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Abstract
Let Xn = {1, 2, 3, ...} be a set of distinct non negative integer then C3ω∗

n be star-like conjugacy
transformation semigroup for all D(α∗) (domain of α∗) and I(α∗) (Image of α∗) such that an
operator | αωi − ωi+1 |≤| αωi − ωi | was generated. A star-like transformation semigroup
is said to satisfy collapse function if C+(α∗) =| ∪tα− : t ∈ Tαω∗

n | while the finding shows
that the collapse of 3D star-like conjugacy classes are zero. The geometry model of 3D star-
like conjugacy was obtained by using folding principle on a standard A4 paper which shows
the star-like 3D conjugacy relation α(ij) =

αi+αi+1

αi−αi+1
=

αi+1+αi

αi+1−αi
.Some tables were formed

to analyse the structure of star-like derank of C3ω∗
n be | n − Imα∗ |= d, star-like collapse

C+(α∗) =| ∪tα−1 : t ∈ Tαω∗
n |, Star-like relapse C−(α∗) =| n−C+(α∗), Star-like pivot of C3ω∗

n

be | n.r+(α∗)

c−(α∗) + c+(α∗ |= p and Star-like joint of C3ω∗n be | r+(α∗)−m∗(α∗)−C+(α∗)+n |= j

. The study conclude that C3ω∗
n has n order conjugacy classes and we show that ϕ ∈ C3ω∗

n.

Keywords: Conjugacy, 3D, Geometric, Partial one-one, Semigroup, Star-like.
MSC2010: 20M20.

1 Introduction

Group theory continues to be an intensively studied matter. There are three historical roots
of group theory: the theory of algebraic equation, number theory and geometry. Joseph Louis
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Lagrange, Niels Henrik Abel and Evariste Galois were early researchers in the late 18th century.
While semigroup started in the early 1930s with the work of [4]. The star-like partial one-one
transformation semigroup denoted as Iαω∗

n in In is also a semigroup in one-one transformation
semigroup, see [7].
Transformation is used instead of mapping, the latter serves as another name for the former. More
information on semigroup of transformation are obtainable from the works of [5, 6].
The domain and image set of any given transformations α∗

i ∈ αω∗
n was denoted by D(α∗) and I(α∗)

respectively as used by [3].
A Star-like transformation semigroup is said to satisfy collapse function if c+(α∗) = |

⋃
tα−1 : t ∈

Tαω∗
n | while Relapse function is denoted as C−(α) =| n− c+(α∗) | where n ∈ N see [8] .

Any transformation α ∈ ωn defined in the operator | αωi − ωi+1 |≤| αωi − ωi |, is a mapping from
a set to itself such that the star-like composition of any two or more transformation of the same
set gives the same transformation of this set. Therefore the composition α ∈ αωn is a special case
of αωn.

Consider some elements of α such that

α =

(
K1 K2 K3 . . . Kn

α⋆K1 α⋆K2 α⋆K3 . . . Kn

)
(1.1)

The set of all star-like transformation of αωn on Xn would be denoted as αi. Therefore, the ele-
ments of α in the transformation has the form

α =

(
1 2 3 . . . n

α⋆ω1 α⋆ω2 α⋆ω⋆3 . . . αωn

)
(1.2)

Thus, the transformation to find in succession α(i, j) special entries of ωn, was established such
that when we consider an element of order four in αωn ⩽ ωn

α =

(
1 2 3 4
1α 2α 3α 4α

)
(1.3)

with domain D(α) = (1, 2, 3, 4) and image set I(α) = (1α, 2α, 3α, 4α) we obtain a general star-like
recurrence relations.
The star-like pivot of α∗ is denoted and defined as V +(α∗) = | n·r+(α∗)

c+(α∗)+c−(α∗) |. The star-like joint
of α∗ is denoted and defined as J+(α∗) = |r+(α∗)−m∗(α∗)−C+ + n|. The star-like relapse of α∗

is denoted and defined as c−(α∗) = |n− c+(α∗)|.Star-like collapse of α∗ is denoted by c+(α∗) and
defined as c+(α∗) = |

⋃n
i=1 yiα

−1∗ : |yiα−1∗|≥ 2|.

