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Abstract

In this paper, two advance numerical techniques for solving second-order boundary value prob-
lems in ordinary differential equations (ODEs) are presented. The first method, the Chebyshev
Finite Difference Method (CFDM), which enhances the traditional Finite Difference Method
by utilizing Chebyshev Polynomials as basis functions, resulting in improved computational
performance. The second method developed is the Perturbed Chebyshev Finite Difference
Method (Perturbed CFDM), which incorporates perturbation techniques to further enhance
the accuracy and efficiency of the method. Both methods were applied to homogeneous and
non-homogeneous linear boundary value problems, with numerical results demonstrating that
the Perturbed CFDM significantly outperforms both standard CFDM and the traditional finite
difference method in terms of accuracy and computational efficiency. These findings establish
the Perturbed CFDM as a powerful and reliable tool for solving boundary value problems. All
computations were carried out using MATLAB, ensuring accurate approximation and numeri-
cal solutions of the tested problems.

Keywords: Boundary Value Problems, Chebyshev Polynomials, Finite Difference Method, Ordi-
nary Differential Equations, Perturbation.
MSC2010: 34B05, 33C45, 15A06, 65D25, 65L80.

1 Introduction
Ordinary Differential Equations (ODEs) are essential tools for modeling diverse phenomena across
fields such as social sciences, natural sciences, and engineering [1]. They describe systems like
beam depletion, disease epidemiology, and population dynamics, with solutions often dependent
on specific initial and boundary conditions [2]. Initial Value Problems (IVPs) define conditions at
a single point [3], while Boundary Value Problems (BVPs) involve conditions, at more than one
points within the domain of problem solution [4]. Analytical solutions to some BVPs are often
challenging due to their complexity, making numerical approximations a practical alternative [5].
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Over the years, numerous numerical methods including the Collocation Method, Finite Differ-
ence Method (FDM), Galerkin Method, Shooting Method, Tau Method, Finite Element Method
(FEM), Spectral Method and Least Squares Method have been developed to approximate solutions
to differential equations, particularly for problems lacking analytical solutions. These methods have
demonstrated increasing accuracy and efficiency. Among them, the FDM, particularly the central
forward difference, has been widely employed for solving both ODEs and Partial Differential Equa-
tions (PDEs). However, despite its accuracy, the FDM has limitations, such as its inability to
provide solutions between grid points and the high computational cost required for greater preci-
sion [6].

Recent advancements in numerical methods have sought to improve accuracy and computational
efficiency through the use of polynomial functions. Orthogonal polynomials, including Chebyshev,
Legendre, and Laguerre polynomials, have gained significant attention due to their ability to en-
hance approximation accuracy and convergence rates. Researchers have applied these polynomials
in combination with numerical techniques to achieve substantial improvements. For example, the
author(s) in [7] utilized Bernstein polynomials with least squares approximation to solve Volterra-
Fredholm integro-differential equations, achieving high precision. Abdurkadir [8] employed a gen-
eralized shifted Legendre polynomial approximation to solve second-order nonlinear BVPs, demon-
strating efficiency through MATLAB simulations. Similarly, Negarchi and Nouri [9] applied Hermite
polynomials with a modified variational iteration method to tackle tenth-order BVPs, reducing
computational time while improving accuracy. Rubayyi [10] combined the spectral collocation
method with Legendre polynomials to solve nonlinear fractional Klein-Gordon equations. In [11],
the author(s) integrated the Galerkin method with Chebyshev polynomials to solve some boundary
value problems in of ordinary differential equations. Author(s) in [12] demonstrated the efficacy
of Chebyshev polynomials in a modified variational iteration method for solving 12th-order BVPs.
Hence, these studies underscore the effectiveness of combining numerical methods with orthogonal
polynomials to address the solution of complex differential equations.

