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Abstract

Some iteration schemes may converge faster for certain types of functions or structures in
an arbitrary space. In this paper, we show that the convergence of modified Mann iteration,
modified Mann iteration with errors, modified Ishikawa iteration, modified Ishikawa iteration
with errors, modified Noor iteration, modified Noor iteration with errors, modified multistep
iteration and modified multistep iteration with errors are equivalent for uniformly continuous
strongly successively pseudo-contractive maps in an arbitratry real Banach space. The results
generalize and extend the results of several authors, including Huang and Bu [1], Rhoades and
Soltuz [2–4] and improve the results of Huang et al. [5].

Keywords: Modified Mann-Ishikawa Iterations (with errors), Modified Noor-Multistep Itera-
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1 Introduction and Preliminaries
Fixed point theory plays a crucial role in the study of nonlinear analysis, particularly in the existence
and uniqueness of solutions to various equations. Researchers related to contraction mappings, such
as Banach’s fixed point theorem, provide a fundamental framework for iterative methods in solv-
ing differential and integral equations. Extensions of contraction principles in metric, fuzzy, and
other generalized spaces have further broadened their applications in diverse Mathematical and
real-world problems (see [6–8]). The study of pseudocontractive maps and their coupled approxi-
mation methods for finding fixed points remains an active area of research till today. For example,
see [9–11]. Yang [12] established the equivalence between Mann, Ishkawa and multistep iterations in
a real Banach space. Rhoades and Soltuz [2] established the equivalence of the convergence between
Mann and Ishikawa iterations for non-Lipschitzian operator. Rhoades and Soltuz [3] proved the
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equivalence of the convergences between the Mann and Ishikawa iterations for strongly successively
pseudo-contractive maps without Lipschitzian assumption. In 2009, Olaleru and Odumosu [13]
established the equivalence of the convergence of iterative procedures with errors for uniformly Lip-
schitzian strongly successively pseudo-contractive operators. This research improves on the results
of Huang et al. [5] by proving the equivalence between the convergence of the known iterative scheme
viz modified Mann, Ishikawa, Noor and multi-step iteration with errors for strongly successively
pseudo-contractive mapping without Lipschitzian assumption in an arbitrary real Banach space.
Our main results will also generalize and extend the results of several authors, including Huang and
Bu [1], Rhoades and Soltuz [3] and improve the results of Huang et al. [5].

Let X be a real Banach space, and K a non-empty subset of X, T a self mapping of K and
F (D), D(T ) and I are the set of fixed points, domain of T and identity operator respectively. Let
J denote the normalized duality mapping from X to 2X

∗
defined by;

J(X) = {f ∈ X∗ : ⟨x, f⟩ = ∥x∥2, ∥f∥ = ∥x∥} for all x ∈ X

where X∗ denotes the dual space of X and ⟨., .⟩ denotes the generalized duality pairing.
Let X be a real Banach space and D(T ), R(T ) represent the domain and range of T respectively,
then, we have the following definitions.

Definition 1 [14,15]: A mapping T : X → X is said to be non-expansive on X if,

∥Tx− Ty∥ ≤ ∥x− y∥, for all x, y ∈ D(T ).

Definition 2 [4]: A map T : K → K is said to be Lipschitzian if there exists L ≥ 1, such that,

∥Tx− Ty∥ ≤ L∥x− y∥, for all x, y ∈ D(T ).

If L = 1 in Definition 2, then T is said to be non-expansive.

Definition 3 [4]: A map T : K → K is said to be uniformly Lipschitzian if there exists L ≥ 1,
such that,

∥Tnx− Tny∥ ≤ L∥x− y∥, for all x, y ∈ D(T ).

If Tn = T in Definition 3, then T is said to be Lipschitzian. (Definition 2).

