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Abstract

Hepatitis B remains a global health concern owing to its deadly nature. A Nested Multiscale
Model was developed by applying the Replication-Transmission Theory at the cell level of
biological organisation. A new set of measures to assess infectiousness at the individual and
community levels was presented at the biological organisation’s cell level, where we grounded
our analysis. These models make it possible to investigate the dynamics of the virus within
infected cells, as well as the dynamics of future cell infections and the discharge of the virus
from infected cells. To study quantitatively how the dynamics of within-cell replication affect
the dynamics of between-cell transmission, mathematical analysis and numerical simulations
were carried out. These simulations can be used to evaluate the effectiveness of treatment and
preventive interventions.

Keywords: Community Viral Load, Composite Parameter, Nested Multiscale Model, Replication
- Transmission Relativity Theory, Within-cell and Between-cell Scale Model.
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1 Introduction

An infectious disease system is a complex system that consists of three main interacting subsys-
tem which are the environmental sub-system, the pathogen sub-system and the host sub-system.
The complex nature of infectious disease system makes their aggregate dynamics nonlinear. They
continue to debilitate and to cause death in humans and animals, with new disease-causing pathogens
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emerging and old pathogens reemerging or evolving [1]. An infectious disease system is organised
into seven primary levels. Developing efficient preventive and control strategies against endemics
and improving our understanding of disease dynamics have both benefited greatly from mathe-
matical modeling of infectious diseases [2]. Several mathematical models have examined different
facets of Hepatitis B and the immunological response that occurs during infection. It should come
as no surprise that the host immune responses to HBV infection are also incredibly complex in
their natural history [3]. Mathematical models of HBV studied in the past have revealed virus
production levels, virus clearance rates, half-life of infected cells, but was unable to aid the devel-
opment of successful HBV drug treatments as a result of ignoring the spatial aspect of infection [4].
Multiscale modeling have improved the treatment of viral infections through the introduction of
Direct-Acting Antiviral Agents (DAAs). In the case of anti-HCV medications, DAAs with various
antiviral mechanisms have significantly increased the infected host’s sustained virological response
(SVR) rate; nevertheless, they also come with emerging resistance and are not effective against all
genotypes. To prevent the emergence of medication resistance, care must be taken in determining
an efficient treatment plan.

Millions of individuals worldwide are impacted by the major public health issue of the hepati-
tis B virus (HBV). Hepatocytes are the parenchymal cells of the liver that are infected with HBV,
which can lead to acute or chronic illness. It belongs to the family Hepadnaviridae and is a hepa-
totropic noncytopathic DNA virus. The virus that infects the hepatocyte is not cytotoxic, meaning
it spreads without destroying the host cell. HBV can be spread vertically, parenterally (from an
infected mother to a kid, leading in a second infection that becomes chronic in 90% of cases), sex-
ually, or by blood-borne contact such as blood transfusions or intervening drug usage. [5]. When
a virion binds to a cell surface receptor, the virus’s life cycle begins. The nucleocapsid then enters
the cytoplasm and is released. After being delivered to a nuclear pore, the nucleocapsid breaks
down and releases rcDNA into the nucleus [6]. Within the nucleus, rcDNA is repaired by the host
enzymes and it is converted to covalently closed circular DNA (cccDNA) which serves as template
for pregenomic RNA (pgRNA) and precore and subgenomic mRNAs, whose translation yields HBV
polymerase and core proteins, hepatitis B e-antigen (HbeAg), and SML-HBsAg respectively [6, 7].
HBV polymerase and pgRNA are bundled into freshly produced capsids, where they are reverse
transcribed to produce offspring rcDNA. At the endoplasmic reticulum, mature rcDNA-containing
capsids are encapsulated and secreted through multivesicular structures. An alternative is to re-
cycle these capsids into the nucleus, where they release fresh rcDNA that can restore the pool of
cccDNA (intracellular recycling) [8].

Multiscale modeling is a powerful tool for studying complex systems at multiple levels of organisa-
tion. It involves the integration of models at different scales to capture and relate the behaviour
of the system at different levels of organisation. Compare to conventional single-scale models (see
[9, 10, 11, 12, 13, 14] and references therein), multiscale modeling offers a more thorough and ac-
curate knowledge of complex systems. A new and improved method will be needed to research
viral infection dynamics because the majority of mathematical models used to study viral infec-
tious illnesses are single scale and unable to fully capture the complex character of viral infections.
Understanding the mechanisms at the various infectious illness scales and how these scales interact
is essential to comprehending the transmission of infectious disease systems in depth. Although
this can be expanded to other categories, the within-host and between-host scales are the two most
researched scales in the transmission of infectious disease systems. Multiscale models of infectious
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disease systems can be empirical models (which characterise infectious disease system at more than
one scale) or can be quantitative models (that also characterise infectious disease system at more
than one scale) [15]. Multiscale modeling is applied to systems that have important features across
many others of magnitude in time and space. The model facilitates the description and understand-
ing of problem that span across several orders of spatial and temporal scales. Many modeling issues
related to infectious diseases, including tuberculosis [16], influenza infections [17], hepatitis C virus
[18, 19], malaria [20], influenza A virus [21, 22], and so forth, have been addressed by multiscale
models.

Even though the significance of multiscale study of infectious disease dynamics has been acknowl-
edged, the multi-spatial and/or multi-temporal scales of the disease systems have not been addressed
in the vast majority of published publications so far that have concentrated on modeling infectious
disease dynamics. The lack of strong foundational knowledge to support the development of mul-
tiscale modeling of infectious disease systems on three main frontiers — the conceptual framework
frontiers, the scientific applications frontiers, and the mathematical technology frontiers may be
partly blamed for these [23]. For the purpose of this study, the categorisation framework developed
and presented in [15, 24] will be adopted. Garira’s work summarises the host sub-system model
into seven main levels. He suggests naming each multiscale model after the level of multiscale
observation of an infectious disease system at which it is developed. This results in seven main
levels of multiscale models: cell level multiscale models (cL - MSMs), tissue level multiscale models
(TL - MSMs), organ level multiscale models (OL - MSMs), microecosystem level multiscale models
(mL - MSMs), host level multiscale models (HL - MSMs), community level multiscale models (CL
- MSMs) and macrosystem level multiscale models (ML - MSMs). There are five generic categories
of multiscale models of infectious disease systems that has been developed at different levels of an
infectious disease system by integrating two adjacent scales at a time and they are: (i) Individual
based multiscale models (IMSMs) (ii) Nested multiscale models (NMSMs) (iii) Embedded multi-
scale models (EMSMs) (iv) Hybrid multiscale models (HMSMs) (v) Coupled multiscale models
(CMSMs) [15]. As noted in [25], every one of the seven primary levels of organisation of an infec-
tious disease system as a level of multiscale observation can be produced at any of the categories. It
is significant to remember that the category of the multiscale model to be used will depend on the
features of the problem to be studied. In multiscale modeling, the following processes are involved:
transmission, shedding / excretion, superinfection, and infection.

