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Abstract

This study explored the Autoregressive models incorporating Regime switching or Markov
switching non-linear predictive models. This stemmed from the complexities observed in eco-
nomic phenomena the understanding of which will help in recommending better model fits.
The study collected data on all share index returns (Jan, 1985 - December 2019) from the
Nigeria Stock Exchange, fit an appropriate MS-AR model and estimate its parameters. The
parameters of the model were obtained while their properties like the expected duration, auto-
correlation measure and the goodness of fit were equally computed in testing the applicability
of the model. The result shows that the MS (3)-AR (3) as a predictive model was appropriate,
efficient and robust enough for forecasting the returns of the all-share index of the Nigerian
stock exchange over the sampled period. The study is therefore relevant for modelling all share
index returns by investors, policy makers, researchers and the general public.
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1 Introduction

The complexities of events observed in financial statistics show that the traditional modelling
techniques which assumed linearity and a Gaussian process no longer hold [1]. In all fields of
human endeavour, non-linear models are becoming conventional for the complexity and inter-
relatedness of phenomena. [2] observed that the dynamism of time events makes modelling a
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thought-provoking task and that the dynamics of systems are no longer quite explained by linear
models. Hence, non-linear models of which Markov switching is classified have gained prominence in
capturing time-varying events and modelling them with better precision. Markov switching (MS)
or regime-switching (RS) models according to [3], characterise time variant event properties at
different regimes because the conditional homoscedastic assumptions of the autoregressive moving
average models have failed. Hence, the need for a model that takes into account the heteroscedastic
properties of the dynamic model under consideration and a Markov or regime switching becomes
appropriate. However, the development and fitting of these models are quite tasking but with the
aid of available computing power, they are better coped with.

The application of Markov Switching models to economic, financial, environmental, epidemiolog-
ical, physical and other areas has been explored by different authors, stock market performance
and economic regimes in Nigeria [4] modelling stock market returns in Nigeria [3], Exchange rate
in Nigeria [5], Implied volatility of market indices with S & P 500 and DAX [6], Oil shocks in G-7
countries [7], heteroscedasticity in Bitcoin [8], US GNP growth [9], performance in controlling the
Covid-19 pandemic [10], and to infer dry and rainy periods from telecommunication microwave link
signals [11]. Markov switching models are a family of models that introduce time variation in the
parameters of a time series in the form of their state- or regime-specific values. These models can
capture the dynamics of complex processes that switch between different modes of behaviour, such
as economic cycles, financial crises, or mood disorders. The switching between states is governed
by a latent discrete-valued stochastic process, usually assumed to be a Markov chain, which means
that the current state depends only on the previous state and not on the entire history of the
process. Markov switching models can be applied to various types of time series models, such as
autoregressive, dynamic regression, or state-space models.

Markov switching models are applicable in modelling the interest rate as a two-stage process that
switches between high and low-interest rate regimes, modelling the GDP growth rate as a three-state
process that switches between expansion, recession, and crisis regimes, modelling the mood states
of bipolar patients as a two-stage process that switches between manic and depressive episodes [12].
Markov switching models can be estimated using various methods, such as maximum likelihood,
Bayesian inference, or filtering and smoothing algorithms. The estimation results can provide in-
formation about the state-dependent parameters, the transition probabilities between states, the
expected duration of each state, and the probabilities of being in each state at any given time. [13]
noted that in MS models, the long-term behaviour of a time series is disintegrated by recognising
the states or regimes that it alternates, and the average time it remains in each state or regime. The
disintegration of the series’ complete behaviour is then designated by the probability distribution
called the transition probability that rules the shifts among the states or regimes. Markov Switch-
ing models introduce time variation in the parameters as states or regime-specific values which are
characterised by detailed patterns of volatility, skewness, and kurtosis that arise in these models
with different forms of the transition matrix and analyses of the implied properties of the model
[14, 15].