Definition 4 [16]: A map T : K → K is said to be pseudo-contractive if for each x, y ∈ D(T ),
there exists j(x− y) ∈ J(x− y), such that,

⟨Tx− Ty, j(x− y)⟩ ≤ ∥x− y∥2 for all x, y ∈ D(T ).

Definition 5 [16]: A map T : K → K is said to be successively pseudo-contractive if for each
x, y ∈ D(T ), there exists j(x− y) ∈ J(x− y), such that,

⟨Tnx− Tny, j(x− y)⟩ ≤ ∥x− y∥2 for all x, y ∈ D(T )

If Tn = T , a successively pseudocontractive map is a pseudocontractive map.

Definition 6 [16]: A map T : K → K is said to be strongly pseudocontractive if for each
x, y ∈ D(T ) there exists k ∈ (0, 1) and j(x− y) ∈ J(x− y), such that,

⟨Tx− Ty, j(x− y)⟩ ≤ (1− k)∥x− y∥2

This is equivalent to;

∥x− y∥ ≤ ∥x− y + r[(I − T − kI)x− (I − T − kI)y]∥ where r > 0.
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A strongly pseudocontractive map is a pseudocontractive map but the converse is not true.

Definition 7 [16]: A map T : K → K is said to be strongly successively pseudocontractive if
there exists k ∈ (0, 1) and n ∈ N such that;

⟨Tnx− Tny, j(x− y)⟩ ≤ (1− k)∥x− y∥,

Equivalently, T is strongly successively pseudocontractive if there exists k ∈ (0, 1) such that, for all
x, y ∈ K,n ∈ N+ and j(x− y) ∈ J(x− y)

∥x− y∥ ≤ ∥x− y + r[(I − Tn − kI)x− (I − Tn − kI)y]∥ (1.1)

for all x, y ∈ K and r > 0.
The Mann iteration scheme was introduced in 1953 [17] to obtain a fixed point for many functions
for which Banach principle fails. In 1974, Ishikawa [18], introduced another iteration scheme also
referred to as two-step iteration scheme. Noor [19] introduced a three-step iterative scheme and used
it to approximate solution of variational problems in Hilbert spaces. Noor, Rassias and Hung [20]
extend the procedure to solving non-linear equations in Banach spaces. Golwinski and Le Tallec [21]
used the scheme to approximate solutions of the elastovis-coplasticity problem, liquid crystal theory
and eigen computation.
The modified Mann iteration with errors is defined as; (see [3])
x1 ∈ K,

xn+1 = (1− bn)xn + bnT
nxn + cn(sn − xn), n ≥ 1 (1.2)

where {sn} is a bounded sequence in K and {an}, {bn} and {cn} are sequences in [0, 1) such that
an + bn + cn = 1 for all n ∈ N.
Observe that (2) is equivalent to

xn+1 = anxn + bnT
nxn + cnsn, n ≥ 1

Remark 1.
1. If cn = 0 for each n, then we have the modified Mann iterative scheme.
2. If Tn is replaced by T in (2), we obtain the modified Mann iterations with errors in the sense
of Xu [22]. If in addition, cn = 1, then (2) is called the Mann iteration with errors in the sense of
Liu [23].
3. If Tn is replaced by T in (2), and cn = 0, then (2) is called the Mann iteration.
In 2004, Rhoades and Soltuz [3] introduced the modified multistep iteration as follows,

u1 ∈ K

un+1 = (1− bn)un + bnT
nv1n

vin = (1− bin)un + binT
nvi+1

n , i = 1, ..., p− 2

vp−1
n = (1− bp−1

n )un + bp−1
n Tnun, p ≥ 2 (1.3)

where the sequences {bn}, {bin}, (i = 1, ...p− 1) in (0, 1) satisfy certain conditions.
Remark 2
1. If Tn is replaced by T , the modified multistep iteration (3) is referred to as multistep iteration.
2. If p = 3, (3) becomes the modified Noor or three-step iteration procedure and if in addition, Tn