In this study, we used Hepatitis B as a case study at the cell level to construct a nested multiscale
model for hepatic viral infection based on the Replication - Transmission Relativity Theory [25].
Replication-Transmission Relativity Theory states that at any level of organisation of an infectious
diseases system there is no privileged / absolute scale which would determine disease dynamics,
only interactions between the microscale and macroscale identifies an infectious disease system as
a complex system which is organised into seven main hierarchical levels at which host-pathogen
interactions can play out [24, 25]. This theory, which takes into consideration the interplay of two
scales at a level of organisation of an infectious disease system, is an extension of the Transmission
Mechanism Theory. The two scales are microscale (pathogen replication) and macroscale (pathogen
transmission). Multiscale models at this level of organisation are developed using the cell level as
the level of multiscale observation with the (i) within - tissue scale, (ii) within - organ scale, or (iii)
within - host scale as the scale of analysis. It should be noted that the multiscale models at this
level is only suitable for evaluating medical interventions that operate at the within-host scale such
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as drugs and vaccines. In order to create the nested multiscale model, we will upscale the individual
host infectiousness (within-cell scale viral load) to population level infectiousness (community viral
load).

Most of the Mathematical Models employed to study viral infectious diseases are single scales
and are unable to describe the complex nature of viral infections in detail, hence a new and im-
proved approach will be required to study viral infection dynamics. We employed slow and fast
scale analysis to upscale the microscale parameters to the macroscale variables in this study, and
we also made an effort to distinguish between complete virions and incomplete particles, which was
not taken into consideration in the work of [26]. This allowed us to describe a nested multiscale
model of Hepatitis B viral infection. The paper is organised as follows. In section 2 we developed
a nested multiscale model for viral hepatitis using hepatitis B viral Infections as an example at the
cell-level. We emphasise on the time mismatch which is one of the misconception to the study of
multiscale modeling as a complex system. Section 3 contained the mathematical analysis of the
model and the numerical simulation (sensitivity analysis and the influence of within-cell scale on
the between-cell scale on the transmission dynamics ) was presented in section 4. The last section
contained discussion and conclusion of the study.

2 Formulation of Mathematical Model

We have presented the two submodels which describe the transmission of Hepatitis B virus
(HBV) at two different scales (within-cell scale and between-cell scale). The integration of the two
scales at the cell-level of biological organisation forms the focus of our model and analysis in this
study. We develop :

(a) The within-cell scale submodel dynamics: The study formulated the dynamics of the within-cell
scale model, assuming the following five populations to interact : core particle in cytoplasm (hr),
cccDNA inside the nucleus (ht), complete virions (hc), incomplete particles (hi), and within-cell
viral load (Vs). While [26] describes a more complex within-cell scale model, this work presents a
simplified version that makes a distinction between complete virions and incomplete particles. It
employed the law of mass action to describe the movement from one state to another using ordinary
differential equations. The following assumptions were made for the within-cell processes:
(i) there is no superinfection in the cell,
(ii) that only the capsids containing mature rcDNA either secreted from the cell or recycle the
nucleus to replenish the cccDNA pool,
(iii) the intracellular replication dynamics of the core particle is only captured through the reverse
transcription of the initial value in the cytoplasm, hc = hc(0).
(iv) the influence of within-cell viral load on assembly and export individual cell infectiousness is
proxied by Vs = Vs(s),
(v) the within-cell scale processes occur at fast time scale (s), so that hr = hr(s), ht = ht(s), hc =
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hc(s), hi = hi(s) and Vs = Vs(s). Then, this was derived:

dhr(s)

ds
= Λr − ηrhr(s)Vs(s)− δrhr(s),

dht(s)

ds
= ηrhr(s)Vs(s)− (αt + µt + δt)ht(s),

dhc(s)

ds
= αtht(s)− (αc + ρc)hc(s), (2.1)

dhi(s)

ds
= µtht(s)− (αi + δi)hi(s),

dVs(s)

ds
= Ncαchc(s) +Niαihi(s)− (rc + ri)Vs(s).

In the model system (2.1), the dynamics of the core particle internalisation into the nucleus and
DNA repair (i.e., the change from rcDNA to cccDNA) are described by the model system’s first
equation. (Λr) represents the source of the mature rcDNA, the second term represents the reaction
rate of DNA repair in the nucleus at rate ( ηr) and the third term is the degradation rate of core
particle in the cytoplasm (δr). The second equation in model (2.1) describes the dynamics of tran-
scription from the cccDNA. Following the nuclear import of rcDNA, it undergoes conversion into
cccDNA, which serves as a template for the transcription of pgRNA, precore mRNAs, and other
subgenomic mRNAs, as noted in [27]. The first term of second equation is the rate of proportion of
the cccDNA replenishment through intracellular replication while the second term represents the
transcription rate of DNA to RNA code, the third term is transcription rate of mRNAs and the
last term is the degradation rate of cccDNA.

In the model system (2.1), the third equation describes the dynamics of the translation of
pgRNA that leads to the formation of complete virion. The first term of the equation αt represents
the template from the cccDNA, the second term of the equation is association rate of pregenome-
polymerase complex (RNP) and core protein, the third term is the translation rate of pgRNA to
reverse trancription and the last term is recycling rate of mature rcDNA that leads to the am-
plification of cccDNA pool in the nucleus. The fourth equation of the system (2.1) describes the
translation of subgenomic RNA (mRNA) that leads to the formation of incomplete particles [that
is the RNA containing particles, empty virions and subviral particles (SVPs)]. The first term rep-
resents the transcription rate of mRNAs, the second term is translation rate of mRNAs and the
last term is the degradation rate of mRNAs.

The last equation of the model system (2.1) describes the dynamics of the viral load (particles
and proteins within the cytoplasm). The envelopment and release of both complete virions and
incomplete particles, such as mature core particles or nucleocapsids, can occur through two path-
ways. These particles have two possible fates: they can either be recycled back to the nucleus or
get enveloped by going through the pre-Golgi compartment and post-endoplasmic reticulum and
released as virions into the circulation as described in [27]. The first term represents the association
rate of core particle and surface protein that is the source of infectious and non-infectious molecules
inside the cytoplasm. The second and third term represent release rate of progeny virions into the
extracellular space and the release rate of incomplete particles into the extra cellular space. The
figure below shows the parameters of the model and their description.
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(b) The between-cell scale submodel dynamics: In this section, we developed a mathematical
model for describing Hepatitis B transmission dynamics at the macroscale (between-cell scale) and
is described by an SI model. It consists of the population of susceptible (SC) and infected cells
(IC) so that the total cell population is given NC = SC +IC . The following assumptions were made
for the between-cell model :
(i) The infected cell does not become immune to the infection.
(ii) The number of infected cells determines the transmission parameter βC , so that βC = βC(IC).
(iii) The transmission dynamics of both cells are assumed to occur at a slow time scale so that
SC = SC(t), IC = IC(t) and VC = VC(t) .

dSC(t)

dt
= ΛC − βC(IC)SC(t)− µCSC(t) (2.2)

dIC(t)

dt
= βC(IC)SC(t)− (µC + dC)IC(t)

(c) The multiscale model dynamics: The two submodels which describe the transmission of
HBV at both scales that is within - cell scale (a) and between - cell scale (b) were integrated. In
this section, the mathematical model and analysis centre on the integration of the two scales at
the cell level of biological organisation. Nested multiscale model for Hepatitis B viral infections
that consider the intracellular and extracellular dynamics at the cell level was developed based on
the mathematical framework presented in [25]. The transmission parameter in the between-cell
scale presented in (b) is now a function of both the infected cell population and the within-cell
virus variable. Thus β̄(IC) = β̄[Vs(s)IC(t)], which represents a function of the product of within-
cell scale viral load and the population of the infected cells. This can be denoted as VC(t) which
is the total infectiousness of the multiscale model as known as "Community Viral Load" that is
VC(t) = Vs(s)IC(t).

