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Abstract

This study explores the universal classification of elements in the finite partial transformation
semigroup Pn on the set Xn+1 = {0, 1, 2, . . . , n}. The primary focus is on the interplay between
the powers of transformations, equivalence relations, and their cyclic and quasi-idempotent
structures. A key observation is that for any transformation α ∈ Pn, repeated application
stabilizes, leading to a periodic behavior characterized by the (m, r)-path cycle—a notation
capturing both cyclic and linear components of α. To further analyze α, the concept of orbits
is introduced, defined as equivalence classes under the relation x ∼ y if xαm = yαr. These
orbits provide a framework for understanding the dynamics of α. The study also examines
specific elements like idempotents (ε2 = ε) and quasi-idempotents (ξ2 ̸= ξ, ξ4 = ξ2), offering
classifications based on the sizes of their cyclic portions within their orbits. A notable result is
that stable quasi-idempotents generate the ideal Pn\Sn, where Sn denotes the symmetric group.
This work contributes a digraphic characterization of Pn, advancing the understanding of its
algebraic structure. The findings have potential applications in semigroup theory, automata,
and computational mathematics, particularly in analyzing transformation systems with finite
domains.

Keywords: (m,r)-Path Cycle, Digraph, m-Potent, Transformation Semigroup.
MSC2010: 20M20.

1 Introduction
The study of finite partial transformation semigroups Pn has been central to understanding algebraic
structures, particularly their applications in automata theory, combinatorics, and computational
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algebra. Pn consists of all partial mappings on the set Xn+1 = {0, 1, 2, . . . , n}, with composition as
the primary operation. Historically, the term "product" has been used in semigroup theory to refer
to this operation, as first popularized by Clifford and Preston [2] while translating the product of
transpositions in the symmetric subgroup Sn of Pn. This terminology was later adopted by Howie
[3], who noted its equivalence to "multiplication" in semigroup contexts, a perspective that gained
traction following Rees’s work in 1940 [4]. While "product" has a soothing and general appeal, it
maintains its role as a stand-in for composition, whereas "decomposition" remains irreplaceable in
describing semigroup structures.

In comparing the behavior of transpositions in Sn with the idempotents in Pn, Lipscomb [5]
introduced the term "disjoint spans" to capture the sets Span(α) = dom(α) ∪ im(α). Further
advancements by Ganyushkin and Mazorchuk [6], using digraphic isomorphisms [7], formalized
representations of elements in Pn as (m, r)-path cycles. A special case of these cycles is the m-path
[α | α(m+1) = αm], whose simplest instance is the 3-path. Similarly, the m-potent [α | α(m+1) =
αm], with idempotents as a subset, provides a unifying framework for understanding stable and
quasi-idempotent elements.

Stable quasi-idempotents are characterized by their decomposability into 3-paths, 2-chains, and
(m, r)-path cycles, with their digraphic representations providing a visual and structural framework
for analysis. The order of the set Z(ξ) of distinct elements in dom(ξ) corresponds to the diam-
eter of the digraph of ξ, a concept aligned with Madu’s work [1], which linked quasi-nilpotency
indices to digraph diameters. By definition, a quasi-idempotent stabilizer [9] identifies stable quasi-
idempotents as those for which repeated compositions eventually stabilize both the domain and
image.

The investigation into idempotent and quasi-idempotent structures has a long history. The
study of idempotent products in transformation semigroups was pioneered by Howie [3], building
on the foundational proofs of Clifford and Preston [2] that semigroups can be universally embedded
in transformation semigroups. The prefix "quasi" was introduced later to describe elements that
exhibit idempotent-like behavior under repeated application, with Ganyushkin and Mazorchuk [6]
advancing this terminology. A stable quasi-idempotent, being both stable and quasi-idempotent,
contrasts with general quasi-idempotents, as not all quasi-idempotents are stable. Furthermore,
while the square of a quasi-idempotent is idempotent, stable quasi-idempotents unify these elements
within the framework of functional digraphs.