In this study, an improved finite difference method incorporating Chebyshev polynomials and
perturbation is developed for solving second-order boundary value problems of ordinary differential
equations. The paper is organized as follows: Section 1 provides an introduction to the study,
section 2 presents preliminary definitions and discussion on ODEs, finite difference methods, and
Chebyshev polynomials. In Section 3, the formulation of the improved finite difference methods;
the Chebyshev Finite Difference Method (CFDM) and the Perturbed Chebyshev Finite Difference
Method (PCFDM) are presented. Numerical examples, results, discussions, and conclusions are
provided in Section 4.

2 Preliminary
In this section, the fundamental definitions and concepts essential for the application of Chebyshev
finite difference approximation methods to boundary value problems of ordinary differential equa-
tions are presented. [Differential Equation] A differential equation is an equation that relates the
derivative of a dependent function say y to an independent function say x or t. The derivative can
either be a total derivative: dy

dx or a partial derivative: ∂y
∂x [13]. [Second Order Boundary Value

Problem] [14] described a general form of second order boundary value problem of ODEs as follows:

d2y

dx
= f(x, y, dy/dx), a ≤ x ≤ b, (2.1)

where the boundary conditions on the interval [a, b] is written as y(a) = α and y(b) = β. For
α, β are some constant values. [Finite Difference Approximation Method] The finite difference
approximation methods (backward, central and forward), are numerical schemes for solving differ-
ential equations by replacing each of the derivatives in the differential equation with an appropriate
difference-quotient approximation. The difference approximation methods are thus known as Finite
or Discretization Methods [15]. [Polynomial Function] An nth-degree polynomial of a variable x
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is a linear combination of constant value function c’s Funaro_Pol_approx_1994, written as

y(x) = cnx
n + c(n−1)x

(n−1) + ·+ c1x+ c0 (2.2)

[Orthogonal Polynomials] Orthogonal polynomials are set of polynomials say {Pn(x)} that are
defined over a range of interval [a, b] and obey orthogonality property [16]∫ b

a

W (x)Pn(x)Pm(x)dx = δm,nλn, (2.3)

where W (x) is a weighting function and δm,n is Kronecker delta. Then if λn = 1, the polynomials
are not only orthogonal but also known to be orthonormal.

2.1 Central Finite Difference over Backward and Forward Finite Differ-
ence

Finite difference methods (backward, forward, and central) are widely used in science and engi-
neering to numerically approximate several type of differential equations with or without analytical
solution. Among these, the central finite difference method stands out due to its distinct advan-
tages. Firstly, its symmetric nature ensures higher accuracy compared to forward and backward
difference methods [15]. Secondly, it offers greater stability and reduces numerical dispersion, mak-
ing it more robust in simulations. Thirdly, the central method exhibits faster convergence rates for
iterative solutions, which enhances computational efficiency in large-scale problems. Lastly, it is
flexible enough to achieve higher-order accuracy by incorporating additional node points, making it
ideal for precision-demanding applications [17]. These properties make the central finite difference
method a reliable and widely preferred tool for solving ordinary and partial differential equations.

2.2 Second Order Ordinary Differential Equations

An ordinary differential equation with derivative of the unknown function y in order two, say d2(y)
dx2 is

called second order ordinary differential equation. Where x is an independent variable. The second
order ODE can either be equipped with initial value conditions known as initial value problem (IVP)
or boundary conditions known as boundary value problems (BVPs). A general form of second order
ODE is of the form [14].

P (x)
d2(y)

dx2
+Q(x)

dy

dx
+R(x)y(x) = f(x), a < x < b, (2.4)

where P (x), Q(x), R(x) are constant or variable coefficient of the ODE and if f(x) = 0, the equation
(2.4) is homogeneous or else non homogeneous. Equation (2.4) is called a second order boundary
value problem if the unknown function y is equipped with the interval [a, b] ∈ x as

y(a) = y0, y(b) = yc (2.5)

