}, T x_{m}\right) & \leq D\left(T x_{0}, T x_{1}\right)+D\left(T x_{1}, T x_{m}\right) \\
& \leq D\left(T x_{0}, T x_{1}\right)+c D\left(T x_{0}, T x_{m}\right)
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
D\left(T x_{0}, T x_{m}\right) \leq \frac{1}{1-c} D\left(T x_{0}, T x_{1}\right) \tag{3.7}
\end{equation*}
$$

From (3.6) and (3.7), the sequence $\left\{\operatorname{diam}\left(O_{T, f}\left(T x_{0}, n\right)\right)\right\}_{n \geq 3}$ is bounded above; since it is also increasing, it converges to the positive number $\operatorname{diam}\left(O_{T, f}\left(T x_{0}, \infty\right)\right)$.

To show that $\left\{T x_{n}\right\}$ is a Cauchy sequence, let $n, m \in \mathbb{N}$ with $n<m$. Since $T x_{n} \in\left(T f^{-1}\right)^{0}\left(T x_{n}\right)$, $T x_{m} \in\left(T f^{-1}\right)^{0}\left(T x_{m}\right)$, and $M\left(x_{n}, x_{m}\right)>0$, we have that

$$
\begin{align*}
D\left(T x_{n}, T x_{m}\right) & \leq c N\left(x_{n}, x_{m}\right) \\
& \leq c \max \left\{\begin{array}{l}
D\left(T x_{n-1}, T x_{m-1}\right), D\left(T x_{n-1}, T x_{n}\right), \\
D\left(T x_{m-1}, T x_{m}\right), D\left(T x_{n-1}, T x_{m}\right), D\left(T x_{m-1}, T x_{n}\right)
\end{array}\right\} \tag{3.8}\\
& \leq c \operatorname{diam}\left(O_{T, f}\left(T x_{n-1}, m-n+1\right)\right)
\end{align*}
$$

Repeating the argument that led to (3.6), there is $m_{1} \in\{2,3, \ldots, m-n+1\}$ such that

$$
\begin{equation*}
D\left(T x_{n-1}, T x_{n-1+m_{1}}\right)=\operatorname{diam}\left(O_{T, f}\left(T x_{n-1}, m-n+1\right)\right) \tag{3.9}
\end{equation*}
$$

Thus, from (3.8),

$$
\begin{align*}
D\left(T x_{n}, T x_{m}\right) & \leq c \operatorname{diam}\left(O_{T, f}\left(T x_{n-1}, m-n+1\right)\right) \\
& =c D\left(T x_{n-1}, T x_{n-1+m_{1}}\right) \\
& \leq c^{2} \operatorname{diam}\left(O_{T, f}\left(T x_{n-2}, m_{1}+1\right)\right) \tag{3.10}\\
& \leq c^{2} \operatorname{diam}\left(O_{T, f}\left(T x_{n-2}, m-n+2\right)\right)
\end{align*}
$$

Repeating the process, one obtains:

$$
\begin{aligned}
D\left(T x_{n}, T x_{m}\right) & \leq c^{n} \operatorname{diam}\left(O_{T, f}\left(T x_{0}, m\right)\right) \\
& \leq c^{n} \operatorname{diam}\left(O_{T, f}\left(T x_{0}, \infty\right)\right)
\end{aligned}
$$

Thus, as $n, m \rightarrow \infty, D\left(T x_{n}, T x_{m}\right) \rightarrow 0$, hence $\left\{T x_{n}\right\}$ is a Cauchy sequence in $X . f(Y)$ or $T(Y)$ being $\{T, f\}$-orbitally complete, $\left\{T x_{n}\right\}$ has a limit, say $f u$, where $u \in X$. Suppose that $f u \neq T u$; then $N\left(u, x_{n}\right)>0$ for all $n \geq 1$, and

$$
\begin{align*}
D\left(T u, T x_{n}\right) & \leq c N\left(u, x_{n}\right) \\
& =c \max \left\{\begin{array}{l}
D\left(f u, T x_{n-1}\right), D(f u, T u), D\left(T x_{n-1}, T x_{n}\right) \\
D\left(T x_{n-1}, T u\right), D\left(f u, T x_{n}\right)
\end{array}\right\} . \tag{3.11}
\end{align*}
$$

Thus, as $n \rightarrow \infty, D(T u, f u) \leq c D(f u, T u)$, a contradiction. Thus $D(T u, f u)=0$ and $T u=f u$. u is a coincidence point of T and f.

Step 2: Now, we show that if $Y=X$, then T and f have a unique common fixed point.
$T u=f u$, and T and f commute at their conicidence point u, hence $T T u=T f u=f T u=f f u$. Therefore, if one supposes that $T u \neq T T u$, then $N(u, T u)>0$ and

$$
D(T u, T T u) \leq c N(u, T u)=c D(T u, T T u)
$$

a contradiction. Therefore $D(T u, T T u)=0$ and $T T u=T u=f T u: T u$ is a common fixed point of T and f.