Recently, Ibrahim et al. [16] explored the collapse of elements within the order-preserving and
idempotent structures of the order-preserving full contraction transformation semigroup, Tn. They
examined the subsemigroup of order-preserving transformations, C+(α), and the idempotent subset,
C+(αE), providing explicit formulas for the total number of collapsible elements and shedding light
on their structural behaviors. Similarly, Imam [13] extended the study to quasi-idempotents in
the semigroup of partial order-preserving transformations, POn, demonstrating that POn is quasi-
idempotent generated and providing an upper bound for its quasi-idempotent rank as ⌈ 5n−4

2 ⌉.
Transpositions, such as (12) ̸= (12)2 = (12)4, are quasi-idempotents but not stable quasi-

idempotents. Since Sn is generated by products of transpositions, Howie [11] introduced Tn \ Sn

to study the behavior of partial transformations outside Sn. Similarly, Pn \ Sn forms a regular
semigroup generated by stable quasi-idempotents. A corollary of Howie’s Theorem asserts that every
finite semigroup can be embedded in a finite regular stable quasi-idempotent-generated semigroup,
demonstrating the universal role of Pn \ Sn in semigroup theory.

This study aims to establish a universal characterization of stable quasi-idempotents in Pn,
examining their structural, digraphic, and algebraic properties in relation to idempotents and
quasi-idempotents. By investigating their role within the ideal Pn \ Sn, the work highlights their
foundational significance and offers a pathway to embedding finite semigroups into stable quasi-
idempotent-generated structures.
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2 Preliminaries
The following preliminaries outline the essential definitions and notations needed to understand the
results presented in this study.

Definition 2.1. [15]A set S is called a semigroup if it satisfies the following axioms:

• Closure: For any a, b ∈ S, there exists a unique c ∈ S such that c = ab (the product of a and
b).

• Associativity: For all a, b, c ∈ S, a(bc) = (ab)c.

Definition 2.2. [6]Let Xn = {1, 2, · · · , n}. A mapping α such that domα ⊆ Xn −→ imα ⊆ Xn is
called partial transformation of Xn. The set of all partial transformations of Xn is denoted by Pn

and as the composition of partial transformations is again a partial transformation, the set Pn is a
semigroup under composition called the partial transformation semigroups.

Definition 2.3. [15]Let T be a subset of a semigroup S.

• T is a left ideal of S if ST ⊆ T .

• T is a right ideal of S if TS ⊆ T .

• T is an ideal of S if T is both a left and right ideal.

Definition 2.4. Let Pn be a partial transformation semigroup;

• An element α ∈ Pn is called an idempotent if α = α2. [3]

• An element β ∈ Pn is a quasi-idempotent if β ̸= β2 = β4. [1]

• An element ξ ∈ Pn is a stable quasi-idempotent if ξ ̸= ξ2 = ξ3.
For such ξ, ξn = ξ3 for all n ≥ 3.

Definition 2.5. Let S be a semigroup, and let a ∈ S.

• The index and period of a are the smallest integers m ≥ 1 and r ≥ 1 such that am+r = am.

• If r = 1, a is called an m-potent element.

• If m = r = 1, a is an idempotent.

In linear notation, this is represented as α = [x1, x2, . . . , xm | xr]. Special cases include:

• If r = m, α is an m-path.

• If r = 1 and m ≥ 2, α is an m-cycle.

• If m = r = 1, α is a loop.

• If m = r = 2, α is an idempotent of defect one.

Definition 2.6. Let Xn = {1, 2, . . . , n}, and let Tn be the full transformation semigroup on Xn.
An element α ∈ Tn is called an (m, r)-path cycle if:

• There exists {x1, x2, . . . , xm} ⊆ Xn such that xiα = xi+1 for 1 ≤ i < m, and xmα = xr for
1 ≤ r ≤ m.

• For all x ∈ Xn \ {x1, x2, . . . , xm}, xα = x.
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Definition 2.7. A graph Γ is a pair (V,E) where V is a finite set and E is a set of 2-subsets of
V . The set V is the set of vertices and the set E is the set of edges. Given a graph Γ we use V (Γ)
and E(Γ) to denote the set of vertices and the set of edges, respectively, of the graph Γ. An edge
{i, j} is said to join the vertices i and j and this edge is denoted ij. The vertices i and j are called
the ends of the edge ij. If ij ∈ E(Γ) we say that the vertices i and j are adjacent in the graph Γ.
We say that i and j are incident to the edge ij. We say that two edges are adjacent if they have a
common incident vertex. [10]

We think of a graph as a collection of vertices, some of which are joined by edges, and as a result
graphs are often represented as pictures. For example, the graph Γ = ({1, 2, 3, 4, 5}, {{1, 2}, {1, 3},
{2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}}) is given in Figure 1.