2 Preliminary Notes

The study of [1, 2] exhibit some properties which formed the bases of this research and these
properties will be discuss in this section which will help us to formulate our results

3 Generalization of 3-Dimensional star – like sequences through
some combinatorial composite functions

Definition 3.1. Conjugacy: It is a set of element that are connected by an operation that is
in group (G)then the element (a) and (b) are conjugate of each other if their is another element (g)
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in (G) such that b = gbg−

Definition 3.2. Let Xn = {1, 2, 3, · · ·} be a non empty finite set, and C3ω∗
n be a 3 D star-like

Conjugacy transformation semigroups, such that

|αωi − ω(i+1)|≤ |αωi − ωi| (3.1)

For all ωi ∈ D(α∗) and α∗ωi ∈ I(α∗), where NiU∅; Ni = i, i+ 1, i+ 2, ... i = 0, 1, 2, ....

We investigate the star-like 3 D model using folding principles on A4 paper see definition 2.1 of
[1]. The star-like 3D model in Fig. 1 represent the star-like conjugacy rectangular prism with the
composition of:

1. Star-like faces F ∗

2. Star-like edges E∗

3. Star-like vertices V ∗

Figure 1: Star-like Conjugacy triangular Prism

By the star-like folding principle structure we unfold the Fig. 1 to obtain the general 3D star-like
conjugacy equation.

F ∗ + V ∗ = E∗ + 2 (3.2)

which is a relation to the unfolded 3D star-like conjugacy rectangular prism. Therefore to obtain
the volume of a 3D star-like conjugacy triangular prism V , we must begin to construct a star-
like triangular path with a 3D star-like conjugacy array of a control star-like conjugacy disk point
which form an n sided star-like conjugacy 3D depths. From equation 3.1 combining with 3D general
star-like conjugacy, we obtained

V =
1

2
b× h× l (3.3)

Equivalent to

1

2
V = |αωi − ωi+1|≤ |αωi − ωi| (3.4)

where ωi+1 ∈ D(α∗) and αωi ∈ I(α∗), to generate:
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Figure 2: Unfolded Star-like Conjugacy triangular Prism

Lemma 3.1. Let C3ω∗
n be set of star-like conjugacy classes, with α∗ ∈ E∗ + F ∗

2
+ϕ∗ then D(α∗) ⊆

I(α∗) such that E∗ ∈ D(C3ω∗
n) and F ∗ ∈ I(C3ω∗

n).

Proof. Suppose C3ω∗
n be set of star-like conjugacy transformation semigroup with a star-like com-

posite relation.
a∗i + b∗j + c∗k = C3ω∗

n (3.5)

There exist i(2) = ϕ∗ for Cω∗
n ∈ αω∗

n.
By general 3D conjugacy and star-like operator

F ∗ + V ∗ = E∗ + 2 (3.6)

yields
E∗ − F ∗

2
=| αωi − ωi+1 |≤| αωi+1 − ωi | (3.7)

Then, C3ω∗
n satisfy eqn (3.1) and eqn (3.2) we see that V ∗(C3ω∗

n) = E∗−F∗

2 + ϕ∗ which is the
required conjugacy vertices for any α∗ ∈ C3ω∗

n with a star-like conjugacy disk constant point
ϕ∗ ∈ C3ω∗

n.

Lemma 3.2. Let S∗(x, y) represent order of sequences from the star-like origin (0, 0)∗ to (x, y)∗

with star-like row-x and column-y then α∗
i ∈ C3ω∗

n form a star-like triangular array.

Proof. Suppose α∗ ∈ C3ω∗
n with row-x and column-y of triangular star-like sequences for all Ni =

{i, i+ 1, i+ 2, ...}, (i = 0, 1, 2, ...).
Then for any α∗

i ∈ C3ω∗
n(i = 1, ...) we obtain the star-like conjugacy operations

S∗(x, 0) = X∗
i

S∗(o, y) = Y ∗
i

Such that X∗
i = Y ∗

i = ϕ∗ ∈ Cω∗
n

Therefore,
S∗(x, y) = S∗(x, y −X∗

i ) + S∗(x− Y ∗
i , y) (3.8)
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yields a star-like conjugacy sequential recurrence order(
x+ y
x

)∗

+

(
x+ y
y

)∗

=
x+ y

x! y!
(3.9)

with star-like row-x and column-y ; xi ∈ X∗
i and yi ∈ Y ∗

i : Ni = {i, i+ 1, ...}.