Step 3: To show that $z:=T u$ is the only common fixed point of T and f, suppose v is another a common fixed point of the pair $\{T, f\}$. We have that $z \neq u$ so $N(z, v)>0$ and

$$
D(z, v)=D(T z, T v) \leq c N(z, v)=c D(z, v)
$$

a contradiction. Thus $D(z, v)=0$ and $z=v$.
The following corollary holds in metric spaces:
Corollary 3.2. Let (X, d) be a metric space and $T, f: Y \rightarrow X$ mappings such that $T(Y) \subseteq f(Y)$. Suppose also that there is $c \in(0,1)$ such that for all $n \in \mathbb{N}$ and $x, y \in Y$ with $M(x, y)>0$,

$$
\begin{equation*}
d(u, v) \leq c M(x, y) \tag{3.12}
\end{equation*}
$$

for any $u \in\left(T f^{-1}\right)^{n-1}(T x)$ and $v \in\left(T f^{-1}\right)^{n-1}(T y)$, where

$$
\begin{equation*}
M(x, y)=\max \{d(f x, f y), d(f x, T x), d(f y, T y), d(f x, T y), d(f y, T x)\} \tag{3.13}
\end{equation*}
$$

If $T(Y)$ or $f(Y)$ is $\{T, f\}$-orbitally complete, then T and f have a coincidence point. Further, if $Y=X$, then T and f have a unique common fixed point provided that T and f commute at a coincidence point.

4 Example

To validate the results obtained, we construct the following example of the applicability of Theorem 2.5.

Example 4.1. Let $X=[1,2]$ be equipped with the usual metric $d(x, y)=|x-y|$. Let $T, f: X \rightarrow X$ be defined by: $T x=\frac{x+2}{3}$ and $f x=\frac{x+1}{2}$ for all $x \in[1,2]$. Here, $T(X)=\left[1, \frac{4}{3}\right]$ and $f(X)=\left[1, \frac{3}{2}\right]$ hence $T(X) \subset f(X)$. Here, f is bijective, and $f^{-1}(x)=2 x-1$ for all $x \in\left[1, \frac{3}{2}\right]$. Therefore, $\left(T f^{-1}\right)(x)=\frac{2 x+1}{3}$ for all $x \in\left[1, \frac{3}{2}\right]$ and for all $n \geq 0,\left(T f^{-1}\right)^{n}(x)=\left(\frac{2}{3}\right)^{n}(x-1)+1$ for all $x \in\left[1, \frac{3}{2}\right]$.

$$
\left(T f^{-1}\right)^{n}(x)= \begin{cases}1 & \text { if } x=1 \\ \left(\frac{2}{3}\right)^{n}(x-1)+1 & \text { if } x \in\left(1, \frac{3}{2}\right]\end{cases}
$$

One can check that for all $n \geq 1$, and $x, y \in\left[1, \frac{3}{2}\right]$,

$$
d\left(\left(T f^{-1}\right)^{n}(x),\left(T f^{-1}\right)^{n}(y)\right)=\left(\frac{2}{3}\right)^{n}|x-y|
$$

In particular, for all $n \geq 0$ and $x, y \in[1,2]$,

$$
d\left(\left(T f^{-1}\right)^{n-1}(T x),\left(T f^{-1}\right)^{n-1}(T y)\right)=\left(\frac{2}{3}\right)^{n-1}\left|\frac{x-y}{3}\right|
$$

Moreover, $d(f x, f y)=\frac{1}{2}|x-y|$ for $x \in[1,2]$. Therefore, for all $x, y \in[1,2]$ such that $M(x, y)>0$,

$$
d\left(\left(T f^{-1}\right)^{n-1}(T x),\left(T f^{-1}\right)^{n-1}(T y)\right)=\left(\frac{2}{3}\right)^{n} d(f x, f y)<\psi_{n}(M(x, y))
$$

where

$$
\psi_{n}(t)=2\left(\frac{2}{3}\right)^{n} t \quad \forall t \geq 0
$$

One can check that $\left\{\psi_{n}\right\}$ satisfies conditions $\left(G_{1}\right)$ and $\left(G_{2}\right)$ of Theorem 2.5 since for all $\epsilon \geq 0$, $\limsup _{n \rightarrow \infty} \psi_{n}(\epsilon)=0 \leq \epsilon$, and if $\epsilon>0, \delta=\frac{\epsilon}{8}$, and $\nu=2$, then $\psi_{\nu}(t) \leq \epsilon$ for all $t \in[\epsilon, \epsilon+\delta]$.