2

4 5

3

1

Figure 1: The graph Γ = (V,E).

Definition 2.8. A directed graph or digraph
−→
Γ is a pair (V,

−→
E ) where V is a finite non-empty set

of points, called vertices, and
−→
E is a collection of ordered pairs of points in V , called directed edges

or arcs. A directed edge (i, j) ∈
−→
E is denoted i → j.

This section presents the distribution of the stable quasi-idempotents, quasi-idempotents and
idempotents and other classified m− potents, as follows. For T3 and P2 we have;
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3 Main Results

Classification and Characterization Theorems
Since transformations are special cases of mappings, and functions and equations are special classes
of mappings, they share boundaries. The popular fact Pn \Sn depicts that Sn = {y = f(x) : x, y ∈
Xn} is a special class of Pn = {αm+r = αm | m, r ∈ Z+}, whence xαm+r = yαm since αm+r = αm

implies that dom αm+r = dom αm and im αm+r = im αm.
When m = 0 and r = 1 in xαm+r = yαm, we get y = xα analog of y = f(x). Thus, translations

are on par broader than functions and equations. Thus, if the quasi-idempotent transformation
generates the entire Pn, then the quasi-idempotent functions should generate Sn.

Since function y = f(x) are monographical G = {(x, y) : y = f(x)}, then y = fm+r(x) and
x = fm(y) are digraphical (see [6] for digraphs).

Thus, we take the following results (we use the words digraphical and di-graphical interchange-
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ably to be the analogous of graphical, and ’is digraphical’ means ’has digraph’):

Theorem 3.1. Every element of a finite partial transformation semigroup is digraphical.

Proof. Since every element α ∈ Tn has the universal property αm+r = αm [12] , and Tn ⊆ Pn ⊆ Tn+1

or through Vagner [14] , the Pn is isomorphic to P ∗
n , a subsemigroup of Tn+1. Both Tn and

Tn+1 are digraphical, so Pn is digraphical. Since every element α ∈ Tn has xαm+r = yαm such
that x, y ∈ Xn, then every element α ∈ Pn has xαm+r = yαm such that x, y ∈ Xn+1, where
Xn+1 = Xn ∪ {0} = {0, 1, 2, . . . , n}. Let m = 0 in xαm+r = yαm, we have y = fr(x), which
is monographical. If r = 0 in xαm+r = yαm, then fm(x) = fm(y), which is monographical. If
m ̸= 0 ̸= r in xαm+r = yαm, then there exists z ∈ Xn+1 such that z = xαm+r and z = yαm, that
is, z = fm+r(x) and z = fm(y), which are both monographable. Thus, every element α ∈ Pn has
a digraph.

Universal Property
In a finite partial transformation semigroup Pn, every element α satisfies the universal property:

αm+r = αm, for some integers m ≥ 1 and r ≥ 1.

This means that repeated applications of the transformation α stabilize after m applications, such
that further applications yield no new results.

Example 3.2. Let

α =

(
1 2 3
2 3 3

)
, X = {1, 2, 3}.

• Compute iterated applications:

α(1) = 2, α(2) = 3, α(3) = 3,

α2(1) = α(α(1)) = α(2) = 3,

α2(2) = α(α(2)) = α(3) = 3,

α2(3) = α(α(3)) = α(3) = 3.

• Verify the universal property: Stabilization occurs at m = 2, so αm+r = αm for r ≥ 0.

• Digraph representation:

1 → 2 → 3 ⟲

Example 3.3. Let

β =

(
1 2 3
_ 3 2

)
, X = {1, 2, 3}.

• Compute iterated applications:

β(1) is undefined, β(2) = 3, β(3) = 2,

β2(2) = β(β(2)) = β(3) = 2,

β2(3) = β(β(3)) = β(2) = 3.

• Verify the universal property: Stabilization occurs at m = 2, so βm+r = βm for r ≥ 0.