2.3 Chebyshev Equation and Polynomials
Chebyshev differential equation is one of the special case of Sturm Liouvile boundary value problem.
The orthogonality property, generating function and Parseval’s identity are some important prop-
erties of the polynomials. Compare to other interpolation functions, Chebyshev polynomial have
been extensively used and is said to be more accurate in approximating polynomial functions [18].
The Sturm Liouvile ODE and its boundary conditions is defined on an interval [a, b] ∈ x as

d

dx

(
p(x)

dy

dx

)
+ [q(x) + λr(x)]y = 0, (2.6)
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c1y(a) + c2y
′(b) = 0,

c3y(b) + c4y
′(b) = 0,

where c1, c2, c3 and c4 are constants and λ is a parameter to be determine. Suppose the interval
a = 1 and b = −1, set p(x) =

√
1− x2, q(x) = 0, r(x) = 1√

1−x2
and λ = n2, then equation (2.6)

can be written as
d

dx

(
(1− x2)

d2y

dx

)
+ n2 1√

1− x2
y = 0 (2.7)

2.3.1 Chebyshev differential equation [19]

The ordinary differential equation (2.6) written in the form (2.7) is called Chebyshev differential
equation with |x| < 1 and n ∈ N0.

(1− x2)
d2y

dx2
− x

dy

dx
+ n2y(x) = 0 (2.8)

The solution of the ordinary differential equation (2.8), which exhibits singularities at x = [1,−1] ,
would be represented as the Chebyshev polynomials.

2.3.2 Orthogonality property of Chebyshev polynomials

The polynomials Tn(x) form complete orthogonal set on the interval [1,−1] ∈ x with the weighted
function w(x) = 1√

1−x2
[19], such that

∫ 1

−1

w(x)Tn(x)Tm(x)dx =
0, m ̸= n
π, m = n

π
2 , m = n = 1, 2 · · ·

(2.9)

2.3.3 Parseval’s identity property

The parseval’s identity that relates the series y(x) =
∑infty

n=0 anTn(x) with Chebyshev polynomials
Tn(x) is defined as ∫ ∞

−∞
w(x)[y(x)]2 dx = πa2o +

π

2

∞∑
n=1

a2n (2.10)

2.3.4 Oscillation property

Among the orthogonal polynomials that are bounded by the interval [−1, 1], the Chebyshev poly-
nomial T (x) oscillates with smallest maximum deviation in the interval [−1, 1].

2.3.5 Chebyshev polynomial of first kind

The Chebyshev polynomials Tn(x) can be obtained by means of Rodrigue’s formula

Tn(x) =
(−2)nn!

(2n)!

√
1− x2

dn

dxn
(1− x2)n−1/2, n = 0, 1, 2, 3, ...

The Chebyshev first kind generating function is given by

1− zx

1− 2zx+ z2
=

∞∑
n=0

Tn(x)z
n (2.11)

When the first two Chebyshev polynomials T0(x) and T1(x) are known, all other polynomials Tn(x),
n ≥ 2 can be obtained by means of recurrence formula

Tn+1(x) = 2xTn(x)− Tn−1(x) (2.12)

48

https://doi.org/10.5281/zenodo.15174981


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

11(1), 2025, Pages 45 - 60
https://doi.org/10.5281/zenodo.15174981

2.3.6 Chebyshev polynomial of second kind

The generating function of Chebyshev polynomials of second kind for x ∈ [−1, 1] and n = 1, 2, 3, · · ·
is given by

1

1− 2xt+ t2
=

∞∑
n=0

Un(x)t
2, ∀ |x| < 1, |t| < 1 (2.13)

And satisfies the recurrence relation given by

U0(x) = 1 U1(x) = 2x
Un+1(x) = 2xUn(x)− Un−1(x), ∀ ≥ 1

(2.14)

2.3.7 Shifted Chebyshev Polynomials

For analytical and numerical studies, it is often convenient to shift the interval of Chebyshev
polynomials from the full range [−1, 1] to the half interval 0 ≤ x ≤ 1. This adjustment is particularly
useful for boundary value problems that are defined solely on the half interval [20]. Thus, the shifted
Chebyshev polynomials are defined by

T ∗
n(x) = (2x− 1)Tn(x).