The Markov Switching model has key assumptions that the switching mechanism is controlled
by an unobservable state variable that follows a first-order Markov chain, the current value (Xn)
of the regime’s variable is contingent on its immediate past value (Xn−1), with a prevalent struc-
ture for a random period which may change when it undergoes a switch, the model emphasises
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on the expected behaviour of the variables, the transition probabilities designate the prospect that
the current regime remains unchanged, the unidentified error distribution is approximately normal
[12, 16]. Markov Switching models as regime-switching models differ from other threshold models
because the threshold models switch deterministically within a threshold switch stochastically. It
differs from the hidden Markov model because Markov Switching models are a first-order Markov
chain that depends only on the current state and the state before while hidden Markov models are
doubly stochastic processes involving an underlying unobservable stochastic process which results
observable. Also, the Markov switching model assumes that the error distribution is unknown but
is approximated by a blend of normal distributions while other regime-switching models make dif-
ferent assumptions about the distribution of the error ([14, 16, 17, 18]. With the varied applications
in different fields, the present study explores the volatility model incorporating regime or Markov
switching (RSM or MSM) model to fit all share index returns of the Nigeria stock exchange (NGX).

2 Methods and Material

This section specifies the appropriate model of interest - the Markov Switching Autoregressive
model and estimates its parameters, transition probabilities, expected durations and other charac-
teristics with applications.

2.1 Model Specification for MS-AR
The regimes of the Markov Switching Autoregressive (MS-AR) model with state-dependent

mean and variance for the returns, Zt (differenced log all share index) at time t was determined
using the Akaike information criteria using the equation stated by [3]) as:

rt = cSt
+ φ1

(
rt−1 − cst−1

)
+ φ2

(
rt−2 − cst−2

)
+ . . .+ φp

(
rt−p − cst−p

)
+ εt (2.1)

εt ∼ i.i.d N(0, σSt

2) (2.2)

where
cst = c0S0t + c1S1t + c2S2t + . . .+ cpSpt + σSt

2

= σ1
2S1t + σ2

2S2t + . . .+ σp
2Spt (2.3)

cSt
is the state-dependent mean, σSt

2 is the state-dependent variance and φ1, φ2, φ3 are the
autoregressive coefficients produced by different subsamples. This study modelled the regimes,
Sit, i = 1 , . . . , m are the outcomes of the unobserved m-state Markov chain with St independent
of the εt for all t.
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[19] initiated the stochastic regime-switching MS-AR model for the three regimes while [20] mod-
elled three regimes MS-AR with autoregressive AR(p) using:

rt =

 a1 +B11rt−1 + · · ·+Bp1rt−p + ϵt ∀St = 1
a2 +B12rt−1 + · · ·+Bp2rt−p + ϵt ∀St = 2
a1 +B13rt−1 + · · ·+Bp3rt−p + ϵt ∀St = 3

(2.4)

with the regimes indexed by St.
MS-AR models have coefficients of its autoregressive component contingent on St at time t where
St are separate unobservable variables. These separate variables were termed as accumulation or
distribution phase (S1), big-moves phase (S2) and excess or panic phase (S3) of the returns of
the all-share index by [3] and were assumed to be ergodic first-order Markov chains implying that
the recent St regimes observations of the returns captures the impacts of prior observations of the
returns [21, 22, 23, 24].

2.2 Transition Probabilities
The transition probability of the regimes is given as:

pij = p

(
St =

j

St−1

)
= i ∀i, j = 1, . . . ,m (2.5)

m∑
i=1

pij = 1 (2.6)

The transition matrix of switching from phase (regime) i to phase (regime) j is denoted as P
where

P =

 p11 . . . p1m
...

...
...

pm1 . . . pmm

 (2.7)

And p11 + . . . + p1m = 1, pm1 + . . . + pmm = 1 and higher probabilities denoting a longer time to
shift to another regime.

2.3 Expected Duration
The expected duration which measures the length of stay of the system in a particular state or

regime according to [25] and [3] is estimated using the function.

E (DSt=i) =
1

1− pii
(2.8)
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2.4 Model Identification
The appropriate model for this study was identified using the log-likelihood values (log L) and

the Akaike information criteria (AIC) [26]. The AIC is computed as:

AIC = −2log L + 2m (2.9)

where L is the likelihood function defined and m represents the number of parameters included in
the corresponding model.