is replaced by T, it is called Noor or three step iteration.
3. If p = 2, (3) becomes the modified Ishikawa iteration procedure and if in addition, Tn is replaced
by T, it is called Ishikawa iteration.
The modified multistep iteration with errors introduced by Liu and Kang [24] is defined by,

u1 ∈ K

un+1 = (1− bn)un + bnT
nv1n + wn

vin = (1− bin)un + binT
nvi+1

n + w1
n, i = 1, ..., p− 2

vp−1
n = (1− bp−1

n )un + bp−1
n Tnun + wp−1

n p ≥ 2 (1.4)
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where the sequences {bn}, {bin}, (i = 1, ...p − 1) are in [0, 1) and the sequences {wn}, {wi
n}, (i =

1, ...p− 1) are convergent sequences in K, all satisfying certain conditions.
Remark 3.
1. If Tn is replaced by T, the modified multistep iteration with errors (4) reduces to the Noor and
Ishikawa iteration with errors respectively when p = 3 and;
2. If in addition, wn = wi

n = 0, (i = 1, 2, ...) for all n ∈ N, then (4) reduces to Noor and Ishikawa
iterations (without errors) respectively.
The Ishikawa and Mann iteration with errors of (4) was introduced by Liu [24]. Numerous papers
have been published that utilize this iteration procedure with error terms.. For example, see [5,16,
23,25].
However, it should be noted that the iteration process with errors in (4) is not satisfactory. The
errors can occur in a random way. The condition then imposed on the error terms which say that
they tend to zero as n tends to infinity are therefore unreasonable (see [26]). This informed the
introduction of a better modified iterative processes with errors by Xu [22].
The Xu’s modified multistep with errors is defined as follows:

u1 ∈ K

un+1 = (1− bn)un + bnT
nv1n + cn(wn − un)

vin = (1− bin)un + binT
nvi+1

n + cin(w
i
n − un), i = 1, ..., p− 2

vp−1
n = (1− bp−1

n )un + bp−1
n Tnun + cp−1

n (wp−1
n − un), p ≥ 2 (1.5)

where the sequences {wn}, {wi
n}, (i = 1, ...p − 1) are bounded sequences and {bn}, {bin}, (i =

1, ...p− 1) in [0, 1) satisfy certain conditions n ∈ N.
Observe that the modified multistep iteration with errors (5) is equivalent to

u1 ∈ K

un+1 = (1− bn)un + bnT
nv1n + cnwn

vin = (1− bin)un + binT
nvi+1

n + cinw
i
n, i = 1, ..., p− 2

vp−1
n = (1− bp−1

n )un + bp−1
n Tnun + cp−1

n wp−1
n ,≥ 2 (1.6)

where the sequences {wn}, {wi
n}, (i = 1, ...p−1) are bounded sequences in K, and {an}, {ain}, {bn}, {bin}(i =

1, ...p− 1) in [0, 1) satisfying
an + bn + cn = ain + bin + cin = 1, i = 1, 2, ..., p− 1.
In this paper, we show that the modified Mann, Ishikawa, Noor and multistep iteration with errors
(5) (using the more satisfactory definition by Xu [22]) and that these iterations without errors are
all equivalent for strongly successively pseudo-contractive mapping without Lipschitzian assump-
tion in an arbitrary real Banach space.
The result generalize and extend the results of several authors, including Huang and Bu [1], Rhoades
and Soltuz [3] and improve the results of Huang et al. [5].
In the proof of our results, Lemma 1 [27] and Lemma 2 [28] below are useful.

Lemma 1 [27]: Let E be a real normed linear space. Then, the following inequalities holds

∥x− y∥2 ≤ ∥x∥2 + 2⟨y, j(x+ y)⟩, for all j(x+ y) ∈ J(x+ y).