• Digraph representation:

2 ↔ 3 (isolated: 1).
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Example 3.4. Let

γ =

(
0 1 2 3
1 2 3 3

)
, X = {0, 1, 2, 3}.

• Compute iterated applications:

γ(0) = 1, γ(1) = 2, γ(2) = 3, γ(3) = 3,

γ2(0) = γ(γ(0)) = γ(1) = 2,

γ2(1) = γ(γ(1)) = γ(2) = 3,

γ2(2) = γ(γ(2)) = γ(3) = 3,

γ2(3) = γ(γ(3)) = γ(3) = 3.

• Verify the universal property: Stabilization occurs at m = 2, so γm+r = γm for r ≥ 0.

• Digraph representation:

0 → 1 → 2 → 3 ⟲

Theorem 3.5. Each equivalence class {x : xαm+qr = yαm} generated by the equivalence relation
x ∼ y defined by xαm+qr = yαm is digraphical, where α ∈ Pn.

Proof. By Theorem 3.1, αm+r = αm is digraphical, which implies that αm+r+r = αm+r is digraph-
ical. Since αm+r+r = αm+r implies αm+qr = αm, then αm+qr = αm is also digraphical.

Let m+ qr = p. Then:

m− p

q
∈ Z =⇒ m ≡ p (mod q),

m− q

p
∈ Z =⇒ m ≡ q (mod p),

p−m

r
∈ Z =⇒ p ≡ m (mod r),

p−m

q
∈ Z =⇒ p ≡ m (mod q),

p− qr

m
= 1 ∈ Z =⇒ p ≡ qr (mod m).

Thus, we have mod p, mod q, mod r, and mod m generating various equivalence relations, each
producing distinct equivalence classes.

Thus, every equivalence class generated by the equivalence relation is digraphical for all p, q, r,m ∈
Z. The set of equivalence classes generated by p ≡ qr (mod m) is {p : p ≡ qr (mod m)}. Defining
a relationship of xαm+r = yαm by x ≡ y yields the equivalence classes {x : x ≡ y} or {y : y ≡ x}
or {x : xαm+r = yαm} or {y : xαm+r = yαm}.

Thus, αm+qr = αm =⇒ αmαqr = α0αm =⇒ αm = 1 (cycle) and αqr = αm (standard and
acyclic orbits). When m = 2 in αm = 1, we get the trivial orbit. The terminal orbit is when x or y
is equal to 0 since x, y ∈ Xn+1 = {0, 1, 2, . . . , n}.

Since the orbits are the equivalence classes generated by the equivalence relation αm+qr = αm,
the proof is complete.

Theorem 3.6. Every digraph of α ∈ Pn is quasi-idempotent α ̸= α2 = α4 generated.

Proof. Since quasi-idempotents defined by α ̸= α2 = α4 are not just equations and functions but
mappings, then α ̸= α2 = α4 may contain β = β2 (idempotent) by setting β = α2. That is,
α ̸= α2 = α4 implies that α ̸= β = β2. Thus, both α ̸= α2 and α = α2 are in α ̸= α2 = α4.
Since equality ’=’ is an equivalence relation, being reflexive, symmetric, and transitive, then every
element α ∈ Pn is digraphical since Pn is trivially a factor semigroup of partial maps. Thus,
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the digraph of αm+qr = αm ∈ Pn is α ̸= α2 = α4 generated, whence α ̸= α2 = α4 implies
α ̸= α2 = α4 = α6 = α8 = · · · . Since β = β2 ∈ Pn (idempotents in Pn) and α ̸= α2 ∈ Pn

(non-idempotents in Pn) for arbitrary two elements α, β ∈ Pn, then every digraph of α ∈ Pn is
quasi-idempotent α ̸= α2 = α4 generated.

To illustrate the theorem, we need an example of a partial transformation α ∈ Pn such that its
digraph demonstrates the property α ̸= α2 = α4. Below is an example along with its explanation.

Example 3.7. Let X4 = {1, 2, 3, 4}, and define a partial transformation α ∈ P4 as follows:

α =

(
1 2 3 4
2 3 3 −

)
Applying α again, we get:

1α2 = 2α = 3, 2α2 = 3α = 3, 3α2 = 3α = 3, 4α2 is undefined.