The model is applied to the returns of the All-Share Index (ASIR) of the Nigerian Stock Ex-
change (NGX) obtained for the period January 1985 to December 2019 and all the parameters are
estimated using E-Views 9.0.

3 Results

This section presents the results of the model fitted for the Markov Switching Autoregressive
(MS-AR) model, its estimates and the other characteristics estimated. The results are presented
in tables, and charts and interpreted as presented. Fig. 1 shows a non stationary actual recorded
all-share index of the Nigerian Stock Exchange (NGX) from January 1985 - December 2019. How-
ever, Fig. 2 presents the returns (differenced natural Log) of the all-share index for the same period
which has zero mean and and approximately constant variance.
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Table 1: Descriptive statistics of the all-share index (ASI)

ASI LN-ALSI Zt

Mean 16559.60 8.714979 0.013092
Median 11554.70 9.354830 0.014715

Maximum 65652.38 11.09213 0.323516
Minimum 111.3000 4.712229 -0.365883
Std.Dev. 15366.89 1.903776 0.061268
Skewness 0.671222 -0.815763 -0.432920
Kurtosis 2. 596171 2.267634 9.508078

Jarque-Bera 34.39156 55.96916 752.5373
Probability 0.000000 0.00000 0.00000

Sum 6955033 3660.291 5.485496
Sum Sq. Dev. 9.89E+10 1518.608 1.569086
Observations 420 420 419

The descriptive table shows that the All Share Index Return (ASIR or Zt) has a mean value of
1.31% with a standard deviation of 1.47%. The highest return was 32.35% while the least return
was a negative or loss of 36.59% of its value. The return was shown to be slightly negatively skewed.

Table 2 reveals that the best model estimate for the MS-AR with regressors using the Akaike in-
formation Criteria (AIC) and the log-likelihood value among the three considered models above is
the MS (3)–AR (3) with the least AIC (14.78152).
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Table 2: Estimation of the MS-AR model with regressors

MS-AR Model State lags Log-likelihood AIC Values

MS(2)-AR(5) 2 5 -3140.304 15.27024
MS(3)-AR(5) 3 5 -3051.203 14.82224
MS(3)-AR(5) 3 3 -3059.557 14.78152

Table 3: Estimates of the MS (3) - AR (3 )Model parameters

Variable Coefficient Std.Error Z-Statistic Prob.

Regime 1
µ1 1.0141 0.0080 126.3007 0.000
σ2
1 5.8231 0.0957 60.8668 0.0000

Regime 2
µ2 0.9967 0.0171 58.2695 0.0000
σ2
2 7.7559 0.0986 78.6928 0.0000

Regime 3
µ2 1.0246 0.0061 168.8280 0.0000
σ2
3 2.6418 0.1643 16.0773 0.0000

Common
AR(1) 0.1918 0.0446 4.2972 0.0000
AR(2) 0.1113 0.0323 3.4454 0.0000
AR(3) -0.0542 0.0208 -2.6048 0.0092

Log-likelihood = -3059 AIC 14.78152

The results show that regime 3 (1.0246) has the highest regime-dependent intercept (expected in-
crease in returns per period) followed by regime 1 (1.0141) while regime 2 has the least (0.9967).
and all of the intercepts are significant (p < 0.05). This implies that returns increase the least
in the accumulation period (gains or bullish) represented by Regime 1, followed by the big move
represented by Regime 2 and highest in the panic phase (losses or bearish) represented by Regime
3. The variance of regime 2 was the highest (7.7559), followed by regime 1 (5.8231) with regime 3
as the least varying (2.6418). It can be seen that regime 2 has 3 times the variability in regime 3
while regime 2 was twice that of 2. Hence, σ2st = 2 > σ2st = 1 > σ2st = 3. The implication is that
the returns fluctuate more in the big move phase (regime 2) and experience the least fluctuation in
the panic phase (regime 3). The autoregressive parameters for three lags (AR 3) were homogenous
for the three regimes with lags 1 and 2 positive while lag 3 is negative and lag 1 coefficient was the
highest while lag 3 coefficient was the least.

