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Abstract

Let Tn be the set of full transformation semigroup on Xn = {1, 2, 3, · · · , n}, C+(α) =|
OCTn |= q be it’s subsemigroup on collapse of order-preserving full contraction transformation,
C+(αE) =| E(OCTn) |= qE be the collapse on idempotent of order-preserving full contraction
transformation and C+(α) =| C+(α) |= ∪t∈Imα | {tα−1 ≥ 2} | be the formula for total number
of collapsible element.In this paper, we investigate the collapse element on order-preserving
and idempotent of order-preserving full contraction transformation semigroup.
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1 Introduction
A semigroup is an algebraic structure conforming of a set together with an associative binary op-
eration. The binary operation of a semigroup is most constantly denoted multiplicative x.y, or
exclusively xy, denotes the result of applying the semigroup operation to the ranged ordered pair(
x, y). Associativity is formally ventilated as that( xy) z = x( yz) for all x, y and z in the semigroup.
The name ” semigroup ” originates in the fact that a semigroup generalizes a group by husbanding
only associativity and check under the binary operation from the axioms defining a group. From
the contrary point of prospect( of adding preferably than removing axioms), a semigroup is an
associative magma. As in the case of groups or magmas, the semigroup operation need not be com-
mutative, consequently xy is not inevitably equal to yx; a true illustration of associative but non-
commutative operation is matrix multiplication. However, such semigroup is called a commutative
semigroup or( less constantly than in the analogous case of groups)If the semigroup operation is
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commutative.it is called an abelian semigroup

A transformation α ∈ Tn is said to be full contraction transformation semigroup if | xα−yα |≤|
x− y | for all x, y ∈ Xn. The set of all order- preserving full contraction transformation semigroup
is denoted by OCTn and it is the subsemigroup of Tn.

An element e ∈ Tn is said to be an idempotent in full transformation if and only if e2 = e.
Interestingly, such idempotent that satisfy the contraction transformation condition is said to be
an idempotent contraction. Various enumerative problems have been considered for certain classes
of semigroups. For example, it is well known that Pn has order (n + 1)n. Also the number of
idempotents in Pn is given by

|E(Pn)| =
n∑

r=0

(
n
r

)
(r + 1)n−r,

as obtained by Garba [1], and the number of nilpotent for Pn is given by

|N(Pn)| = (n+ 1)n−1

which is deduced from [2, 3]. The collapsible element for |tα−1| = 2 and |tα−1| = 3 for all n ≥
2 (n ∈ N) in Tn was studied by [4], while [5] studied the collapsible element for |tα−1| = 2 and
|tα−1| = 3 for all n ≥ 2 (n ∈ N) in Pn.

2 Preliminaries and Literature Review
Contraction transformation semigroup has been truthful over the years see [4–16] another impor-
tant class of semigroup has also arouse interest and this class of semigroup is order-preserving and
order-decreasing see [2, 3, 7, 12, 16, 17], also many researchers study the idempotent of these classes
of semigroup see [1,12,18,19], the collapse of transformation semigroup was also studied by [20,21].

The study of Umar [22] showed the combinatorial problems in the theory of symmetric inverse
semigroup and some relevant results from their his work are:
Proposition 2.1 [22]
Let S = In, then F (n; p, k) = (n, p)(k − 1, p− 1)p!∀ n ≥ k ≥ p ≥ 0
Corollary 2.2 [22]
Let S = In, then F (n, p) = (n, p)2p! for all n ≥ p ≥ 0.
The algebraic and combinatorial properties of DPn(Subsemigroup of partial Isometries), ODPn(Subsemigroup
of order-preserving partial Isometries), and ODDPn(Subsemigroup of order-preserving order-decreasing
partial Isometries) was studied by [10] and some of the results obtained are:
DPn = 2(2n−p+1)

(p+1) (n, p)where p ≥ 1, n2(p) = 1, 1(p) = 0

ODPn = 2(2n−p+1)
(p+1)

(
n
p

)
ODDPn =

(
n+ 1
p+ 1

)
, if p ≥ 1 and ODDPn =

(
n+ 1
2

)
if p = 1

Some combinatorial results obtained by [11] on ORCTn(Order reversing full contraction transfor-
mation) and ODCTn(order decreasing full contraction transformations) are presented below:
Corollary 2.3 [11]
Let S = ORCTn, then |S| = |ORCTn| = (n+ 1)2(n−1) − n, for n ≥ 1
Corollary 2.4 [11]
Let S = ODCTn, then

F (n, k) =

(
n− 1
k − 1

)
for k ≥ 1

F (n, m) = 2(n−m−1), for n ≥ m ≥ 1
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F (n, p) =

(
n− 1
p− 1

)
, for p ≥ 1.