4 Geometry Model on the 3D Star-like Transformation

. A star-like 3D conjugacy triangular pyramid is a star-like polyhedron with 9(F ∗), a 12(E∗),
and all other 5(V ∗) star-like conjugacy polyhedron meeting at a star-like disk point which was
embedded in equation (3.4).

The geometry model of 3D star-like conjugacy triangular pyramid was obtained from the gen-
eralization of the 3D star-like conjugacy sequence of both the bottom and front view respectively
as shown in Fig.4

Figure 3: Star-like 3D star-like square pyramid of [1]
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which shows the star-like 3D conjugacy relation

α(i, j) =
αi + α(i+ 1)

αi − α(i+ 1)
=

α(i+ 1) + α(i)

α(i+ j)− α(j)
(4.1)

That is, by the proof of theorem 3.3 of [1] the star-like 3D conjugacy prism is an equivalence
relations, so the distinct star-like conjugacy classes transformation, which means that C3ω∗

n has n
order conjugacy classes.

Lemma 4.1. Let ζ∗ ∈ C3ω∗
n be a star-like conjugacy spinnable transformation then if ∃U∗

n ∈ ζ,
pq△

▽rs such that | △pqr |≤| △qrs | for all pqrs ∈ U∗
n

Proof. Suppose U∗
n ≤ ζ

Then for any ζ∗ ∈ C3ω∗
n there must exist an equilateral star-like shape such that ζ∗ is a conjugacy

spinnable.
Consider
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where, the star-like folding principle is adopted and by eqn (3.5) we see that for any pi ∈ ζ∗ in
above figure there exist a constant disk point i(2) ∈ N with adjacent equal star-like side pqrs ∈ U∗

n.
Then

| △pqr |≤| αωi − ωi+1 | (4.2)

| △qrs |≤| αi+1 − ωi | (4.3)

Therefore by conjugacy operator in eqn (3.5)

| △pqs |≤| △qrs | (4.4)

Which shows that ζ∗ ∈ C3ω∗
n any conjugate spinnable star-like transformation, the converse makes

equal star-like angle on all side.

5 Main Results

Table 1: Rellapse Table of the Image of C3ω∗n C−(α∗) =| n− C+(α) |

n/C−(α) 1 2 3 4 5
∑

F (n; d)
1 2 2
2 3 3
3 5 5
4 6 6
5 6 6

Lemma 5.1. Given that α∗ ∈ C3ω∗
n is spinnable reducible then | C+(α∗) |≤| C−(α∗) | whenever

| (C3ω∗
n) |=

(
(d

2

n )− (2 + n)
d− q

)
.
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Proof. :
Let Xn = {1, 2, 3, · · ·} be a non negative star-like set, such that F (n, d, q) =| C3ωn |. Since
D(C+(α∗)) ⊆ Xn and I(C−(α∗)) ⊆ Xn with M(α∗) ∈ C3ω∗

n of a domain in a star-like point of Xn

is chosen from n

(
d
q

)
methods then in each star-like partial conjugacy bijection . We have

C3ω∗
n(α

∗) : DC+(α∗) → IC−(α∗)

. Suppose C3ω∗
n is rellapsible under the composition of star-like conjugacy mapping where α∗ ∈

C3ω∗
n, f(n, d, q) =

(
(d

2

n )− (2 + n)
d− q

)
.