The three phases identified are the big move represented by Regime 1, the accumulation period
(gains or bullish) represented by Regime 2 and the panic phase (losses or bearish) represented by
Regime 3. Table 4 shows that the transition probabilities which show that the probability of accu-
mulation remaining (staying in regime 1) is 95.6% while there is only a 3.8% chance of switching
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Table 4: Transition Probability of MS(3) - AR(3) model

Transition Probabilities Expected Durations
Regime 1 Regime 2 Regime 3 Regime 1 Regime 2 Regime 3

Regime 1 0.9558 0.0060 0.0382 22.6485 392.7099 32.5434
Regime 2 0.0001 0.9974 0.0025 Q(P) DW stat
Regime 3 0.034 0 0.9693 0.0098(0.921) 2.236

from regime 1 to regime 3 and < 1% likelihood of moving from regime 1 to regime 2. It also revealed
that the probability of returns remaining in regime 2 is 99.7% with a probability of switching from
regime 2 to regimes 1 and 3 below 1%. Lastly, it can be seen that there is a 96.9% chance of
regime 3 remaining while the probability of moving from regime 3 to regime 1 is 3.1% and 0 for
switching from regime 3 to regime 2. The procedure also gave the smoothed probabilities which
shows that the 3-state Markov model vary so much as the span of the samples transit (see Fig. 3
below). The expected duration in Regime 1 is 22.65, that of Regime 2 is 392.71 and Regime 3 is
32.54. The Durbin-Watson statistic reveals that the residual of return is not autocorrelated while
the Q-statistic showed that the MS (3)-AR (3) is adequate as the goodness of fit test retained the
null hypothesis of adequacy of the model (p > 0.05).

4 Discussion

Hence, there is a confirmation through our study that a Markov Switching Autoregressive model
(MS-AR) was appropriate for the Nigerian Stock Exchange (NGX) returns on the All-Share index
(ASIR) with the linearity likelihood ratio (LR) high and so the hypothesis of switching model (MS-
AR) not fitting or adequate was rejected (p < 0.05). This aligned with other studies which used
the LR as the test statistic for the adequacy of the Markov switching model [27, 28, 29]. The study
found that the appropriate model for the All-Share Index return of the Nigeria Stock Exchange is
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a three-regime Markov Switching 3 lagged autoregressive (MS 3-AR3) model. This was revealed
by the AIC that was least for the MS (3)-AS (3) model when compared with other models (Table
2). While other studies used different criteria for their choice, Bayesian Information Criteria (BIC)
[29], Schwarz Bayesian Criteria (SBC) [27], this study employed the Akaike Information Criteria
(AIC) for the model selection.

The regime-dependent intercepts were estimated highest at regime 3 and least at regime 2. The
regime variances were also determined with the highest variance at regime 2 and the least variance
at regime 3 and the expected duration (E(D)) of stay in each regime were also computed with
regime 2 showing the highest E(D) of over 200 periods and least at regime 1 showing 22 periods.
The parameters (coefficients) of the lagged autoregression were determined to be homogenous for
all regimes unlike in other studies where the lagged coefficients were nonhomogeneous [29] This
study identified and fitted a three-regime Markov switching three-lagged autoregressive model, un-
like most other studies that have obtained 3 regimes on 2 lags [3]. This difference stemmed from
using data covering longer periods in this study than [3]) did.

5 Conclusion

We investigated the use of MS-AR, a non-linear model to disintegrate the All-Share Index return
of the Nigerian stock exchange producing a three regime three-lagged autoregressive model. We
thus concluded that the Markov Switching Autoregressive MS (3)-AR (3) model was the most
appropriate for the All-Share index return (ASIR) with the least AIC value of 14.78152 and hence
fitted. The transition probability of the three states was also generated and the states determined
are the accumulation period with 95.6% probability of retainership, big move with 99.7% of retaining
its place and the panic phase with 97.9% of remaining. Other important parameters of the model like
the regime-dependent intercepts, regime variances and the autoregressive parameter were estimated.
The properties of the model like the expected durations, adequacy measure, and goodness of fit test
using the Q-statistic and the Durbin-Watson statistic were also measured. Hence, the MS-AR is a
robust, efficient and reliable non-linear predictive model for forecasting the returns of the Nigerian
stock exchange All-Share index.
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