The first five Shifted Chebyshev polynomials are given as

T0 = 1;
T1 = 2x− 1;

T2 = 8x2 − 8x+ 1;
T3 = 32x3 − 48x2 + 18x− 1;

T4 = 128x4 − 256x3 + 160x2 − 32x+ 1;
T5 = 512x5 − 1280x4 + 1120x3 − 400x2 + 50x− 1;

The recurrence formula of shifted Chebyshev polynomials is defined as

T ∗
n+1(x) = (4x− 2)T ∗

n(x)− T ∗
n−1(x), T ∗

0 = 1 (2.15)

2.4 Central Finite Difference Approximation Method for Second Order
ODEs

The central difference approximations of first and second order ordinary differential equations are
obtained as follows [15]: The central difference of first derivative is defined by

dy

dx
=

y(x+ h)− y(x− h)

2h
+O(h2) (2.16)

The central difference of second derivative is given by

d2y

dx2
=

y(x+ h)− 2y(x) + y(x− h)

h2
+O(h2) (2.17)

where 0(h2) is the truncation error. The y1, y2, ..., yn−1 can be calculated as; At the mesh point
x = xi.
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A general second-order ordinary differential equation is given by:

P (x)
d2y

dx2
+Q(x)

dy

dx
+R(x)y(x) = f(x), a ≤ x ≥ b (2.18)

The central forward difference representation of equation (2.18) is given by

P (xi)
yi+1 − 2yi + yi−1

h2
+Q(xi)

yi+1 − yi−1

2h
+R(xi)yi = f(xi), (i = 1, 2, · · · , n+ 1) (2.19)

2P (xi)(yi+1−2yi+yi−1)+hQ(xi)(yi+1−yi−1)+2h2R(xi)yi = 2h2f(xi), (i = 1, 2, ..., n+1) (2.20)

Equation (2.20) is the central forward approximation of the second order ODE (2.18) at the node
points of xi, for i = 1, 2, · · ·n.

3 Improved Finite Difference Methods for Boundary Value
Problems

3.1 Chebyshev-Finite Difference Method (CFDM)
The approach in this section is designed to harness the properties of Chebyshev Polynomial in
the application of finite difference method. The usual central finite differences are replaced by
Chebyshev basis functions Tr(x) of degree n, that is

y′(x) =
yi+1 − yi−1

2h

y′′(x) =
yi+1 − 2yi + yi−1

h2

The above components of the finite differences are replaced with the following:

yi =

[
n∑

r=0

arTr(x)

]
i

yi+1 =

[
n∑

r=0

arTr(x)

]
i+1

yi−1 =

[
n∑

r=0

arTr(x)

]
i−1

yi−2 =

[
n∑

r=0

arTr(x)

]
i−2

These yield the following:

y(x) =

n∑
r=0

arTr(x) (3.1)

y′(x) =
1

2h

([
n∑

r=0

arTr(x)

]
i+1

−

[
n∑

r=0

arTr(x)

]
i−1

)
(3.2)

y′′(x) =
1

h2

([
n∑

r=0

arTr(x)

]
i+1

− 2

[
n∑

r=0

arTr(x)

]
i

+

[
n∑

r=0

arTr(x)

]
i−1

)
(3.3)
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3.1.1 CFDM for Second Order Ordinary Differential Equations

Consider the general form of the second order ordinary differential equation defined by equation
(2.18) as:

P (x)y′′(x) +Q(x)y′(x) +R(x)y(x) = f(x), a ≤ x ≥ b (3.4)

Subject to the boundary conditions

y(a) = α, y(b) = β (3.5)

The approximate solution is designed to takes the form:

y(x) =

n∑
r=0

arTr(x) (3.6)

The derivatives in equation (3.4) are replaced by Chebyshev approximate derivatives in equation
(3.2) and (3.3) and yields:

P (x)
h2

((
[
∑n

r=0 arTr(x)]i+1

)
− 2

(
[
∑n

r=0 arTr(x)]i
)
+
(
[
∑n

r=0 arTr(x)]i−1

))
+

Q(x)
2h

((
[
∑n

r=0 arTr(x)]i+1

)
−
(
[
∑n

r=0 arTr(x)]i−1

))
+R(x) [

∑n
r=0 arTr(x)]i = f(x)

(3.7)

For n = b−a
h . Where a and b are the boundary points, and h is the step size. Tr(x) is the Chebyshev

polynomials Shifted into the interval [a, b] of the given problem, That is, a ≤ x ≤ b. The ar is
called the adjustable parameters. Suppose n = 4, equation (3.7) is expanded as follows:

P (x)
h2

([∑4
r=0 arTr(x)

]
i+1

− 2
[∑4

r=0 arTr(x)
]
i
+
[∑4

r=0 arTr(x)
]
i−1

)
+

Q(x)
2h

([∑4
r=0 arTr(x)

]
i+1

−
[∑4

r=0 arTr(x)
]
i−1

)
+R(x)

[∑4
r=0 arTr(x)

]
i
= f(x)

(3.8)

⇒
1
h2P (x)

(
[a0T0 + a1T1 + a2T2 + a3T3 + a4T4]i+1

)
− 2 1

h2P (x) ([a0T0 + a1T1 + a2T2 + a3T3 + a4T4]i)+
1
h2P (x)

(
[a0T0 + a1T1 + a2T2 + a3T3 + a4T4]i−1

)
+

1
2hQ(x)

(
[a0T0 + a1T1 + a2T2 + a3T3 + a4T4]i+1 − [a0T0 + a1T1 + a2T2 + a3T3 + a4T4]i−1

)
+

R(x) [a0T0 + a1T1 + a2T2 + a3T3 + a4T4]i = f(x)
(3.9)

Multiply through the terms by h2, yields

P (xi)([a0T0 + a1T1 + a2T2 + a3T3 + a4T4]xi+1
− 2 [a0T0 + a1T1 + a2T2 + a3T3 + a4T4]xi

+

[a0T0 + a1T1 + a2T2 + a3T3 + a4T4]xi−1
)+

h
2Q(xi)

(
[a0T0 + a1T1 + a2T2 + a3T3 + a4T4]xi+1

− [a0T0 + a1T1 + a2T2 + a3T3 + a4T4]xi−1

)
+

h2R(xi) [a0T0 + a1T1 + a2T2 + a3T3 + a4T4]xi
= h2f(xi)

(3.10)
To derive the matrix form of equation (3.10) for any nth degree of Chebyshev polynomials, the
following working steps are applied:

Let denote the nth vector form of the adjustable parameters by:

a =



a0
a1
a2
a3
a4
...
an
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Ti =
[
T0(xi) T1(xi) T2(xi) T3(xi) T4(xi) · · · Tn(xi)

]
denote the nth row vector of Cheby-

shev polynomials evaluated at xi.

T =


T0

T1

...
Tn

 is the matrix of Chebyshev polynomials evaluated at all xi

P, Q, and R are diagonal matrices with elements P (xi), Q(xi), and R(xi), respectively.

f represents the vector of function values f(xi).

D1 denote the first difference matrix:

D1 =


0 1 0 · · · 0
−1 0 1 · · · 0
0 −1 0 · · · 0
...

...
...

. . . 1
0 0 0 · · · −1

 (3.11)

D2 denote the second difference matrix:

D2 =


−2 1 0 · · · 0
1 −2 1 · · · 0
0 1 −2 · · · 0
...

...
...

. . .
...