Lemma 2 [28]: Let (αn)n be a non-negative sequence which satisfies
the following inequality

αn+1 ≤ (1− λn)αn + δn

where λn ∈ (0, 1),∀n ∈ N,
∞∑

n→1
λn = ∞ and δn = o(λn). Then lim

n→∞
αn = 0.
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2 Main results
Theorem 1: Let X be an arbitrary Banach space. Let T be uniformly continuous strongly
successively pseudo-contractive operator such that

⟨Tnxn − Tnyn, j(xn − yn)⟩ ≤ (1− k)∥x− y∥2, (2.1)

where k ∈ (0, 1) a self map of X. Suppose x∗ is a fixed point of T and if {xn} be a sequence in X
as defined in

x1 ∈ K

xn+1 = (1− bn)un + bnT
ny1n + cn(wn − xn)

yin = (1− bin)xn + binT
nyi+1

n + cin(w
i
n − xn), i = 1, ..., p− 2

yp−1
n = (1− bp−1

n )xn + bp−1
n Tnxn + cp−1

n (wp−1
n − xn), p ≥ 2 (2.2)

where the sequences {wn} and {wi
n}, are bounded sequences in X, with {bn}, {cn}, {bin}, {bin} ∈

[0, 1], i = 1, ..., p− 1.
satisfying the conditions:

1. an + bn + cn = 1 = ain + bin + cin, n ≥ 0, i = 1, ..., p − 1, where an = 1 − (bn + cn) and
ain = 1− (bin + cin)

2. lim
n→∞

bn = 0, cp−1
n = bp−1

n = o(bn), i = 1, ..., p− 1,

3.
∞∑

n→1
cn < ∞,

∞∑
n→1

bn = 0

Then, there exists t0 > 0 such that if bn + cn < t0, then {xn}, n ∈ N is bounded.

Proof: If x0 = Tnx0,∀n ≥ 0, n ∈ N, then we are done. Suppose this is not the case, that is

suppose there exists n0 ∈ N, the smallest positive integer such that x0 ̸= Tnx0. Let cn + bn <
1

2
for all n ≥ n0. Without loss of generality define xn0

= x0.
Then inequality (7) implies

⟨Tnx0 − Tnx∗, j(x0 − x∗)⟩ ≤ (1− k)∥x0 − x∗∥2

=⇒ ∥Tnx0 − Tnx∗∥∥x0 − x∗∥ ≤ (1− k)∥x0 − x∗∥2

k∥x0 − x∗∥ ≤ ∥x0 − x∗∥ − ∥Tnx0 − Tnx∗∥
≤ ∥x0 − x∗ − Tnx0 + Tnx∗∥
≤ ∥x0 − Tnx0∥

Hence,

∥x0 − x∗∥ ≤ 1

k
∥x0 − Tnx0∥ = λq,

where λ = 1
k and q = ∥x0 − Tnx0∥.

Since T is uniformly continuous, there exists a δ such that
∥Tnx− Tny∥ < ϵ whenever ∥x− y∥ < δ.

Set ϵ =
1− (δ + k)

4
> 0.

Claim ∥x0 − x∗∥ ≤ 2λq,∀n ≥ 0
The claim holds for n = 0.
Assume that it holds for some n, that is, assume that
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∥xn − x∗∥ ≤ 2λq

To prove that

∥xn+1 − x∗∥ ≤ 2λq

Suppose this is not the case.
Then,

∥xn+1 − x∗∥ > 2λq

This implies
k∥xn+1 − x∗∥ > 2λqk (2.3)

Now define t0 = 1
2 min{1, δ

2(2λ)(2MA+2λq) ,
1

1+2λ(NA+2λq)}. Since {wn} and {wi
n}, n ≥ 0, i = 1, ...p−1,

are bounded and x∗ is a fixed point of T . There exists a positive constant n such that
NA = supn,i{∥wn − x∗∥, ∥wi

n − x∗∥, i = 1, ...p− 1} and
MA = supn,p{∥x− Tnx∥, ∥x− Tnyp−1n : ∥x− x0∥ ≤ 7λq +NA}
then, MA < ∞.
It follows from (8) and (9) that,

xn+1 = (1− bn)xn + bnT
ny1n + cn(wn − xn)

yp−1
n = (1− bp−1

n )xn + bp−1
n Tnxn + cp−1

n (wp−1
n − xn),

and

∥wn − xn∥ ≤ ∥wn − x∗∥+ ∥x∗ − xn∥
≤ NA + 2λq.

