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Abstract

In this paper, the Green function of a fractional partial differential equation [(−∆)1+α +
V (x)]Ψ = δ(x − a), α ∈ (0, 1) is obtained where the Laplacian ∆, the potential V (x) and the
Dirac delta function δ(x) are defined over a closed ball B(0, r) of radius r > 0 in an Euclidean
space Rn and V (x) is a modified vector-valued Weierstrass sigma elliptic potential weighted by
a Bessel function. A combination of Fourier and Hankel transform techniques are employed in
obtaining the main result.
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1 Introduction
The evaluation of Green’s function is potent technique for obtaining solutions of differential equa-
tions in physics and engineering. Such solutions which are unique are used to model some complex
phenomena like heat distribution, fluid dynamics, electromagnetic fields, nano-particles motion,
wave reaction diffusion and so on. On the other hand, the study of fractional partial differential
equations (FPDEs) and integral equations have in recent time attracted much interest because of
its multifaceted applications in science and mathematics (see [1, 3–5, 10, 11, 19]). Recently, Youyu
et. al. [20], studied Green function for Caputo fractional sturm-Louiville boundary conditions.
The aforementioned authors have studied Laplacian of fractional order without potential but in
this paper, we solve a fractional partial differential equation with a modified elliptic potential by a
Bessel function weight to obtain its associated Green function. The choice of this potential is de-
liberate due to the fact that literature are scarce on the study of FPDEs with elliptic potential and
the Bessel function Jτ (|a||x|) is a good weight because after reaching its amplitude it decays like

1√
|a||x|

(see [6]). The method employed in this work is similar to Green’s function integral equation

method (GFIM) [16] and differs from other methods employed in solving other PDEs (see [12,13]).
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The search for Green functions for FPDE with potential functions forms the motivation for
this study and as such have implications in the study of fractional spectral shift functions. FPDE
with potential functions are very useful in modelling systems which entails short-range memory and
non-local hereditary phenomena (see [8]).

The outline of the paper is stated in what follows. Section two considers preliminaries on the
formulation of the problem and basic theorems required to resolve the problem. Section three
consists of the Main result in the paper in which the Green function is obtained. Section four,
consists of the conclusion and summary of result.

2 Preliminaries
Consider a Laplacian ∆ on Rn, which is essentially self adjoint on C∞

c (Rn). We define a partial
differential operator with a fractional order which is close in spirit with the definition of fractional
Laplace operator obtainable in [9], given by

Ln,α := (−∆)1+α, n ∈ Z+, 0 < α < 1. (2.1)

Consider spherically symmetric function φ(x) with x ∈ Rn being a radial coordinate (cf: [15], §1.7.2,
8o) such that x ∈ B(0, r) ⊂ Rn. It is well-known (cf: [15], §1.7.2, 8o, Eq.(8)) that

−∆ = − d2

dr2
− n− 1

r

d

dr
, (2.2)

x = (ξi)
n
i=1 and r = |x| =

√∑n
i=1 ξ

2
i .

Thus, one applies (2.4) with the operator factorisation to (2.1) to obtain

Ln,α = (−1)1+α

(
d2

dr2
+
n− 1

r

d

dr

)(
d

dr
+
n− 1

r

)α
dα

drα
(2.3)

Given an elliptic perturbation, the Weierstrass elliptic σ-function given by (cf. [2], §18.5.6-8,
pp.635-636)

σ(x) =

+∞∑
m,n=0

2n−mam,ng
m
2 g

n
3

x4m+6n+1

(4m+ 6n+ 1)!
,

with g2 = 60
∑′

u,v(2uω1 +2vω2)
−4, g3 = 140

∑′

u,v(2uω1 +2vω2)
−6 are invariant constants depend-

ing on periods of the Weierstrass ℘-function. Here,
∑′

u,v is sum to infinity excluding the origin
(0, 0), a0,0 = 1, and

am,n = 3(m+ 1)am+1,n−1 +
16

3
(n+ 1)am−2,n+1 −

1

3
(2m+ 3n− 1)(4m+ 6n+ 1)am−1,n.

Let a Bessel function of the first kind with order τ be defined in terms of the confluent hypergeo-
metric function of the first kind by the integral

Jτ (s) :=
2−τsτ

Γ(1 + τ)
0F1(1 + τ ;−1

4
s2)

(cf: [18], Eq.(37), p.200). Then, for a fixed a ∈ B(0, r),

[Ln,α + σ(x)Jτ (|a||x|)]φ(x) = δ(x− a), (2.4)

where δ(·) is the Dirac delta function and τ ∈ Z+.
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Definition 2.1. (cf: [15], p.153, Weighted Fourier Transform). Let Ω ⊂ Rn. The weighted Fourier
transform Fω : L2(Ω)

∼=−→ L2(Ω) is defined as

Fω[f ] = ⟨f(x), χs⟩ω =

∫
Ω

f(x)e−j⟨x,y⟩dx ≡ Sn−1

∫ ∞

0

∫ 2π

0

f(r)χ−s(r, θ)ω(r)drdθ.