Therefore β̄C = β̄C(VC(t)). Holling type II functional form is applied in order to make the force of
infection associated with the infectivity to the cells at this scale, λC(t), become:

λC(t) = β̄C(VC(t)) =
βCVC(t)

V0 + VC(t)

At any time t, a total of IC(t) infected cells, each with an average of Vs(s) virions, was arrived at.
Therefore, the rate of change of VC(t) in the entire hepatocyte, composed of IC(t) cells, which are
homogeneous and unevenly distributed within the hepatocytes, can be expressed as:

dVC(t)

dt
= Vs(s)rcIC(t)− σ(Vs, hr)VC(t) (2.3)

The derivations and assumptions from the within - cell model (2.1), the between - cell model (2.2)
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and (2.3) made up of the multiscale model for HBV cell to cell and is given as :

dhr(s)

ds
= Λr − ηrhr(s)Vs(s)− δrhr(s),

dht(s)

ds
= ηrhr(s)Vs(s)− (αt + µt + δt)ht(s),

dhc(s)

ds
= αtht(s)− (αc + ρc)hc(s), (2.4)

dhi(s)

ds
= µtht(s)− (αi + δi)hi(s),

dVs(s)

ds
= Ncαchc(s) +Niαihi(s)− (rc + ri)Vs(s),

dSC(t)

dt
= ΛC − βCVC(t)SC(t)

V0 + VC(t)
− µCSC(t),

dIC(t)

dt
=

βCVC(t)SC(t)

V0 + VC(t)
− (µC + dC)IC(t),

dVC(t)

dt
= Vs(s)rcIC(t)− σCVC(t).

The within-cell scale influences the between-cell scale by shedding / excretion of the pathogen
(virus) and the between-cell scale influences the within-cell scale by initial infection of the pathogen
(virus). It should be mentioned that the within-cell scale submodel timeframe and the between-cell
scale submodel timescale have different time scales. The time scale in the within-cell submodel is
(s) is faster than the between-cell submodel (t). In order to analyse the model system (2.4), we
apply a singular perturbation (slow and fast time scale analysis) to model system (2.4). Rewriting
the submodel system by relation t = ϵs, where 0 < ϵ≪ 1, allows the consideration of the within-cell
submodel, which is the replication dynamics submodel. As a result, the within-cell scale submodel
becomes:

ϵ
dhr(t)

dt
= Λr − ηrhr(t)Vs(t)− δrhr(t),

ϵ
dht(t)

dt
= ηrhr(t)Vs(t)− (αt + µt + δt)ht(t),

ϵ
dhc(t)

dt
= αtht(t)− (αc + ρc)hc(t), (2.5)

ϵ
dhi(t)

dt
= µtht(t)− (αi + δi)hi(t),

ϵ
dVs(t)

dt
= Ncαchc(t) +Niαihi(t)− (rc + ri)Vs(t).

The within-cell scale submodel’s fast time scale contrasts with the between-scale transmission dy-
namics submodel’s slow time scale in the within-cell scale model system (2.4), where ϵ is a constant.
Given that 0 < ϵ ≪ 1, we set ϵ = 0 to make the within-cell scale of HBV replication dynamics
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independent of time, which is simplified to algebraic equations in (2.5).

Λr − ηrh̃rṼs − δrh̃r = 0,

ηrh̃rṼs − (αt + µt + δt)h̃t = 0,

αth̃t − (αc + ρc)h̃c = 0, (2.6)
µth̃t − (αi + δi)h̃i = 0,

Ncαch̃c +Niαih̃i − (rc + ri)Ṽs = 0.

Solving (2.6), it is derived that:

h̃r =
Λr

δrℜ0
,

h̃t =
δr(αc + ρc)(αi + δi)(rc + ri)

ηr[Ncαcαt(αi + δi) +Niαiµt(αc + ρc)]
[ℜ0 − 1],

h̃c =
δrαt(αi + δi)(rc + ri)

ηr[Ncαcαt(αi + δi) +Niαiµt(αc + ρc)]
[ℜ0 − 1],

h̃i =
δrµt(αc + ρc)(rc + ri)

ηr[Ncαcαt(αi + δi) +Niαiµt(αc + ρc)]
[ℜ0 − 1],

Ṽs =
δr
ηr

[ℜ0 − 1]

Ṽs is the viral load of the within-cell submodel.
where:

ℜ0 =
Λrηr[Ncαcαt(αi + δi) +Niαiµt(αc + ρc)]

δr(αt + µt + δt)(αc + ρc)(αi + δi)(rc + ri)

ℜ0 is the basic reproduction number of the within-cell scale. The simplified nested multiscale model
is obtained by upscaling the within-cell viral load into the community viral load of the between-cell
submodel and is given as:

dSC(t)

dt
= ΛC − βCVC(t)SC(t)

V0 + VC(t)
− µCSC(t),

dIC(t)

dt
=

βCVC(t)SC(t)

V0 + VC(t)
− (µC + dC(Ṽs, h̃r))IC(t), (2.7)

dVC(t)

dt
= ṼsrcIC(t)− σC(Ṽs, h̃r)VC(t).

From the multiscale model system (2.7), it was seen that the total infectious reservoirs of cells (CVL)
Vs(s)IC(t) is now approximated ṼsIC(t) (that is the within-cell viral load is now time independent).
This can be rewritten in the simplified nested multiscale model as:

dSC(t)

dt
= ΛC − βCVC(t)SC(t)

V0 + VC(t)
− µCSC(t),

dIC(t)

dt
=

βCVC(t)SC(t)

V0 + VC(t)
− (µC + dC)IC(t), (2.8)

dVC(t)

dt
= NsrcIC(t)− σCVC(t).
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Where the viral clearance rate σC = σC(Ṽs, h̃r), a constant parameter; the virus induced death
rate dC = dC(Ṽs, h̃r), a constant parameter and the within-cell viral load Ns = Ṽs, a composite
parameter (that is a parameter that consists of various number of parameters).

Figure 1: A conceptual diagram of the multiscale model of HBV transmission dynamics

3 Mathematical and Numerical Analysis of the Multiscale
Model

The Simplified Nested Multiscale Model (SNMSM) derived in (2.8) will be analysed mathemat-
ically and numerically as discussed below.