Similarly,

∥wp−1
n − xn∥ ≤ ∥wp−1

n − x∗∥+ ∥x∗ − xn∥
≤ NA + 2λq.

Furthermore,

∥xn+1 − x∗∥ ≤ ∥xn − x∗∥+ bn∥Tny1n − xn∥+ cn∥wn − xn∥
≤ 2λq + bnMA + cn[NA + 2λq]

∥yp−1
n − x∗∥ ≤ ∥xn − x∗∥+ bp−1

n ∥Tny1n − xn∥+ cp−1
n ∥wp−1

n − xn∥
≤ 2λq + bp−1

n MA + cp−1
n [NA + 2λq]

≤ 6λq, p ≥ 2.

Also,

∥xn+1 − xn∥ ≤ bn∥Tny1n − xn∥+ cn∥wn − xn∥
≤ bnMA + cn[NA + 2λq]

≤ bn[MA +MA + 2λq],

≤ t0[2MA + 2λq] < δ.

So that

∥Tnxn+1 − Tnxn∥ < ϵ
2 .
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Also

∥yp−1
n − xn∥ ≤ bp−1

n ∥Tnxn − xn∥+ cp−1
n ∥wp−1

n − xn∥
≤ bp−1

n MA + cp−1
n [NA + 2λq]

≤ t0[MA +MA + 2λq] < δ,

so that

∥Tnyp−1
n − Tnxn∥ < ϵ

2 .

Hence

∥Tnxn+1 − Tnyp−1
n ∥ ≤ ∥Tnxn+1 − Tnxn∥+ ∥Tnxn − Tnyp−1

n ∥

≤ ϵ

2
+

ϵ

2
.

= ϵ.

Using the above estimates yields

∥xn+1 − x∗∥2 = ∥(xn − x∗)− bn(xn − Tny1n) + cn(wn − xn)∥2

≤ ∥xn − x∗∥2 − 2bn⟨xn − Tny1n, j(xn+1 − x∗)⟩
+ 2cn⟨wn − xn, j(xn+1 − x∗), ⟩

which implies

∥xn+1 − x∗∥2 = ∥xn − x∗∥2

+ 2bn⟨Tny1n − Tnxn+1 + Tnxn+1 + x∗ − x∗ − xn, j(xn+1 − x∗)⟩
+ 2cn⟨wn − xn, j(xn+1 − x∗)⟩
≤ ∥xn − x∗∥2 − 2bn(1− k)∥xn+1 − x∗∥
+ 2bn∥xn+1 − x∗∥∥xn+1 − xn∥+ 2bn∥Tnxn+1 − Tny1n∥
∥xn+1 − x∗∥+ 2cn∥wn − xn∥xn+1 − x∗∥
≤ ∥xn − x∗∥2 − 4bn(1− k)λq + 12bnλqδ + 12bnλqϵ

+ 12cn[2MA + λq]λq

= ∥xn − x∗∥2 − 4bnλq + 12bnλqk + 12bnλqδ + 12bnλqϵ

+ 12cn[2MA + λq]λq

= ∥xn − x∗∥2 − 4bnλq + 3bnλq

+ 12cn[2MA + λq]λq

= ∥xn − x∗∥2 − bnλq

+ 12cn[2MA+ λq]λq

= ∥xn − x∗∥2 − bnM1 + cn + gn,

where M1 = λq, and gn = 12λq[2MA + 2λq].
Hence

∥xn+1 − x∗∥2 ≤ ∥xn − un∥2 − bnM1cngn.