Here, s = |y| =
√∑n

i=1 η
2
i , the character in Rn is χs(r, θ) = ejrs cos θ sinn−2 θ, j =

√
−1, the weight

function for Ln,α is ω(r) = r1−n > 0, rs cos θ = ⟨x, y⟩ =
∑n

k=1 ξiηi, and Sn−1 is the surface area
of the hyper-sphere Sn−1 given by Sn−1 = 2

√
πn

Γ(n
2 )

(cf: [15], Eq.(8), p.75).

Further simplification of Fω[f ] yields an expression in terms of Bessel function of the first kind
with order µ given by Jµ(·), µ ∈ Q.

Fω[f ] = 2π
n
2

(s
2

)1−n
2

∫ ∞

0

r
n
2 f(r)Jn

2 −1(rs)dr

= (2π)
n
2 s1−

n
2

∫ ∞

0

f(r)r
n
2 Jn

2 −1(rs)dr. (2.5)

It is now necessary to establish some propositions that will be needed in this work.

Proposition 2.2. Let a = |a| then

Fω[δ(x− a)] =
1

2
(2π)

n
2 s1−

n
2 a

n
2 Jn

2 −1(as) (2.6)

Proof. Setting ψ(r) = r
n
2 J1−n

2
(rs) and since δ(r − a) is an even function, it follows that

Fω[δ(x− a)] = (2π)
n
2 s1−

n
2

∫ ∞

0

ψ(r)δ(r − a)dr

=
1

2
(2π)

n
2 s1−

n
2 ψ(a).

Hence the result.

Lemma 2.3. Let Ln,α be as obtainable in equation (2.3). Then, by Reisz derivative

Fω[Ln,αφ] = (−1)1+αn(n+ 1)

2
s2(1+α)φ̂ω(s), s > 0. (2.7)

Proof.

Fω[Ln,αφ] = (−1)1+α

[
s2 + (n− 1)

(
d

ds

)−1

(s)

][
s+ (n− 1)

(
d

ds

)−1

(1)

]α

sαφ̂ω(s)

= (−1)1+α

[
s2 + (n− 1)

s2

2

]
[s+ (n− 1)s]αsαφ̂ω(s)

= (−1)1+αn(n+ 1)

2
s2(1+α)φ̂ω(s), s > 0.

Definition 2.4 ( [14], §9-2, Definition 9.2). Let f : R0
+ → R be a function. Then, the Hankel

transform

Gν(s) ≡ Hν [g(r)] =

∫ ∞

0

rg(r)Jν(sr)dr, s > 0

and the inverse Hankel transform is given by

g(r) = H −1
ν [Gν(s)] =

∫ ∞

0

sGν(s)Jν(sr)ds, ν > −1

2
.

Next, we consider the Fourier transform of the potential part.
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Lemma 2.5. Let

cm,n =
2n−mam,ng

m
2 g

n
3

(4m+ 6n+ 1)!

where am,n, g2, g3 are as earlier defined and c0,0 = 1. Then,

Fω[σ(x)Jτ (|a||x|)φ(x)] = (2π)
n
2 s1−

n
2

∞∑
m,n

′cm,n
24m+ 13n

2 +2a4m+7n+2(s2 − a2)−(4m+ 13n
2 +2)

s
n
2 −1Γ(−(4m+ 13n

2 + 1))

Proof. Let

cm,n =
2n−mam,ng

m
2 g

n
3

(4m+ 6n+ 1)!

where am,n, g2, g3 are as earlier defined and c0,0 = 1. Then,

Fω[σ(x)Jτ (|a||x|)φ(x)] = (2π)
n
2 s1−

n
2

∫ ∞

0

σ(r)Jτ (ar)φ(r)r
n
2 Jn

2 −1(rs)dr

= (2π)
n
2 s1−

n
2

∞∑
m,n

′cm,n

∫ ∞

0

r4m+6n+1r
n
2 Jτ (ar)Jn

2 −1(rs)drφ̂
ω(s)

= (2π)
n
2 s1−

n
2

∞∑
m,n

′cm,nHn
2 −1

[
r4m+ 13n

2 +1Jτ (ar)
]
φ̂ω(s).

Setting ν = n
2 + 1 such that τ − ν = 4m + 13n

2 + 1 yields τ = 4m + 7n + 2. By using the Hankel
transform (cf: [14], §9-14, Table 9.2 (15))

H [rτ−νJτ (ar)] =
2τ−ν+1aν(s2 − a2)ν−τ−1

sνΓ(ν − τ)
.