3.1 Positivity of the solutions of the SNMSM
In order for the model system (2.8) to be realistic, solutions will have to be nonnegative at all

times for all t > 0. We show that every state variable in the system will remain nonnegative.
Theorem 3.1 : Given that the initial conditions of the model (2.8) remain nonnegative i.e (SC(0) ≥
0, IC(0) ≥ 0, VC(0) ≥ 0), then the solution set is (SC(t), IC(t), VC(t)) is nonnegative for all t ≥ 0.
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Proof : Let t∗ = sup {SC(0) > 0, IC(0) > 0, VC(0) > 0}
Since SC(t), IC(t) and VC(t) are continuous , we deduce that t∗ > 0. If t∗ = +∞, then positivity
holds but if 0 < t∗ < +∞, SC(t) = 0 or IC(t) = 0 or VC(t) = 0. Now, consider the first equation
of the system (2.8),

dSC(t)

dt
= ΛC − βCVC(t)SC(t)

V0 + VC(t)
− µCSC(t)

dSC(t)

dt
= ΛC − (λC(t) + µC)SC(t)

dSC(t)

dt
+ (λC(t) + µC)SC(t) = ΛC (3.1)

where λC(t) =
βCVC(t)SC(t)

V0+VC(t)

Integrating the equation (3.1), thus:

d

dt

{
SC(t)e

(µCt+
∫
λC(τ)dτ)

}
= ΛCe

(µCt+
∫
λC(τ)dτ)

And:

SC(t
∗)e(µCt∗+

∫ t∗
0

λC(τ)dτ) − SC(0) =

∫ t∗

0

e(µC+λC(t))dtΛCdt

which implies that:

SC(t
∗) = SC(0)e

−(µCt∗+
∫ t∗
0

λC(τ)dτ) + e−(µCt∗+
∫ t∗
0

λC(τ)dτ)

∫ t∗

0

e(µC+λC(t))dtΛCdt

SC(t
∗) = k1SC(0) + k1

∫ t∗

0

e(µC+λC(t))dtΛCdt > 0

where e−(µCt∗+
∫ t∗
0

λC(τ)dτ) > 0, SC(0) > 0 and from t∗ above, it is arrived at that VC(t) > 0.
Therefore the solution SC(t

∗) > 0 and hence, SC(t
∗) ̸= 0.

Considering the second equation to model (2.8):

dIC(t)

dt
=
βCVC(t)SC(t)

V0 + VC(t)
− (µC + dC)IC(t)

dIC(t)

dt
+ (µC + dC)IC(t) = λC(t)SC(t) (3.2)

Integrating equation (3.2), it is got that:

d

dt

{
IC(t)e

∫
(µC+dC)dt

}
= λC(t)SC(t)e

∫
(λC+dC)dt

IC(t
∗)e(µC+dC)t∗ − IC(0) =

∫ t∗

0

e
∫
(λC+dC)dtλC(t)SC(t)dt
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This implies that:

IC(t
∗) = IC(0)e

−(µC+dC)t∗ + e−(µC+dC)t∗
∫ t∗

0

e
∫
(λC+dC)dtλC(t)SC(t)dt,

IC(t
∗) = k2IC(0) + k2

∫ t∗

0

e
∫
(λC+dC)dtλC(t)SC(t)dt,

where k2 = e−(µC+dC)t∗ > 0, IC(0) > 0 and from above, SC(t) > 0, then the soution IC(t
∗) > 0

and hence, IC(t∗) ̸= 0. Lastly, the third equation of model (2.8) is :

dVC(t)

dt
= NsrcIC(t)− σCVC(t)

dVC(t)

dt
+ σCVC(t) = NsrcIC(t) (3.3)

Integrating equation (3.3), it becomes:

d

dt

{
VC(t)e

∫
σCdt

}
= NsrcIC(t)e

∫
σCdt

VC(t
∗)eσCt∗ − VC(0) =

∫ t∗

0

e
∫
σCdtNsrcIC(t)dt,

This implies that:

VC(t
∗) = VC(0)e

−σCt∗ + e−σCt∗
∫ t∗

0

e
∫
σCdtNsrcIC(t)dt,

VC(t
∗) = k2VC(0) + k2

∫ t∗

0

e
∫
σCdtNsrcIC(t)dt,

where k2 = e−σCt∗ > 0, VC(0) > 0 and from above, IC(t) > 0. So the solution VC(t
∗) > 0 and

VC(t
∗) ̸= 0.

Thus, when starting with nonnegative initial value conditions in the model system (2.8), the solu-
tions of the model will remain nonnegative for all t ≥ 0, and this complete the proof.

3.2 Invariant Region of the Equilibrium of the SNMSM
It is assumed that the parameters of the multiscale model system (2.8) are non negative.

d(SC(t) + IC(t))

dt
= ΛC − µCSC(t)− (µC + dC)IC(t),

dNC(t)

dt
= ΛC − µCNC(t)− dCIC(t),

≤ ΛC − µCNC(t)

This implies that:

lim
t→∞

sup(NC(t)) =
ΛC

µC
(3.4)
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Since SC(t) and IC(t) are subsets of NC(t) and NC(t) is also bounded above following the result
obtained in (3.4), it can concluded using the Bolzano Weierstrass Theorem that SC(t) and IC(t)
are bounded above. That is, limt→∞ sup(SC(t)) =

ΛC

µC
and limt→∞ sup(IC(t)) =

ΛC

µC
. Also,

dVC(t)

dt
= NsrcIC(t)− σCVC(t),

dVC(t)

dt
≤ Nsrc

ΛC

µC
− σCVC(t),

lim
t→∞

sup(VC(t)) =
NsrcΛC

σCµC
.

The invariant region is:

Ω = {SC(t), IC(t), VC(t) ∈ R3+;NC(t) ≤
ΛC

µC
, VC(t) ≤

NsrcΛC

σCµC
}

Since every trajectory that begins in Ω will stay in Ω for all t ≥ 0, Ω is a positively invariant
and attractive region. From a mathematical and epidemiological perspective, the model (2.8) is
well-posed.

3.3 Disease Free Equilibrium and Reproduction Number of SNMSM
The Equilibrium states of the model are obtained by setting the Right Hand Sides (RHS) of

the system (2.8) to zeros. Disease Free Equilibrium (DFE) and Endemic Equilibrium (EE) are the
two equilibria states that the system accepts. E0 = (ΛC

µC
, 0, 0) represents the DFE state, which

occurs when there is no infection in the cell. The endemic equilibrium is represented by E∗ =
(S∗

C , I
∗
C , V

∗
C). The Reproduction Number which is one of the necessary and important parameter

in the analysis of disease outbreak is defined and calculated for the model system (2.8). Within a
completely susceptible population, the Reproduction Number (R0) indicates the anticipated number
of secondary cases that an average infected individual will produce during the course of the infection
[28]. The next generation approach [29] can be used to determine the Reproduction Number in the
following manner: 

dX
ds = f(X,Y, Z),

dY
ds = g(X,Y, Z),

dZ
ds = h(X,Y, Z)

where: 

X = (hr, SC),

Y = (ht, hc, hi, IC),

X = (Vs, VC)
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The number of susceptibles, the number of infected, and the number of cell capable of spreading
the virus are represented by the components of X, Y , and Z, respectively. Thus:

g̃1(X
∗, Z) =

βCΛCZ

µC(µC + dC)(V0 + Z)
,

Unless otherwise indicated, it is assumed that ΛC > µC in all that follows:

h(X∗, g̃(X∗, Z), Z) =
NsrcβCΛCZ

µC(µC + dC)(V0 + Z)
− σCZ,

Assume that A can also be expressed as A = M − D, where M ≥ 0 and D > 0. Let A =
DZh(X

∗, g̃(X∗, 0), 0).