This implies that

M1

n∑
j=1

bj ≤
n∑

j=i

(∥xj − x∗∥2 − ∥xj+1 − x∗∥2)

+ h

n∑
j=1

cj .
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so that
n∑

n=1
cn < ∞.

This implies that
n∑

n=1
bn < ∞, a contradiction. Hence, {xn} is bounded.

Theorem 1 will be very useful in proving Theorem 2 below.

Theorem 2: Let X be a real Banach space with dual uniformity convex, K a non empty closed
and convex subset of X and T : K → K be uniformly continuous and strongly successively pseudo-
contractive operator such that

∥x− y∥ ≤ ∥x− y − r[(I − T − kI)x− (I − T − kI)y]∥.

Suppose the modified Mann iteration with errors iteratively defined by the sequence {un} and the
modified multi-step iteration with errors iteratively defined by the sequence {xn} respectively are
given by

un+1 = (1− bn)un + bnT
nun + cn(vn − un), n ≥ 1 (2.4)

and

xn+1 = (1− bn)xn + bnT
ny1n + cn(wn − xn)n ≥ 1

yin = (1− bin)xn + binT
nyi+1

n + cin(w
i
n − xn), i = 1, ..., p− 2

yp−1
n = (1− bp−1

n )xn + bp−1
n Tnxn + cp−1

n (wp−1
n − xn), p ≥ 2 (2.5)

where the sequences {wn} and {wi
n}, are bounded sequences in X, with {bn}, {cn}, {bin}, {bin} ∈

[0, 1], i = 1, ..., p− 1.
satisfying the conditions;

1. an + bn + cn = 1 = ain + bin + cin, n ≥ 0, i = 1, ..., p − 1, where an = 1 − (bn + cn) and
ain = 1− (bin + cin)

2. lim
n→∞

bn = 0, cp−1
n = bp−1

n = o(bn), i = 1, ..., p− 1,

3.
∞∑

n=1
cn < ∞, bn < 1−k

2 ,
∞∑

n=1
bn = ∞.

Suppose x∗ is a fixed point of T , then for any u1, x1 ∈ K, the following statements are equivalent:

(i) the modified Mann iteration (10) converges strongly to x∗;

(ii) the modified multi-step iteration with errors (11) converges strongly to x∗.

Proof: (ii) =⇒ (i). If the modified multi-step iteration with errors (11) converges, then by setting
bin = cin = 0 and wn = vn, (i ∈ N)∀n ∈ N we obtain the convergence of modified Mann iteration
with errors (10).
We shall prove that (i) =⇒ (ii): Suppose {un} converges to x∗. By assumption from Theorem
1,{xn} is bounded. Also for the fact that {un} converges, it is also bounded. Thus by the uniform
continuity of T , {Tnxn}, {Tnun} , {Tny1n} and {Tny2n} are bounded.
Let M = max{sup∥un∥, sup∥xn∥, sup∥Tnun∥, sup∥vn∥, sup∥Tny1n∥,
sup∥Tny2n∥, sup∥w1

n∥, sup∥wn∥,∀n ∈ N}.
Then, M < ∞.
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Using (10), (11) and Lemma 1, we have

∥xn+1 − un+1∥2 = ∥(1− bn)(xn − un) + bn(T
ny1n − Tnun)− cn(xn − un + vn − wn)∥2

≤ (1− bn)
2∥xn − un∥2 + 2bn⟨Tny1n − Tnun, j(xn+1 − un+1)⟩

− 2cn⟨xn − un + vn − wn, j(xn+1 − un+1)⟩
= (1− bn)

2∥xn − un∥2 + 2bn⟨Tny1n − Tnun − Tnxn+1

+ Tnun+1 + Tnxn+1 − Tnun+1, j(xn+1 − un+1)⟩
− 2cn⟨xn − un + vn − wn, j(xn+1 − un+1)⟩
≤ (1− bn)