0 0 0 · · · −2

 (3.12)

Therefore, the nth matrix form of equation (3.10) is defined as by:(
PD2 +

h

2
QD1 + h2R

)
Ta = h2f (3.13)

The derived matrix equation (3.13) is the Chebyshev-Finite Difference Method (CFDM) of approx-
imation for solving the second order homogeneous (if f(x) = 0) and non-homogeneous (f(x) ̸= 0)
ordinary differential equations. To determine the adjustable parameters ar =a0, a1, a2, · · · , an, n−2
matrix of algebraic equations is generated from equation (3.13) for xi such that i = 1, 2, · · · , n− 2
and the other two algebraic equations are generated using the boundary conditions for an nth degree
basis of Chebyshev polynomial equation (3.6), given as:

y(x) =

n∑
r=0

arTr(x)

The approximate solution to the ODE using the CFDM Scheme is then obtained by

ȳ(x) =

n∑
r=0

a∗rTr(x) (3.14)

Where a∗r is the solution of the adjustable parameters, that is a∗r = a0, a1, a2, a3, · · · , an.
Remark. If the boundary conditions of the problem to solve is within the interval [0, 1], this require
a shift in the interval of Chebyshev polynomials from [−1, 1] to [0, 1]. Hence, the shifted Chebyshev
polynomials is the choice for Tr(x) rather than the first or second kind Chebyshev polynomial.
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3.1.2 Perturbed Chebyshev-Finite Difference Method (PCFDM)

In this section, the Perturbed version of the Chebyshev Finite Difference Method (PCFDM) is
presented to improve the solution to the boundary value problem. Let Pn(x) represent the pertur-
bation term with nth degree of Chebyshev polynomial and τr denote some perturbation constant.
Hence,the following working steps are implemented:

y(x) =

n−2∑
r=0

arTr(x) (3.15)

Pn(x) =

[
n∑

r=1

τrT(n−(r−1))(x)

]
r = 1, 2. (3.16)

From Equation (3.4), the following are obtained:

P (x)
h2

(([∑n−2
r=0 arTr(x)

]
i+1

)
− 2

([∑n−2
r=0 arTr(x)

]
i

)
+

([∑n−2
r=0 arTr(x)

]
i−1

))
+

Q(x)
2h

(([∑n−2
r=0 arTr(x)

]
i+1

)
+

([∑n−2
r=0 arTr(x)

]
i−1

))
+R(x) [

∑n
r=0 arTr(x)]i

= f(x) + Pn(x)

(3.17)

P (x)
h2

([∑n−2
r=0 arTr(x)

]
i+1

− 2
[∑n−2

r=0 arTr(x)
]
i
+ [
∑n

r=0 arTr(x)]i−1

)
+

Q(x)
2h

([∑n−2
r=0 arTr(x)

]
i+1

+ [
∑n

r=0 arTr(x)]i−1

)
+R(x)

[∑n−2
r=0 arTr(x)

]
i

= f(x) +
[∑n

r=1 τrT(n−(r−1))(x)
] (3.18)

Suppose the nth degree of the Chebyshev basis functions is 6, equation (3.18) can be expanded as

P (x)([a0T0 + a1T1 + a2T2 + a3T3 + a4T4]xi+1
− 2 [a0T0 + a1T1 + a2T2 + a3T3 + a4T4]xi

+ · · ·
[a0T0 + a1T1 + a2T2 + a3T3 + a4T4]xi−1

) + · · ·
h
2Q(x)

(
[a0T0 + a1T1 + a2T2 + a3T3 + a4T4]xi+1

− [a0T0 + a1T1 + a2T2 + a3T3 + a4T4]xi−1

)
+ · · ·

h2R(x) [a0T0 + a1T1 + a2T2 + a3T3 + a4T4]xi
= h2f(xi) + τ1 ∗ T6(xi) + τ2 ∗ T5(xi)

(3.19)
The matrix form of equation (3.19) for an nth degree is obtained using the following steps.
Let

Ti =



T0(xi)
T1(xi)
T2(xi)
T3(xi)
T4(xi)

...
Tn(xi)



a =



a0
a1
a2
a3
a4
...
an


Thus, the expression

a0T0(xi) + a1T1(xi) + a2T2(xi) + a3T3(xi) + a4T4(xi) + · · ·+ anTn(xi)
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can be written as
aTTi,

such that equation (3.19) becomes

P (xi)
(
aTTi+1 − 2aTTi + aTTi−1

)
+ · · ·

+
h

2
Q(xi)

(
aTTi+1 − aTTi−1

)
+ · · ·

+ h2R(xi)a
TTi = h2f(xi) + τ1Tn(xi) + τ2Tn−1(xi)

(3.20)

The following matrices and vectors are defined to form a compact representation of equation (3.20):

• P is a diagonal matrix with P (xi) on the diagonal.