Dzh(h
∗, g̃(X∗, 0), 0) =

NsrcβCΛC

µC(µC + dC)V0
− σC ,

M =
NsrcβCΛC

µC(µC + dC)V0
,

D = σC ,

MD−1 =
NsrcβCΛC

σCµC(µC + dC)V0
.

The spectral radius, or dominant eigenvalue, of the matrix MD−1 is the fundamental reproduction
number, that is

R0 = ρ(MD−1)

R0 =
NsrcβCΛC

σCµC(µC + dC)V0
(3.5)

The basic Reproduction Number of the multiscale model (2.8) can expressed as two different com-
ponents as shown below:

R0 = R0R.R0T

R0 =
Nsrc

(µC + dC)
× βCΛC

σCµCV0

(i) Consider a single newly complete virion entering HBV virus- free community / environment
at an equilibrium point. The entire discharged virion is still there and contagious. R0R is the
anticipated amount of infectiousness that was provided during the whole infection time. That is

R0R =
Nsrc

(µC + dC)

This is dependent on the average viral load Ns in the cell, which is expelled or released from
the cytoplasm into the cell environment at a rate rc of an infected cell. During each cell’s whole
infectiousness period, the virus spreads to other target cells. Ns is a composite quantity that can
be expressed as the within-cell scale viral load endemic value.

Ns =
δr
ηr

[ℜ0 − 1]
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where:
ℜ0 =

Λrηr[Ncαcαt(αi + δi) +Niαiµt(αc + ρc)]

δr(αt + µt + δt)(αc + ρc)(αi + δi)(rc + ri)

The first partial expression for R0R represents the rate at which an infected cell adds to the Com-
munity Viral Load (V ∗

C) over the course of its infectiousness, and 1
(µC+dC) represents the infected

cell’s average life span.

(ii) Comparably, R0T represents a single newly infectious cell joining an equilibrium community
of susceptible cells free of viral burden. That is the approximate number of cells that infectious
cells are predicted to infect. Each HBV infection dose is estimated to produce the following number
of infected cells :

R0T =
βCΛC

σCµCV0

The second partial expression for the reproduction number depends on the recruitment rate of sus-
ceptible cells ΛC , the average life span of each susceptible cell 1

µC
, the contact rate of susceptible

cells in the infectious environment βC , the average time taken for the viral clearance in the com-
munity / environment 1

σC
and the susceptibility coefficient to HBV infection in the cell community

1
V0

, where V0 is the Community Viral Load that results in 50% chance of the cell being infected.
The reproduction number (R0) of the multiscale model system (2.8) is comprised of the within-cell
scale parameters and the between-cell scale disease parameters, as expressed in (i) and (ii). Ac-
cording to Theorem 2 of [29], the local stability of the DFE of the multiscale model system (2.8) is
assured.

3.4 Global Stability of Disease Free Equilibrium of SNMSM
The next generation operator [30] was applied to ascertained the global stability of DFE of the

simplified nested multiscale model system (2.8). The model system can be re-written in the form
dX
dt = F (X,Z),

dZ
dt = G(X,Z), G(X, 0) = 0

where X = (SC);Z = (IC , VC) and (X∗, 0) denotes the DFE of the system (2.8). It is assumed
that the conditions (H1) and (H2) below are ideal:

(H1): For dX
dt = F (X, 0), X∗ is GAS

(H2): G(X,Z) = AZ−Ĝ(X,Z), Ĝ(X,Z) ≥ 0, (X,Z) ∈ ψ where A = DZG(X, 0) is an M-matrix
and ψ is the region where the model makes biological sense. In relation to model (2.8), therefore:

F (X,Z) = (ΛC − βCVCSC

V0 + VC
− µCSC)

G(X,Z) =

βCVCSC

V0+VC
− (µC + dC)IC

NsrcIC − σCVC
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So
F (X, 0) = (ΛC − µCSC)

and

A =

−(αC + dC)
βCΛC

µCV0

Nsrc −αC


Using AZ and G(X,Z), it was deduced that:

Ĝ(X,Z) =

( ΛC

µCV0
− SC

V0+VC
)βCVC

0


Since ΛC

µCV0
≥ SC

V0+VC
it is clear that Ĝ(X,Z) ≥ 0 for all (X,Z) ∈ R3+. Also, it is noted that A

is an M-matrix, as the off-diagonal elements of A A are non-negative. Therefore, the disease-free
equilibrium is asymptotically stable globally.

3.5 The Endemic Equilibrium of SNMSM
The Endemic Equilibrium Point of the multiscale model (2.8) denoted as E∗ = (S∗

C , I
∗
C , V

∗
C)

and at this point each of the variables are constants and the rate of change of the model variable
is zero. The expressions for the endemic equilibrium and their description were derived as follows:
From equation (1) of the model system (2.8):

S∗
C =

ΛC(V0 + V ∗
C)

(βC + µC)V ∗
C + µCV0

From equation (2) of the system (2.8) it was derived that:

I∗C =
βCΛCV

∗
C

(µC + dC)[(βC + µC)V ∗
C + µCV0]

(3.6)

Also, from equation (3) of the model system (2.8), it was got:

I∗C =
σCV

∗
C

Nsrc
(3.7)

Equating the two expressions (3.6) and (3.7) for I∗C , it was inferred that the expression for V ∗
C was

as follows:
σCV

∗
C

Nsrc
=

βCΛCV
∗
C

(µC + dC)[(βC + µC)V ∗
C + µCV0]

(3.8)

Solving equation (3.8), two values for V ∗
C were arrived at as follows:

V ∗
C = 0,

V ∗
C = µCV0

βC+µC
[ NsrcβCΛC

σCµC(µC+dC)V0
− 1].

(3.9)

The first solution for V ∗
C denoted the value of the Disease Free Equilibrium and the second value is

the Endemic value of the system (2.8). Substituting the value of the reproduction number to the

81

 https://doi.org/10.5281/zenodo.13626018


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

10(3), 2024, Pages 67 - 94
https://doi.org/10.5281/zenodo.13626018

second value of V ∗
C , it was derived that the following expressions for the Endemic Equilibrium were

as follows:

S∗
C =

ΛC(βC + µCR0)

µC(βC + µC)R0
,

I∗C =
ΛCβC(R0 − 1)

(µC + dC)(βC + µC)R0
, (3.10)

V ∗
C =

µCV0
(βC + µC)

(R0 − 1). (3.11)

where
R0 =

NsrcβCΛC

σCµC(µC + dC)V0
(3.12)

It is clear that the expressions of (3.11) and (3.12) that the single positive endemic equilibrium point
for the model system (2.8) exist for R0 > 1 and whenever ℜ0 > 1. Accordingly, it was deduced that
the model (2.8) has a single distinct endemic equilibrium point. The results obtained above can be
summarised by stating the following theorem.