Then, by the star-like operator in eqn (3.1) which compels the conjugacy element of a star-like partial
one-one is reducible. Therefore by lemme 3.2, a star-like conjugacy spinnable transformation exist
and such that | △pqr |≤| △qrs | we show that

| C+(α) |≤| C−(α) |≤| αωi − ωi+1 (5.1)

Which makes every star-like conjugacy transformation α ∈ C3ω∗
n to produce a collapsibble and

reducible algebraic structure and makes equal star-like point on all side so that whenever | d |=| q |

the | C3ω∗
n |=

(
(d

2

n )− (2 + n)
d− q

)
. for all d ≥ q ≥ n ≥ 2

Hence , the result is complete as shown table 1

Table 2: Derank Table of the Image of C3ω∗n D(α∗) =| n− Imα∗ |= d

n/d 1 2 3 4 5
∑

F (n; d)
1 1 1
2 1 1
3 3 3
4 4 4
5 4 4

Table 3: Pivot Tab of the Image of C3ω∗n D(α∗) =| n.r+(α∗)

C−(α∗) + C+(α∗)
|= p

n/p 1 2 3 4 5
∑

F (n; p)
1 1 1
2 1 2 3
3 3 2 5
4 4 2 6
5 3 3 6
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Table 4: Joint Table of the Image of C3ω∗n D(α∗) =| r+(α∗)−m∗(α∗)− C+(α∗) + n |= j

n/j 1 2 3 4 5 6 7 8 9 10
∑

F (n; j)
1 1 1
2 1 1 1 3
3 1 2 2 5
4 1 2 2 1 6
5 4 1 2 2 1 6

Proposition 5.1
Let Xn be a star-like non-negative generated integer such that Dom(C3ω∗

n) =
∑n

j=1 Xn. Then for

any given ζ∗ ∈ C3ω∗
n | α∗C3ω∗

n |=
(
j + 1
n+ 1

)(
n+ j
2j

)
.

Proof. :
Given that ζ∗ ≤ Dom(C3ω∗

n) ≤ Xn and C3ω∗
n ⊆ αω∗

n, then
f(n, j) =| α∗ ∈ α∗ω∗

n : C3ω∗
n(α

∗) |=| αC3ω∗
n | .

Consider j =| j =| r+(α)−m∗(α) +C+(α∗) +n | such that here exist k0 ∈ Dom(C3ω∗
n). Equation

(3.1) produce a star-like joint αk0 = e0 so k0 has n − e0 + 1 star-like order for all n ≥ j ≥ 1.(
n+ j
2j

)
. Since ζ∗ is a star-like spinnable transformation, ∅(ζ∗) is a star-like sub-set of all star-like

joint j∗ ∈ C3ω∗
n, irrespective of the value of n ≥ j ≥ 1 , whenever j = (n − 1) there is exactly

finitely many star-like conjugacy composite classes of nth order such that by table 4 and equation

(3.5) | α∗C3ω∗
n |=

(
j+1
n+ 1

)(
n+ j
2j

)
for all n ≥ j ≥ 1 generate a star-like sequence array.

Lemma 5.2. Let ζ∗ ∈ C3ω∗
n then | C(α∗) |=

(
a− b
b− 1

)
=

(
a− (b− 1)

a− b

)
=| r(α∗) | for all

a, b,∈ ζ∗ ≤ C3ω∗
n.

Proof. Suppose Xn = {1, 2, ...} be a non degenerated star-like integers, then Dom(C(α∗)) =
Dom(r(α∗)) =

∑
i=1 Xn

If f(a, b) =| ζ∗ : h(ζ∗) |=| Im(ζ∗) |= b there exist K0 ∈ Xn such that

ζ∗k0 = ζ∗n = ζ∗k0 (5.2)

so ζ∗k0 = e0 ( a star-like conjugacy constant).
Since k0 has a− e0 + 1 disk point degree of freedom with equal order of collapse and rellapse then,

| C(α∗) |=| r(α∗) | (5.3)(
a− b
b− 1

)
=

(
a− (b− 1)

a− 1

)
= e0 (5.4)

For any star-like conjugacy transformation with ζ∗ ∈ C3ω∗
n

h(ζ∗) = e0 irrespective of the value of C(α∗) and r(α∗) whenever

ζ∗k0 = ζ∗n (5.5)
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Therefore(
a− b
b− 1

)
=

(
a− (b− 1)

a− b

)
for all a, b ∈ ζ∗ ≤ C3ω∗

n.

6 Conclusion

In this paper, We showed that the geometric characterization of star-like 3D conjugacy classes
C3ω∗

n on partial one-one transformation semigroups and some results of different functions. The
paper conclude that for every 3D star-like conjugacy classes C3ω∗

n has n order conjugacy classes
and we also show that ϕ ∈ C3ω∗

n
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