2∥xn − un∥2 + 2bn(1− k)∥xn+1 − un+1∥2

+ 2bn∥Tny1n − Tnun − Tnxn+1 + Tnun+1∥∥xn+1 − un+1∥
− 2cn∥xn − un + vn − wn∥∥xn+1 − un+1∥
= (1− bn)

2∥xn − un∥2 + 2bn(1− k)∥xn+1 − un+1∥2

+ 2ρn∥xn+1 − un+1∥.

Hence

(1− 2bn(1− k))∥xn+1 − un+1∥2 ≤ (1− bn)
2∥xn − un∥2

+ 2bn(1− k)∥xn+1 − un+1∥2

+ 2ρn∥xn+1 − un+1∥ (2.6)

where ρn = ∥Tny1n − Tnun − Tnxn+1 + Tnun+1∥ − cn∥xn − un + vn − wn∥.
From (10) and Theorem (1), the following result is obtained

∥un+1 − un∥ ≤ bn∥Tnun − un∥+ cn∥vn − un∥
≤ 2bnM + 2cnM → 0 as n → ∞
= 2M(bn + cn) → 0 as n → ∞. (2.7)

It follows from (11) and Theorem 1 that

∥xn+1 − y1n∥ ≤ bn∥xn − Tny1n∥+ b1n∥xn − Tny2n∥+ cn∥wn − xn∥
+ c1n∥xn − w1

n∥
≤ 2Mbn + 2Mcn + 2M(b1n + c1n) → 0 as n → ∞
= 2M((bn + cn) + (b1n + c1n)) → 0 as n → ∞. (2.8)

Since T is uniformly continuous,then (13) and (14) yield
∥Tny1n − Tnun − Tnxn+1 + Tnun+1∥ ≤ ∥Tny1n − Tnxn+1∥+ ∥Tnun+1 + Tnun∥ → 0 as n → ∞.
Also in Theorem (1), the following is obtained

cn∥xn − un + vn − wn∥ ≤ cnM

≤ M(bn + cn) → 0 as n → ∞
and so ρn → 0 as n → ∞. (2.9)
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Now, (10) and (11) gives

∥xn+1 − un+1∥ ≤ ∥(1− bn)(xn − un)∥+ bn(T
ny1n − Tnun)

− cn(xn − un + vn − wn)∥
≤ (1− bn)∥xn − un∥+ bn(T

ny1n − Tnun)

− cn(xn − un + vn − wn)∥
≤ (1− bn)(∥xn − Tnxn∥+ ∥Tnxn − Tnun∥
+ ∥Tnun − un∥) + bn∥Tny1n − Tnun∥
− cn∥xn − un + vn − wn∥
≤ ∥xn − Tnxn∥+ ∥Tnxn − Tnun∥
+ ∥Tnun − un∥+ ∥Tny1n − Tnun∥
− cn∥xn − un + vn − wn∥
≤ 12M. (2.10)

Substituting (16) in (12), gives

∥xn+1 − un+1∥2 ≤ (1− bn)
2∥xn − un∥2 + 2bn(1− k)∥xn+1 − un+1∥2

+ 24bnρnM.

Hence,
(1− 2bn(1− k))∥xn+1 − un+1∥2 ≤ (1− bn)

2∥xn − un∥2 + 24bnρnM. (2.11)

Since by assumption bn → 0 as n → ∞, then there is an N > 0 such that
1− 2bn(1− k) > 0 for all n > N. Thus from (16), we obtain

∥xn+1 − un+1∥2 ≤ (1− bn)
2

1− 2bn(1− k)
∥xn − un∥2 +

24bnρnM

1− 2bn(1− k)
. (2.12)

From the assumption that bn < 1−k
2 , it is easy to see that

(1− 2bn + b2n)(1− 2bn(1− k))−1 < (1− 2bn + b2n)(1− b2n)
−1

≤ 1− 2bn + 2bn − 2b3n + b3n

= 1− b3n

≤ 1− bn. (2.13)

Thus, in view of (19), inequality (18) becomes

∥xn+1 − un+1∥2 ≤ (1− bn)∥xn − un∥2 + bnAn

where An =
24ρnM

1− 2bn(1− k)
.