3.6 Local Stability of the Endemic Equilibrium of SNMSM
The following theorem illustrates how we will use the [31] to model (2.8) in order to determine

the local stability of the endemic equilibrium.
Theorem (3.6): Consider the following general system of Ordinary Differential Equations with
parameter ϕ:

dx

dt
f(x, ϕ), f : Rn −→ R, f : C2(R2 × R) (3.13)

where 0 is an equilibrium point of the system (2.8), (i.e f(0, ϕ)), ∀ϕ, and assume that
(i) A = Dxf(0, 0) = (∂fi(0,0)∂xi

) is a linearization of the system around the equilibrium 0 with ϕ
evaluated at 0;
(ii) zero is a simple eigenvalue of A and other eigenvalues of A have negative real part;
(iii) Matrix A has a left eigenvector denoted by v and a right eigenvector denoted by u, correspond-
ing to the zero eigenvalue.
Let fk be the kth component of f and

a =
∑n

k,i,j=1 ukvivj
∂2fk

∂xi∂xj
(0, 0),

b =
∑n

k,i=1 ukvi
∂2fk
∂xi∂ϕ

(0, 0), (3.14)

The local dynamics of the system around the equilibrium point 0 is totally governed by the signs
of a and b.
(i) a > 0, b > 0, when ϕ < 0 with |ϕ| ≪ 1, 0 is LAS, and there exists a positive unstable
equilibrium; when 0 < ϕ < 1, 0 is unstable and there exists a negative and locally asymptotically
stable equilibrium.
(ii) a < 0, b < 0, when ϕ < 0 with |ϕ| ≪ 1, 0 is unstable ; when 0 < ϕ ≪ 1, 0 is LAS, and there
exists a positive unstable equilibrium point.
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(iii) a > 0, b < 0, when ϕ < 0 with |ϕ| ≪ 1, 0 is unstable and there exists a LAS negative
equilibrium; when |ϕ| ≪ 1, 0 is stable and a positive unstable equilibrium appear.
(iv) a < 0, b > 0, when ϕ changes from negative to positive, 0 changes its stability from stable to
unstable. Correspondingly a negative unstable equilibrium becomes positive and LAS.
In this case, the Center Manifold Theorem as stated above was applied by making the following
change of variables SC = x1, IC = x2, VC = x3. Further, it is allowed that ϕ = β∗, where β∗ is a
bifurcation parameter. If β∗ = βC and R0 = 1, and solve for β∗,

β∗ =
σCµCV0(µC + dC)

NsrcΛC

In addition, the vector notation x = (x1, x2, x3)
T was employed. This allows the expression of the

model system (2.8) as dx
dt = F (x, β∗), where F = (f1, f2, f3).

ẋ1 = ΛC − β∗x3x1
V0 + x3

− µCx1,

ẋ2 =
β∗x3x1
V0 + x3

− (µC + dC)x2, (3.15)

ẋ3 = Nsrcx2 − σCx3.

The system of equation (3.15) evaluated at the DFE (E0) has the following Jacobian matrix:

A =


−µC 0 −β∗ΛC

µCV0

0 −(µC + dC)
β∗ΛC

µCV0

0 Nsrc −σC

 (3.16)

Solving the eigenvalues for this new Jacobian matrix with βC replaced by the expression for β∗ and
solving for the eigenvalues yields the following values of λ:

λ1 = 0,

λ2 = −µC ,

λ3 = −(σC + µC + dC)

As can be seen from the preceding result, the linearised system of the transformed equation (3.15)
with β∗ as the bifurcation point has a simple zero eigenvalue. The dynamics of the system (3.15)
at βC = β∗ can therefore be examined using the center manifold theorem.

The left eigenvector associated with the zero eigenvalue of the model system (3.15) is u =
(u1, u2, u3)

T , which is the Jacobian matrix value, where:
u1 = −β∗ΛC

µ2
CV0

,

u2 = σC

Nsrc
= β∗ΛC

µC(µC+dC)V0
,

u3 = 1.

(3.17)
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The right eigenvector given by v = (v1, v2, v3), where:
v1 = 0,

v2 = Nsrc
(µC+dC) ,

v3 = 1.

(3.18)

Computation of the bifurcation parameters a and b: To find the sign of a, the non-zero second
order derivatives at (0, 0) is evaluated in order to assess the non-zero second order derivative of F
with respect to each variable, these were obtained:

∂2f1
∂x1∂x3

(0, 0) = −β∗

V0
,

∂2f1
∂x3∂x1

(0, 0) = −β∗

V0
,

∂2f1
∂x2

3
(0, 0) = 2ΛCβ∗

µCV 2
0
,

∂2f1
∂x1∂x3

(0, 0) = β∗

V0
,

∂2f1
∂x3∂x1

(0, 0) = β∗

V0
,

∂2f1
∂x2

3
(0, 0) = − 2ΛCβ∗

µCV 2
0

(3.19)

The sign of the bifurcation constant a is determined as follows:

a = u1v
2
3

∂2f1
∂x23

(0, 0) + u2v
2
3

∂2f2
∂x23

(0, 0)

a = −2ΛCβ
∗

µCV 2
0

(
β∗ΛC

µ2
CV0

+
σC
Nsrc

) < 0

To determine the sign of b, the following non-vanishing second order derivatives of the transformed
model (3.15) were computed, evaluating the non-zero second order derivatives at (0, 0), thus arriving
at : 

∂2f1
∂x1∂β∗ (0, 0) = 0,

∂2f1
∂x3∂β∗ (0, 0) = − ΛC

µCV0
,

∂2f2
∂x1∂β∗ (0, 0) = 0,

∂2f2
∂x3∂β∗ (0, 0) =

ΛC

µCV0

(3.20)

The sign of the bifurcation constant b is determined as follows:

b = u1v3
∂2f1
∂x3∂β∗ (0, 0) + u2v3

∂2f2
∂x3∂β∗ (0, 0)
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b =
Λ2
Cβ

∗

µ2
CV

2
0

(
1

µC
+

1

µC + dC
) > 0

Thus a < 0 and b > 0. Using the theorem (3.6) item (iv), the following result which holds for
R0 > 1 but close to 1 was established.

3.7 Global Stability of the Endemic Equilibrium of SNMSM
Theorem 3.7 : The endemic equilibrium of the model (2.8) is globally asymptotically stable

(GAS) whenever R0 > 1.

Proof : Given a Volterra-type Lyapunov function

L1 = L(SC , IC , VC)

L1 = SC − S∗
C lnSC + IC − I∗C ln IC + c1(VC − V ∗

C lnVC)

It is known that L1 = 0 when (SC , IC , VC) = (S∗
C , I

∗
C , V

∗
C) and L > 0 otherwise : L is also radially

unbounded. L1 was differentiated with respect to t in order to get a negative value of L.