[11] worked on a research of combinatorial result for certain semigroups of order-preserving full
contraction mappings of a finite chain where some result were also generated.
The study of [23] showed that full transformation semigroup is metricizable. Suppose (X, d) is a
metric space for

D(a, b) =

{
0 a = b
n ∈ N a ̸= b

for all a, b ∈ S. Then the distance between a point x, and itself is zero:
D(a, b) = 0 iff a = b shows that
If a− b = 0 then a = b
If a− b ̸= 0 then a ̸= b shows that
0 ≤ D(a, b) ≤ n.
The property of alternating semigroup was investigated by [21]. Some of their result which are
relevant to this dissertation work are:

1. Let S = Ac
n, then F (n, pn−1) =

n2(n−1)!
2

2. Let S = Ac
n, then F (n, p) =


n!
2 p = n(
n
p

)2

p! 0 ≤ p ≤ n− 2

Some results obtained on some signed semigroup of order preserving transformation by [18] which
are relevant to the study are listed. Let Tn be the set of full transformation and Pn be the set of par-
tial transformations. A transformation Tn is said to be order-preserving if for all i, j ∈ {1, 2, 3, ..., n};
i ≤ j =⇒ xi ≤ xj

Definition 1.1: Collapse In Transformation Semigroup S, an element α in S is collapsible, c(α)
if there exists a number C+(α) =| tα−1 |⩾ 2 where t is an element in the image of α. [21]

Definition 1.2: Idempotent An element e ∈ S is idempotent if e2 = e, a full transforma-
tion e is idempotent if and only Ime = F (e), such that F (e) is the set of all fixed point of the full
transformation and Im(e) is the image set of the Transformation. [8]

Definition 1.3: Full Transformation semigroup A transformation α : Dom(α) ⊂ Xn −→
Im(α) ⊂ Xn is said to be full or total if Domα = Xn; otherwise it is called strictly partial. [16]

Definition 1.4: Order-preservingA transformation α ∈ Tn is said to be order-preserving if
(∀x, y ∈ Domα)x ≤ y ⇒ xα ≤ yα(xα ≥ yα). [17]
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3 Main Results

Table 1: Collapse in order-preserving full contraction transformation Semigroup C+(α) =| OCTn |

n/q 0 1 2 3 4 5
∑

F (n; q) =| OCTn |= q
1 1 1
2 1 0 2 3
3 1 0 4 3 8
4 1 0 6 6 7 20
5 1 0 8 8 15 13 45

Theorem 3.1. Let S =| OCTn | then S = 2n−2(n+ 1) for n = 1, 2, 3, 4

Proof. Let n = m+ 1 ⇒ m = n− 1 and let 2m ≤ m2

We proof by mathematical induction we are to show that

2n−2(n+ 1) = 2m−1(m+ 2) (3.1)

now, by multiplying log2 on both side of eqn (3.1) we have

(n− 2)(n+ 1) =(m− 1)(m+ 2)

=m2 +m− 2

<2m − 2 +m since 2m ≤ m2

=2m − 4 +m+ 2

=2m − 22 +m+ 2

<2m − 2m(m+ 2) since 2m ≤ m2 ⇒ 2m(m+ 2) ≤ m2(m+ 2)

=2m−1(m+ 2)

=2n−2(n+ 1)

(3.2)

by replacing the value of m=n-1
hence the proof is complete by eqn (3.1)
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Table 2: Collapse on idempotent of order-preserving full contraction transformation Semigroup
C+(αE) =| E(OCTn) |
n/qE 0 1 2 3 4 5

∑
F (n; qE) =| E(OCTn) |= qE

1 1 1
2 1 0 2 3
3 1 0 2 3 6
4 1 0 2 2 5 10
5 1 0 2 2 4 7 16

Theorem 3.2. Let S =| E(OCTn) | then S =

(
n+ 1
2

)
for n = 1, 2, 3, 4

Proof. by pascal identity for positive natural number n and k(
n
m

)
+

(
n

m− 1

)
=

(
n+ 1
m

)
(3.3)

if m ̸= n+ 1 then m− 1 ̸= n thus

(x+ y)n+1 =

n+1∑
m=0

(
n+ 1
m

)
xn+1−mym (3.4)

for x=1 and y=1 we have

(1 + 1)n+1
n+1∑
m=0

(
n+ 1
m

)
1n+1−m1m (3.5)

2n+1
n+1∑
m=0

(
n+ 1
m

)
=

(
n+ 1
2

)
(3.6)

Lemma 3.3. Let S =| OCTn | + | E(OCTn) | for all n = 5 then

S = 2n−1

[
(n+ 1)

2
+ 1

]
− 3

Proof. The proof follows from the consequence of table 1 and 2 for all n = 5
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Table 3: Formulars obtained on Collapse of order-preserving and idempotent of order-preserving
full contraction transformation semigroup

C+(α) formular
| OCTn | 2n−2(n+ 1) ∀n ≤ 4

| E(OCTn) |
(
n+ 1
2

)
∀n ≤ 4

| OCTn | + | E(OCTn) | 2n−1

[
(n+1)

2 + 1

]
− 3 ∀n = 5

Note The formulars obtained for |OCTn| and |E(OCTn)| are similar with the result of ODDTn

on the work of [15] and OCPn(subsemigroup of order-preserving partial contraction mapping) on
the work of [10] respectively.

4 Discussion and Conclusion
The focus of this paper is about some combinatorial and algebraic properties of collapse on order-
preserving and idempotent of order-preserving full contraction transformation semigroup. The pa-
per defines some concepts such as semigroup, transformation, contraction, order-preserving, idem-
potent, and collapse, and gives some examples and formulas for them.The results obtained in this
studies unify existing and gives new results in combinatorials which are presented in two theorems,
one Lemma and their proofs, one for the number of elements in the semigroup of order-preserving
full contraction transformation, and one for the number of elements in the subsemigroup of idempo-
tent of order-preserving full contraction transformation. The results conclude that order-preserving
and idempotent of order-preserving full contraction transformation semigroup is an area of research
study in the theory of transformation semigroup and more useful research can be carried out in
this area of study.The paper contains many references to previous works on related topics, such
as partial transformation semigroups, order-decreasing transformations, alternating semigroups,
metricization, and nildempotency.
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