Thus,

α2 =

(
1 2 3 4
3 3 3 −

)
Continuing, α4 = α2, as further applications of α have no effect.

Theorem 3.8. Every digraph of α ∈ Pn is stable quasi-idempotent α ̸= α2 = α3 generated.

Proof. Since α ̸= α2 = α3 implies that α ̸= α2 = α3 = α4 = · · · , then both β = β2 ∈ Pn

(idempotents in Pn) and α ̸= α2 ∈ Pn (non-idempotents in Pn) exist in α ̸= α2 and α2 = α3. Since
α ∈ Pn has the universal digraphic characterization as αm+qr = αm =⇒ αmαqr = α0αm =⇒
αm = 1 (cycle) and αqr = αm (standard and acyclic orbits), then every digraph of α ∈ Pn is stable
quasi-idempotent α ̸= α2 = α3 generated.

Lemma 3.9. Every element α ∈ Pn having αm+r = αm has the division algorithm of polynomial
functions embedded in it.

Proof. Since αm+r = αm implies αm+r = αm+r+r = αm, then αm+r = αm implies αm+qr = αm =
αm+r. That is, αm+r = αm if and only if αm+qr = αm+r.

Let m+ r = p. Then αm+qr = αp. Since αm+qr = αp does not imply that p = m+ qr = qr+m,
but the reverse may not be true. That is, p = m+ qr implies that αm+qr = αp.

When p = m+ qr, we get reflexivity of x ∼ y defined by xαm+qr = yαp. Let p be a polynomial
function or equation, then q is the quotient, r is the remainder, and d is the divisor. Since p = qd+r,
then αm+r = αm has the division algorithm embedded in it.

Lemma 3.10. Every element α ∈ Pn having αm+qr = αm is decomposable.

Proof. For p to be a polynomial function or equation, let q be the quotient, r the remainder, and d
the divisor. Then p = qd+ r, and αm+r = αm has the division algorithm embedded in it as stated
in Lemma 3.5.

Since the polynomial equation satisfying the division algorithm p = qd+ r is factorizable, every
element α ∈ Pn having αm+qr = αm is decomposable.

Lemma 3.11. Let Ai denote disjoint subsets (blocks or partitions) of a domain X, and let ai ∈ Ai

represent selected elements (images) under the transformation. The following hold:
Case 1: Idempotents (ε) An element ε is idempotent if it is characterized by the transfor-

mation matrix:
ε =

(
A1 A2 · · · Ai

a1 a2 · · · ai

)
,

where ai ∈ Ai and each block Ai is mapped entirely to the single element ai.
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Case 2: Stable Quasi-Idempotents (ξ) An element ξ is a stable quasi-idempotent if it is
characterized by the matrix:

ξ =

(
Ai Aj

Aiξ ai

)
,

where Ai ∩Aj = ∅, Ai and Aj are disjoint blocks, and Aiξ is the image of Ai under ξ.
Case 3: Quasi-Idempotents (γ) An element γ is a quasi-idempotent if it is characterized by

the matrix:
γ =

(
Ai Aiγ
Aiγ ai

)
.

Proof. Case 1: Proof of Idempotency

Let εaa =

(
A1 A2 · · · Ai

a1 a2 · · · ai

)
and εbb =

(
B1 B2 · · · Bj

b1 b2 · · · bj

)
, where Ai and Bi are disjoint

subsets, and ai ∈ Ai, bi ∈ Bi. Then:

εaaεbb =

(
A1 A2 · · · Ai

a1 a2 · · · ai

)(
B1 B2 · · · Bj

b1 b2 · · · bj

)
=

(
A1 A2 · · · Ai

b1 b2 · · · bi

)
= εab.

If εaa = εbb, then εaaεaa = εaa, confirming idempotency.
Case 2: Proof of Stable Quasi-Idempotency

Let ξ =

(
Ai Aj

Aiξ ai

)
, where Ai ∩Aj = ∅. Then:

ξ2 =

(
Ai Aj

Aiξ ai

)(
Ai Aj

Aiξ ai

)
=

(
Aiξ Aiξ
Aiξ Aiξ

)
̸= ξ.