Hence,

Fω[σ(x)Jτ (|a||x|)φ(x)] = (2π)
n
2 s1−

n
2

∞∑
m,n

′cm,n
24m+ 13n

2 +2a4m+7n+2(s2 − a2)−(4m+ 13n
2 +2)

s
n
2 −1Γ(−(4m+ 13n

2 + 1))
φ̂ω(s).

3 The Main Result
The solution of equation (2.4) is the crux of this paper. In the theorem that follows, the solution
of the resulting fractional partial differential equation with modified Weierstrass elliptic potential
weighted by a Bessel function is obtained as a Green function.

The Green function φ(x,a) which solves the perturbed fractional partial differential equation

[(−∆)1+α + V (x)]Ψ = δ(x− a), α ∈ (0, 1)

is
φ(x,a) =

∫ ∞

0

Ψ(s, a)Jν(as)Jν(ar)ds,
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where, ν = n
2 − 1 and the kernel

Ψ(s, a) =



+∞∑
m,n=0

′ cas
n
2

qm,n(s2 − a2)γm,n + dnsκn(α)
, s > a

+∞∑
m,n=0

′cas
n
2 −κn(α) , s = a

+∞∑
m,n=0

′ cas
n
2

dnsκn(α) − qm,n(s2 − a2)γm,n
, s < a

with

ca =
1

2
a

n
2 ,

γm,n = −(4m+
13n

2
+ 2),

κn(α) = 2α+
n

2
+ 1

qm,n = cm,n
24m+ 13n

2 +2a4m+7n+2

Γ(−(4m+ 13n
2 + 1))

, and

dn = (−1)1+αn(n+ 1)

2
(2π)−

n
2

Proof. The Fourier transform of equation (2.4) using equation (2.7) and Lemma 2.5 becomes

[
(2π)

n
2 s1−

n
2

∞∑
m,n=0

′cm,n
24m+ 13n

2 +2a4m+7n+2(s2 − a2)−(4m+ 13n
2 +2)

s
n
2 −1Γ(−(4m+ 13n

2 + 1))

+ (−1)1+αn(n+ 1)

2
s2(1+α)

]
φ̂ω(s) =

1

2
(2π)

n
2 a

n
2 s1−

n
2 Jn

2 −1(as). (3.1)

Thus,

φ̂ω(s) =

+∞∑
m,n=0

′ caJn
2 −1(as)

qm,n(s2 − a2)γm,n + dnsκn(α)

where, s > a

ca =
1

2
a

n
2 ,

γm,n = −(4m+
13n

2
+ 2),

κn(α) = 2α+
n

2
+ 1

qm,n = cm,n
24m+ 13n

2 +2a4m+7n+2

Γ(−(4m+ 13n
2 + 1))

, and

dn = (−1)1+αn(n+ 1)

2
(2π)−

n
2

are real numbers. Thus, by Fourier inversion formula

f(r) = F−1
ω [F (s)] =

∫ ∞

0

F (s)s
n
2 Jn

2 −1(ar)ds,
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we have the Fourier-Bessel function

φ(x,a) =

+∞∑
m,n=0

′F−1
ω

[
caJn

2 −1(as)

qm,n(s2 − a2)γm,n + dnsκn(α)

]

=

+∞∑
m,n=0

′
∫ ∞

0

cas
n
2 Jn

2 −1(as)Jn
2 −1(ar)

qm,n(s2 − a2)γm,n + dnsκn(α)
ds

=

∫ ∞

0

Ψ(s, a)Jν(as)Jν(ar)ds.

Here, the kernel

Ψ(s, a) =



+∞∑
m,n=0

′ cas
n
2

qm,n(s2 − a2)γm,n + dnsκn(α)
, s > a

+∞∑
m,n=0

′ ca
dn
s

n
2 −κn(α) , s = a

+∞∑
m,n=0

′ cas
n
2

dnsκn(α) − qm,n(s2 − a2)γm,n
, s < a

Hence, the result follows.

4 Conclusion
The Green functions associated with the Laplacian with fractional order generates an integral equa-
tion which is solvable under the condition that the potential function is a multiple of a real valued
weighted Bessel function. The solution of the FPDE given in terms of integral

φ(x,a) =

∫ ∞

0

Ψ(s, a)Jν(as)Jν(ar)ds

which have been obtained through the combination of Fourier and Hankel transform techniques adds
to the glossary of Fourier integrals which are not listed in the work of Erdelyi ( [7]) and can be studied
further by upcoming researchers with ample consultation with the works of E.C. Titchmarsh [17].
The overall approach in solving the FPDE here is similar to Green’s function integral equation
method (GFIM) [16].
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