L̇1 = (1− S∗
C

SC
)
dSC

dt
+ (1− I∗C

IC
)
dIC
dt

+ c1(1−
V ∗
C

VC
)
dVC
dt

= (1− S∗
C

SC
)[ΛC− βCVCSC

V0 + VC
−µCSC ]+(1− I∗C

IC
)[
βCVCSC

V0 + VC
−(µC+dC)IC ]+c1(1−

V ∗
C

VC
)[NsrcIC−σCVC ]

this can be transformed to:

L̇1 = (1− S∗
C

SC
)[

βCV ∗
CS∗

C

V0+V ∗
C

+ µCS
∗
C − βCVCSC

V0+VC
− µCSC ] + (1− I∗

C

IC
)

[βCVCSC

V0+VC
− βCV ∗

CS∗
CIC

(V0+V ∗
C)I∗

C
] + c1(1− V ∗

C

VC
)[NsrcIC − NsrcI

∗
CVC

V ∗
C

]

L̇1 = 2
βCV ∗

CS∗
C

V0+V ∗
C

+ µCS
∗
C − µCSC − βCV ∗

C(S∗
C)2

(V0+V ∗
C)SC

− µC(S∗
C)2

SC
+

βCVCS∗
C

V0+VC
+ µCS

∗
C

−βCV ∗
CS∗

CIC
(V0+V ∗

C)I∗
C
− βCVCSCI∗

C

(V0+V ∗
C)IC

+ c1NsrcIC − c1NsrcI
∗
CVC

V ∗
C

− c1NsrcICV ∗
C

VC
+ c1NsrcI

∗
C

further simplification yields:

= −µC

SC
(SC − S∗

C)
2 − βCV ∗

C(S∗
C)2

(V0+V ∗
C)SC

+ 2
βCV ∗

CS∗
C

V0+V ∗
C

+
βCVCS∗

C

V0+VC
− βCVCSCI∗

C

(V0+V ∗
C)IC

+[c1Nsrc − βCV ∗
CS∗

C

(V0+V ∗
C)I∗

C
]IC − c1NsrcI

∗
CVC

V ∗
C

− c1NsrcICV ∗
C

VC
+ c1NsrcI

∗
C

c1 was chosen such that:

c1Nsrc −
βCV

∗
CS

∗
C

(V0 + V ∗
C)I

∗
C

= 0

This implies that:

c1 =
βCV

∗
CS

∗
C

Nsrc(V0 + V ∗
C)I

∗
C
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So

L̇1 = −µC

SC
(SC − S∗

C)
2 + 3

βCV ∗
CS∗

C

V0+V ∗
C

− βCV ∗
C(S∗

C)2

(V0+V ∗
C)SC

− βCVCS∗
C

V0+VC
− βCVCSCI∗

C

(V0+VC)IC

−βC(V ∗
C)2S∗

CIC
(V0+V ∗

C)VCI∗
C
+

βCVCS∗
C

V0+V ∗
C

=
βCV ∗

CS∗
C

V0+V ∗
C

[3− S∗
C

SC
− VC

V ∗
C
− ICV ∗

C

I∗
CVC

] +
βCVCS∗

C

V0+VC
[1− SCI∗

C

S∗
CIC

]− µC

SC
(SC − S∗

C)
2

It is known that 1 − SCI∗
C

S∗
CIC

≤ 0 since SC

S∗
C

≥ 1 and I∗
C

IC
≥ 1. It is found that L̇1 ≤ 0 by applying the

arithmetic - geometric mean inequality, indicating that L1 is in fact a Lyapunov function. Based
on Lasalle’s Invariance Principle, It can be inferred that E∗ has global asymptotic stability (GAS).

4 Sensitivity Analysis and Numerical Simulation

4.1 Sensitivity Analysis
The sensitivity analysis was conducted for the four (4) Hepatitis B transmission metrics (2 at

the within-cell scale and the other 2 at the between-cell scale), which will be derived from the
multiscale model (2.8). In order to use the multiscale model (2.8) to obtain results that can be
used to facilitate the prevention and control of Hepatitis B, Parameters from published literatures
were used to parameterise it. At the within-cell scale, the two metrics are: (i) Ns which is the
proxy for the individual cell infectiousness and (ii) ℜ0 which is the within-cell basic Reproduction
Number. The two metrics for the between-cell scales are: (i) V ∗

C which is the endemic value of
the community viral load and (ii) R0 is the basic Reproduction Number which is taken as the
transmission potential of hepatitis B at the start of the epidemic. The sensitivity analysis of the
four metrics (ℜ0, Ns,R0, V

∗
C) with respect to all the parameters will assist in informing Hepatitis B

prevention and treatment policy by using high impact preventions medical interventions since we
are at the cell level of organisation. For the 4 Hepatitis B transmission metrics, (ℜ0, Ns,R0, V

∗
C),

the normalised sensitivity index with respect to a parameter P is given by:

SP
Γi

=
∂Γi

∂P
× P

Γi
, i = ℜ0, Ns,R0, V

∗
C (4.1)

where: 

V ∗
C = µCV0

(βC+µC) (R0 − 1),

R0 = VsrcβCΛC

σCµC(µC+dC)V0
,

Ns =
δr
ηr
(ℜ0 − 1),

ℜ0 = Λrηr[Ncαcαt(αi+δi)+Niαiµt(αc+ρc)]
δr(αt+µt+δt)(αc+ρc)(αi+δi)(rc+ri)

.
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Figure 2: (a) The normalised sensitivity indices of all the model parameters that influence the HBV
transmission metric R0 in a simplified nested multiscale model.
(b) The normalised sensitivity indices of all the model parameters that influence the HBV trans-
mission metric V ∗

C in a simplified nested multiscale model.

(a) (b)

The sensitivity analysis results of R0 and V ∗
C to all the baseline model (2.8) parameters in figures

2(a) and 2(b) showed that the majority of the highly sensitive parameters discussed above are the
within-cell and between-cell parameters, which justifies the inclusion of within-cell parameters to
the overall assessment of the sensitivity of the two transmission metrics from the model (Community
Viral Load and Reproduction Number) to the between-cell parameters. This is significant because
it helps to identify parameters that are critical for guiding data collection for model parameterisa-
tion and to identify parameters that are essential to assessing the efficaciousness of HBV treatment,
control, and eliminate. The following results could be deduced:

(i) The parameters with positive will increase the values for both R0 and V ∗
C when they in-

creased, while parameters with negative will decrease the values for both R0 and V ∗
C when they

increased. The six parameters (βC ,ΛC , Ni, Nc, rc,Λr) have a significant impact on the metric R0.
Among the five parameters (ΛC , Ni, Nc, rc,Λr), V ∗

C has the highest sensitivity; βC has the lowest
sensitivity for V ∗

C . Given the significant sensitivity of both R0 and V ∗
C to (ΛC , Ni, Nc, rc,Λr), it

follows that, in order to improve the validity and reliability of the model system (2.8), care must
be taken to ensure that these within-cell and between-cell model parameters are accurate when
collecting data.

(ii) The V ∗
C is less sensitive to βC while R0 is significantly sensitive to βC , this implies that med-

ical interventions such as Entry Inhibitors, Secretion Inhibitors and direct acting antivirals (DAAs)
would have more effect in the control of the transmission of Hepatitis B infection at the cell level
at the start of the epidemic than when the virus is already endemic.
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4.2 The Infuence of Within-cell Scale on the Between-cell Scale Hepatitis
B Transmission Dynamics

To gain a better understanding of the overall behaviour of the pathogens, this section provided
numerical simulations of the formulated model using ODE45 solver in Matlab Software Package.
The theoretical results derived in section (3.6) were addressed along with the implications of the
simulation results, supported by figures. The effect of specific parameters on the between-cell
scale variables for the dynamics of Hepatitis B transmission by numerical simulations of the Sim-
plified Nested Multiscale Model system (2.8) were studied. Using analytical techniques, this was
demonstrated in subsection (3.6) to show how the within-cell submodel influences the between-cell
submodel by demonstrating that the endemic values of the between-cell scale variables are func-
tions of the within-cell scale parameters. The parameter values listed in table 1 are used for the
numerical simulations. There are 20 parameters, 14 are within-cell submodel parameters and 6 are
between-cell submodel parameters. This section considered the influence of some of the parameters
that were relevant in the comparative effectiveness of the treatment and preventive interventions.