• Q is a diagonal matrix with Q(xi) on the diagonal.

• R is a diagonal matrix with R(xi) on the diagonal.

• f is a vector with f(xi) as its entries.

• Tn and Tn−1 are vectors with Tn(xi) and Tn−1(xi) as their entries, respectively.

The second derivative finite difference operator matrix D2 and the first derivative finite difference
operator matrix D1 are defined as follows

D1 =


0 1 0 · · · 0
−1 0 1 · · · 0
0 −1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0



D2 =


−2 1 0 · · · 0
1 −2 1 · · · 0
0 1 −2 · · · 0
...

...
...

. . .
...

0 0 0 · · · −2


Combining these terms, equation (3.20) yields

P(D2(AT)) +
h

2
Q(D1(AT)) + h2R(AT) = h2f + τ1Tn + τ2Tn−1, (3.21)

where AT represents the dot product of the vector a with the matrix T (where T has the Cheby-
shev polynomials evaluated at different points as its rows).

The derived polynomial matrix equation (3.21) is the Perturbed Chebyshev-Finite Difference Method
(PCFDM) for solving the second order homogeneous (if f(x) = 0) and non-homogeneous (f(x) ̸= 0)
ordinary differential equations. To determine the adjustable parameters ar =a0, a1, a2, · · · , an and
the perturbation parameters τ1 τ2, n− 2 matrix of algebraic equations is generated from equation
(3.21) for xi such that i = 1, 2, · · · , n− 2 and the other two algebraic equations matrix is generated
using the boundary conditions for an nth degree basis of Chebyshev polynomial equation (3.15),
given by

y(x) =

n−2∑
i=0

arTr(x)

The approximate solution is obtains by the equation

ȳ(x) =

n∑
r=0

a∗rTr(x) (3.22)

54

https://doi.org/10.5281/zenodo.15174981


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

11(1), 2025, Pages 45 - 60
https://doi.org/10.5281/zenodo.15174981

4 Numerical Results and Discussion
In this section, MATLAB software is used to simulate the proposed methods in equation (3.13)
and equation (3.21) to solve some boundary value problems of second order ordinary differential
equations and compare the results of the two methods to the traditional finite difference method.

4.1 Examples of Second Order Boundary Value Problem of ODEs
Example 1:
Consider the Dirichlet boundary value problem of the form

y′′(x) = 4y(x), [0, 1], y(0) = 0, y(1) = e (2.7183). (4.1)

with the exact solution given by

y(x) =
(−1 + e(4x))e(3−2x)

−1 + e(4)

Example 2:
Consider the boundary value problem given below

y′′ − y = x, 0 < x < 1 y(0) = 0, y(1) = 0 (4.2)

with the exact solution given by

y(x) =
sinh(x)

sinh1
− x

Example 3:
Given the boundary value problem defined as

−y′′ = π2cos(πx), 0 < x < 1 y(0) = 1, y(1) = −1 (4.3)

with the exact solution given by
y(x) = cos(πx)

4.2 Numerical approximation of Boundary Value Problems
In this section, MATLAB is used to implement the proposed methods in (3.13 and 3.21) to obtained
the numerical solutions to the class of homogeneous and non-homogeneous Examples presented in
section 4.1. The results obtained with the polynomials of degree 8 and the absolute errors calculated
are presented in Table 1, Table 2 and Table 3.