However,

ξ3 = ξ2ξ =

(
Aiξ Aiξ
Aiξ Aiξ

)(
Ai Aj

Aiξ ai

)
=

(
Aiξ Aiξ
Aiξ Aiξ

)
= ξ2.

Thus, ξn = ξ2 for all n ≥ 2, confirming stable quasi-idempotency.
Case 3: Proof of Quasi-Idempotency

Let γ =

(
Ai Aiγ
Aiγ ai

)
. Then:

γ2 =

(
Ai Aiγ
Aiγ ai

)(
Ai Aiγ
Aiγ ai

)
=

(
Aiγ ai
Aiγ Aiγ

)
.

And for γ4:

γ4 =

(
Ai Aiγ
Aiγ ai

)(
Ai Aiγ
Aiγ ai

)
=

(
Aiγ ai
Aiγ Aiγ

)
.

Thus, γ ̸= γ2 = γ4, confirming quasi-idempotency.

Theorem 3.12. The product of two idempotents ε11 and ε12 of defects 1 each, such that span(ε11)∩
span(ε12) = ∅, is an idempotent ε21,2 of defect 2. Thus, the idempotent of defect 2, ε21,2, is decom-
posable into a product of ε11 and ε12 (each of defect 1).

Proof. The result follows from the fact that(
ai
bj

)(
ck
dl

)
=

(
ai ck
bj dl

)
since (

ai
bj

)(
ck
dl

)
=

(
ai
bj

)
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or (
ai
bj

)(
ck
dl

)
=

(
ck
dl

)
behaving like a ∧ b = a, where a ∧ b =

{
a if a ≤ b
b if b ≤ a

.

Thus, the set of idempotents is a semilattice L(≤,∧,∨). Also,(
ai ck
bj dl

)
=

(
ai
bj

)(
ck
dl

)

if span(ε11) ∩ span(ε12) = ∅, where ε11 =

(
ai
bj

)
and ε12 =

(
ck
dl

)
.

Corollary 3.13. An idempotent of defect d, written as εd, is decomposable into d idempotents of
defect 1, written as ε1i .

Proof. Let

εd =

(
1 2 3 · · · d
2d 2d− 1 2d− 2 · · · d+ 1

)
.

To decompose εd into d idempotents of defect 1, we construct:

ε1i =

(
i

2d− (i− 1)

)
for i = 1, 2, . . . , d.

Verification: 1. Idempotency of Each ε1i : Each ε1i maps i → 2d − (i − 1) and 2d − (i − 1) →
2d− (i− 1), so:

ε1i ◦ ε1i = ε1i .

2. Composition of εd: Combining all ε1i , we have:

εd = ε11 ◦ ε12 ◦ · · · ◦ ε1d.

Substituting the explicit maps ε1i , the combined transformation matches εd.

Example: Decomposition of ε4. Let d = 4, so:

ε4 =

(
1 2 3 4
8 7 6 5

)
.

Decomposing ε4 into idempotents of defect 1:

ε11 =

(
1
8

)
, ε12 =

(
2
7

)
, ε13 =

(
3
6

)
, ε14 =

(
4
5

)
.

Now, combining these maps:

ε11 ◦ ε12 ◦ ε13 ◦ ε14 =

(
1 2 3 4
8 7 6 5

)
= ε4.

Thus, the decomposition is constructive, and the corollary holds for all d.

Theorem 3.14. A quasi-idempotent of defect 2d is decomposable into a product of a stable quasi-
idempotent of defect d− i and a quasi-idempotent of defect d+ i.
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Proof. Given that

γ =

(
Ai Aiγ ai
Aiγ ai bi

)(
bi Ai Aj

ai Aiε ai

)
by Lemma 3.7, then(

Ai Aiγ ai
Aiγ ai bi

)(
bi Ai Aj

ai Aiε ai

)
̸=

(
Ai Aiγ ai
Aiγ ai bi

)(
bi Ai Aj

ai Aiε ai

)

=

(
Ai Aiγ ai
Aiγ ai bi

)(
bi Ai Aj

ai Aiε ai

)(
Ai Aiγ ai
Aiγ ai bi

)(
bi Ai Aj

ai Aiε ai

)
and so γ ̸= γ2 = γ4, making γ a quasi-idempotent of defect 2d decomposable into a product as(

Ai Aiγ ai
Aiγ ai bi

)(
bi
ai

)(
Ai Aj

Aiε ai

)
and the result follows immediately.