Setting σn = bnAn, λn = bn and βn = ∥xn−un∥2, then by Lemma 2, it implies that ∥xn−un∥2 → ∞
and thus ∥xn − un∥ → 0 as n → ∞.
Since un → x∗ as n → ∞ by assumption, then the inequality

0 ≤ ∥xn − x∗∥ ≤ ∥un − x∗∥+ ∥xn − un∥

imply that xn → x∗ as n → ∞. This ends the proof.

Corollary 1. Let X,K, T, {bn}, {bin}, {cn}, {cin}, {wn} and {wi
n}, (n ∈ N)i = 1, ..., p − 1(p ≥ 2)

be as in Theorem 1, and x∗ be the unique fixed point of T , then for any initial points u0, x0 ∈ K
the following statements are equivalent:
1. Modified Mann iteration with errors (10) converges strongly to x∗;
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2. Modified Ishikawa iteration with errors ( if p = 2 in (11)), converges strongly to x∗;
3. Modified Noor iteration with errors (if p = 3 in (11)), converges strongly to x∗;
4. Modified multi-step iteration with errors (11), converges strongly to x∗;

Proof: If p = 2, 3 in Theorem 2, the result follows.

Corollary 2. Let X,K, T, {bn}, {bin}, {cn}, {cin}, {wn} and {wi
n}, (n ∈ N)i = 1, ..., p − 1(p ≥ 2)

be as in Theorem 2, and x∗ be the unique fixed point of T , then for any initial points u0, x0 ∈ K
the following statements are equivalent:
1, Modified Mann iteration (see [3]) converges strongly to x∗;
2. Modified Ishikawa iteration (if p = 2 in (3)), converges strongly to x∗;
3. Modified Noor iteration (if p = 3 in (3)), converges strongly to x∗.
4. Modified multi-step iteration (3), converges strongly to x∗;

Proof: If sn = wn = wi
n = 0 for each i = 1, ..., p− 1 in Theorem 2, the result follows.

In view of Corollary 1 and Corollary 2, we have the following theorem.

Theorem 3. Let X be a real Banach space with dual convex, K a non empty closed and convex
subset of X and T : K → K a strongly successively pseudo-contractive operator. Suppose x∗ is a
fixed point of T . Suppose in addition {xn} is bounded, for any u0, x0 ∈ K satisfying conditions of
Theorem 2, the following statements are equivalent:
1. The modified Mann iteration converges strongly to x∗;
2. The modified Mann iteration with errors converges strongly to x∗;
3. The modified Ishikawa iteration converges strongly to x∗;
4. The modified Ishikawa iteration with errors converges strongly to x∗;
5. The modified Noor iteration converges strongly to x∗;
6. The modified Noor iteration with errors converges strongly to x∗;
7. The modified multi-step iteration converges strongly to x∗;
8. The modified multi-step iteration with errors converges strongly to x∗

Remark 4

(i) Assuming that the range of T,R(T ) is bounded, using the iteration methods (10) and (11),
it then follows that the sequences {xn}, {un}, {yin}, i ∈ N are bounded, hence it is no more needful
that {xn} is bounded. Thus the condition that {xn} is bounded is better than the boundedness of
the range of T used by Rhoades and Soltuz [29], Rhoades and Soltuz [4], Huang et al. [5] and Hung
and Bu [1].
(ii) In Huang et al. [5], it is assumed that X is a uniformly smooth Banach space while Theorem
1 is true for the general Banach spaces.
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