Figure 3: (a) Effect of Recruitment rate of rcDNA (Λr) on population of susceptible cells for
different values of Λr : Λr = 0.00694,Λr = 0.0694,Λr = 0.694 in a SNMSM.
(b) Effect of Recruitment rate of rcDNA (Λr) on population of Infected cells for different values of
Λr : Λr = 0.00694,Λr = 0.0694,Λr = 0.694 in a SNMSM.
(c) Effect of Recruitment rate of rcDNA (Λr) on community viral load for different values of
Λr : Λr = 0.00694,Λr = 0.0694,Λr = 0.694 in a SNMSM.

(a) (b) (c)

Figures 3(a) to 3(c): show the influence of the variation of the recruitment rate of rcDNA (Λr)
with Λr : Λr = 0.00694,Λr = 0.0694,Λr = 0.694 on the between-cell scale variable of [population of
susceptible cells (SC), population of infected cells (IC) and community viral load (VC) ] of model
system (2.8). The findings indicated that while there is a little difference in the transmission dy-
namics of the SC and IC , there is an increase in the VC of the disease on the between-cell scale, as
depicted in the above figures, when the recruitment rate of rcDNA (Λr) increases. These results
predicted that if active control strategies can be put in place at the very first stage of the life cycle
of the pathogen at the within-cell scale, the viral load at the within-cell scale and the CVL at the
between-cell scale will reduce drastically.
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Figure 4: (a) Effect of viral burst size of incomplete particles (Ni) on population of susceptible cells
for different values of Ni : Ni = 0.00139, Ni = 0.0139, Ni = 0.139 in a SNMSM.
(b) Effect of viral burst size of incomplete particles (Ni) on Prevalence (IC) for different values of
Ni : Ni = 0.00139, Ni = 0.0139, Ni = 0.139 in a SNMSM .
(c) Effect of viral burst size of incomplete particles (Ni) on community viral load (VC), for different
values of Ni : Ni = 0.00139, Ni = 0.0139, Ni = 0.139 in a SNMSM.

(a) (b) (c)

Figures 4(a) to 4(c): show the influence of the variation of the viral burst size of incomplete
particles (Ni) with Ni : Ni = 0.00139, Ni = 0.0139, Ni = 0.139 on the between-cell scale variable
of [population of susceptible cells (SC), population of infected cells (IC) and community viral load
(VC) ] of model system (2.8). The findings indicated that while there is a modest difference in the
susceptible and infected cells, there is an increase in the disease’s transmission dynamics in the
community viral load with an increase in the viral burst size of incomplete particles (Ni). These
findings suggested that control strategies that target replication at the life cycle of the pathogen
must be introduced in order to reduce secretion of incomplete particles to the viral load at the
within-cell scale and the (community viral load) CVL at the between-cell scale.
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Figure 5: (a) Effect of reaction rate of DNA repair (ηr) on population of susceptible cells (SC) for
different values of ηr : ηr = 0.00000694, ηr = 0.0000694, ηr = 0.000694 in a SNMSM.
(b) Effect of reaction rate of DNA repair (ηr) on population of Infected cells (IC) for different values
of ηr : ηr = 0.00000694, ηr = 0.0000694, ηr = 0.000694 in a SNMSM.
(c) Effect of reaction rate of DNA repair (ηr) on community viral load (VC) for different values of
ηr : ηr = 0.00000694, ηr = 0.0000694, ηr = 0.000694 in a SNMSM.

(a) (b) (c)

Figures 5(a) to 5(b): show the influence of the variation of the reaction rate of DNA repair (ηr)
with (ηr) : (ηr) = 0.00000694, (ηr) = 0.0000694, (ηr) = 0.000694 on the between-cell scale variable
of [population of susceptible cells (SC), population of infected cells (IC) and community viral load
(VC) ] of model system (2.8). The result shows that an increase in the reaction rate of DNA repair
(ηr) makes no difference in the transmission dynamics of the disease in the between-cell scale as its
remain constant.

Figure 6: (a) Effect of viral burst size of complete virions (Nc) on population of susceptible cells
(SC) for different values of Nc : Nc = 0.000694, Nc = 0.00694, Nc = 0.0694 in a SNMSM.
(b) Effect of reaction rate of DNA repair (Nc) on population of Infected cells (IC) for different
values of Nc : Nc = 0.000694, Nc = 0.00694, Nc = 0.0694 in a SNMSM.
(c) Effect of reaction rate of DNA repair (Nc) on community viral load (VC) for different values of
Nc : Nc = 0.000694, Nc = 0.00694, Nc = 0.0694 in a SNMSM.

(a) (b) (c)

Figures 6(a) to 6(c): show the influence of the variation of the viral burst size of complete
virions (Nc) with Nc : Nc = 0.000694, Nc = 0.00694, Nc = 0.0694 on the between-cell scale variable
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of [population of susceptible cells (SC), population of infected cells (IC) and community viral load
(VC) ] of model system (2.8). The findings indicated that while there is a modest difference in the
transmission dynamics of SC and IC , there is an increase in the VC of the between-cell scale when
the viral burst size of incomplete particles (Nc) increases. These results suggested that control
strategies that target replication at the life cycle of the pathogen must be introduced in order to
reduce excretion of complete virions to the viral load at the within-cell scale and the CVL at the
between-cell scale.

5 Discussion and Conclusion

The main contribution of this study to scientific knowledge is the development of Simplified
Nested Multiscale Model that: (i) distinguishes between the release of complete virions and in-
complete particles from the cytoplasm into the extracellular space at the within-cell submodel.
(ii) The study contributes immensely to the development of medical interventions Direct Acting
Antivirals (DAAs) toward the improvement of sustained virological response rate of the infected
host in the control and the eradication of hepatits B which is one of the leading cause of mortality
in the world, especially in the sub-saharan Africa. Another reason for the assumption was the
inability most mathematical models of Hepatitis B to give satisfactory response to the eradication
of emergence resistance during treatment with DAAs and to treat all genotypes. (iii) we derive
advance alternative mathematical modeling for studying hepatic viral infections. In the Simplified
Nested Multiscale Model it is only the within-cell parameters that are significant at the endemic
state of the disease which explains the unidirectionality of the Simplified Nested Multiscale Model.
We were also able to identify through the sensitivity analysis (basic reprodutive number and the
community viral load) and the numerical simulations of the multiscale models, the main parameters
for the eradication of Hepatitis B. However, in the simplified nested multiscale model, the within-
cell parameters were upscaled by a composite parameter to the between-cell model. A numerical
demonstration of the effects of certain within-cell scales on the between-cell scale was presented,
and the benefits of the multiscale model over the single scale model were explored. This study
serves as an eye opener to mathematical modelers to be able to integrate different scales at any
level of biological organisation as expected. In order to obtain primary data for accurate and clear
numerical modeling, we shall make every effort to work in conjunction with scientists in the bio-
logical sciences. This study focused on the development and mathematical analysis of the nested
multiscale model but in our subsequent publications we will consider the medical interventions that
will incorporate the treatments and preventive interventions.
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