Corollary 3.15. A quasi-idempotent of defect 2d is decomposable into a stable quasi-idempotent
of defect d and a stable quasi-idempotent of defect d.

Proof. Let

γ =

(
Ai Aiγ ai
Aiγ ai bi

)(
Ai Aj

Aiε ai

)
analogous to γ in Theorem 3.10. Then γ ̸= γ2 = γ4, making γ a quasi-idempotent decomposable
into (

Ai Aiγ ai
Aiγ ai bi

)(
Ai Aj

Aiε ai

)
and the result follows immediately.

The digraph below illustrates the relationships among quasi-idempotents, their defects, and
decompositions by representing each quasi-idempotent as a node labeled with its defect (d or 2d),
with directed edges showing how a quasi-idempotent of defect 2d decomposes into quasi-idempotents
of defects d − i and d + i; for instance, node γ, representing a quasi-idempotent of defect 2d, has
outgoing edges to nodes of defects d−i and d+i, which can be recursively decomposed, providing an
intuitive view of structural relationships and aligning with the algebraic decomposition to enhance
the understanding of the proofs.

γd−i

γ2d γd+i

γd

stabledecomposes into

decomposes into stable

Corollary 3.16. The product of a stable quasi-idempotent and a quasi-idempotent is a quasi-
idempotent.

Proof. This follows from Theorem 3.10 and Corollary 3.11.

Corollary 3.17. The set of quasi-idempotents generates the set of idempotents.
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Proof. From Lemma 3.7, let

γ =

(
Ai Aiγ Bi

Aiγ ai bi

)
then γ ̸= γ2 = γ4 and

γ =

(
Ai Aiγ Bi

Aiγ ai bi

)
=

(
Ai Aiγ
Aiγ ai

)(
Bi

bi

)
where (

Ai Aiγ
Aiγ ai

)
is a quasi-idempotent and (

Bi

bi

)
is an idempotent. Since (

Bi

bi

)
generates Tn \ Sn (and Pn \ Sn through Vagner), and(

Ai Aiγ
Aiγ ai

)
generates Sn, since the products of transpositions are quasi-idempotents, then(

Ai Aiγ Bi

Aiγ ai bi

)
generates both Tn and Pn.

4 Conclusion
This work establishes that every element of a finite partial transformation semigroup is digraph-
ical, providing a structural perspective that bridges algebraic and combinatorial representations.
The characterization of elements via digraphs enhances our understanding of the interplay between
quasi-idempotents, idempotents, and their defects. By demonstrating that equivalence classes,
idempotents, stable quasi-idempotents, and quasi-idempotents are inherently digraphical and de-
composable, we provide a comprehensive framework for understanding these elements’ interactions
within Pn.

Significantly, the decomposition results, such as expressing idempotents of defect d into d idem-
potents of defect 1, and quasi-idempotents of defect 2d into components of defect d−i and d+i, offer
new pathways for studying the algebraic properties of transformation semigroups. These findings
highlight the versatility of digraph-based approaches in unraveling complex algebraic structures and
open new avenues for theoretical exploration and computational implementation.

This study deepens the connection between transformation semigroup theory and other areas of
algebra, such as semilattice embedding, stability analysis, and decomposition theory. It strength-
ens the foundational understanding of partial transformation semigroups, particularly the interplay
between quasi-idempotents and idempotents. Moreover, the identification of digraphical properties
offers a visual and combinatorial toolset that could prove invaluable for algorithm design, computa-
tional verification, and practical applications in automata theory and formal language processing.

To build upon these findings, future research could explore computational algorithms for effi-
ciently identifying and decomposing digraphical elements in larger classes of semigroups. Extending
the results to other semigroup classes, such as infinite semigroups or transformation semigroups un-
der different constraints, could broaden their applicability. Additionally, investigating the role of
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these decompositions in optimization problems, coding theory, or other combinatorial settings could
provide insights into real-world applications.

By integrating these findings with existing theories and expanding their computational and
practical scope, this work lays the groundwork for advancing both the theoretical and applied
dimensions of transformation semigroup theory.
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