In addition, T and f commute at their only coincidence point $x=1$ hence all the conditions of Theorem 2.5 hold. Therefore, T and f have a unique common fixed point. It is easily seen that $x=1$ is the only common fixed point of T and f. Given $x_{0} \in[1,2]$, consider the Jungck sequence $T x_{n}=f x_{n+1}$. In the uninteresting case that $x_{0}=1, x_{n}=1$ for any $n \geq 1$. Now, let $x_{0} \in(1,2]$. Then $3 x_{n+1}=2 x_{n}+1$ for all $n \geq 0$. A quick computation gives the following formula for any $n \geq 1$:

$$
\begin{aligned}
x_{n} & =\left(\frac{2}{3}\right)^{n}\left(x_{0}-1\right)+1 \\
T x_{n} & =\frac{1}{3}\left(\frac{2}{3}\right)^{n}\left(x_{0}-1\right)+1
\end{aligned}
$$

Thus $\left\{T x_{n}\right\}$ converges to $T(1)=1$, the common fixed point of the pair $\{T, f\}$.

References

[1] S. Banach. Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fundamenta Mathematicae: (1922), 133-181.
[2] K. S. Eke, V. O. Olisama and S. A. Bishop. Some fixed point theorems for convex contractive mappings in complete metric spaces with applications. Cogent Mathematics and Statistics, (2019), 6:1655870.
[3] K. S. Eke. Common fixed point theorems for generalized contraction mappings on uniform spaces. Far East Journal of Mathematical Sciences, 99(11), (2016), 1753-1760.
[4] K. S. Eke. Fixed point results for generalized weakly C-contractive mappings in ordered Gpartial metric spaces, British Journal of Mathematics and Computer Science, 12(1), (2016), 1-11.
[5] J. O. Olaleru. Some generalizations of fixed point theorems in cone metric spaces. Fixed Point Theory and Applications. Vol. 2009, Article ID 657914, 10 pages.
[6] G. A. Okeke, J. O. Olaleru and M. O. Olatinwo. Existence and approximation of fixed point of a nonlinear mapping satisfying rational type contractive inequality condition in complex-valued Banach spaces. International Journal of Mathematical Analysis and Optimization: Theory ans Applications, Vol. 2020, No. 1, pp 707-717.
[7] L. B. Ciric. Generalized contractions and fixed point theorems. Publications de I'Institut Matheematique, 12(1071), 19-26.
[8] W. A. Kirk. Fixed points of asymptotic contractions, J. Math. Anal. Appl. 277(2003), 645650.
[9] I. D Arandelovic. On fixed point theorem of Kirk, J. Math. Anal. Appl., 301(2005), 384-385.
[10] D. Panthi and K. Jha. A study on fixed point theorem of asymptotic contractions. The Nepali Math. Sc. Report, 33 (1 and 2)(2014), 17-26.
[11] A. Meir, E. Keeler. A theorem on contraction mappings. J. Math.Anal. Appl., 28(1969), 326329.
[12] T. Suzuki. Fixed point theorem for asymptotic contraction of Meir-Keeler type in complete metric space, Nonlinear Anal. 64(2006), 971-978.
[13] S. L. Singh and R. Pant. Remark on some recent fixed point theorems, C. R. Math. Rep. Acad. Sci. Canada, 30(2), (2008), 56-63.
[14] S. L.Singh, S. N. Mishra, R. Pant. Fixed points of generalized asymptotic contractions. Fixed Point Theory, 12(2), (2011), 475-484.
[15] G. Jungck. Commuting mappings and fixed point, American Mathematics Monthly, 83(1976), 261-263.
[16] G. Jungck. Compatible mappings and common fixed points, International Journal of Mathematics and Mathematical Sciences, 9 (1986), 771-779.
[17] W. A. Wilson. On quasi-metric spaces. Amer. J. Math. 53(3) (1931), 675-684.
[18] Functional analysis in asymmetric normed spaces, Frontiers in Mathematics, Birkh auser/Springer Basel AG, Basel, 2013.
[19] T. Q. Bao and A. Soubeyran, Variational analysis and applications to group dynamics, J. Optim. Theory Appl. 170(2) (2016), 458-475.
[20] I. L. Reilly, P.V. Subrahmanyam, M.K. Vamanamurthy. Cauchy sequences in quasi-pseudometric spaces. Mh. Math. 93 (1982), 127-140.
[21] M. Jleli and B. Samet. Remarks on G-metric spaces and fixed point theorems. Fixed Point Theory Appl. 2012 (2012), Article ID 210.
[22] L. B. Ciric. A generalization of Banach contraction principle. Proc. Am. Math. Soc. 45(2), (1974), 267-273.

[^0]: This work is licensed under a Creative Commons Attribution 4.0 International License.

[^1]: ${ }^{1}$ The existence of such a sequence is discussed in subsection 2.1 .