In Table 1, the results show the computational errors obtained for solving example 1 using the
traditional finite difference method (FDM), enhance Chebyshev finite difference method (EFDM)
and perturbed Chebyshev finite difference method (PCFDM). The results indicate that the PCFDM
outperform the FDM and CFDM as the computed errors for PCFDM was minimal compared to
FDM and CFDM.
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Table 1: Comparison of Example 1 (Homogeneous) Result for n = 8

xi Exact FDM Error (∗10−4)CFDM Error (∗10−4)PCFDM Error (∗10−4)

0 0 0 0 0

0.1250000000000000.189329445638137 5.17535775642 5.17535775642 3.32459726049

0.2500000000000000.390553740848224 10.05658317696 10.05658317696 6.46053403853

0.3750000000000000.616315043397523 14.29235968406 14.29235968406 9.18368805273

0.5000000000000000.880797077977883 17.41099048428 17.41099048428 11.19104207216

0.6250000000000001.200616245726553 18.74465024283 18.74465024283 12.05481560683

0.7500000000000001.595865569563315 17.33344333974 17.33344333973 11.15981188842

0.8750000000000002.091377062462207 11.79986700115 11.79986700115 7.62151618917

1.0000000000000002.718281828459046 1.8171540955e-01 1.8171540955e-01 1.8171540955e-01
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Table 2: Comparison of Example 2 (Non-homogeneous) Result for n = 8

xi Exact FDM Error1(∗10−5)CFDM Error (∗10−5)PCFDM Error (∗10−5)

0 1.000000000000000 0 0 0

0.125000000000000-0.018358025911688 2.1330852864 2.1330852864 1.3661304924

0.250000000000000-0.035047600211395 4.0824233453 4.0824233453 2.6145772135

0.375000000000000-0.048374167768282 5.6579996568 5.6579996568 3.6236618005

0.500000000000000-0.056590558014963 6.6571140542 6.6571140542 4.2635526230

0.625000000000000-0.057869649842589 6.8576570549 6.8576570549 4.3920030255

0.750000000000000-0.050275785641288 6.0109201753 6.0109201753 3.8497272379

0.875000000000000-0.031734487248432 3.8337697035 3.8337697035 2.4553672890

1.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000

The result in Table 2, shows the computational errors of the traditional finite difference method
(FDM), enhance Chebyshev finite difference method (EFDM) and perturbed Chebyshev finite dif-
ference method (PCFDM). The results indicate that the PCFDM outperform the FDM and CFDM
as the computed errors for PCFDM was minimal compared to FDM and CFDM.
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Table 3: Comparison of Example 3 (Non-homogeneous) Result for n = 8

xi Exact FDM Error1(∗10−3)CFDM Error (∗10−3)PCFDM Error (∗10−3)

0 1.000000000000000 0 0 0

0.125000000000000 0.923879532511287 2.251869785672 2.251869785672 1.436449866736

0.250000000000000 0.707106781186548 2.682187467531 2.682187467531 1.712253255357

0.375000000000000 0.382683432365090 1.718349526750 1.718349526750 1.096055316236

0.500000000000000 0 0 0 0

0.625000000000000-0.382683432365090 1.718349526750 1.718349526750 1.096055316236

0.750000000000000-0.707106781186548 2.682187467531 2.682187467531 1.712253255357

0.875000000000000-0.923879532511287 2.251869785672 2.251869785672 1.436449866736

1.000000000000000-1.000000000000000 0 0 0

The result in Table 3, shows the computational errors obtained for solving example 3 using the
traditional finite difference method (FDM), enhance Chebyshev finite difference method (CFDM)
and perturbed Chebyshev finite difference method (PCFDM). The results indicate that the PCFDM
outperform the FDM and CFDM as the computed errors for PCFDM were minimal compared to
FDM and CFDM.

4.3 Discussion and Conclusion
In this study, two advance numerical techniques for solving second-order boundary value problems
of ordinary differential equations (ODEs) are presented. The Chebyshev-Finite Difference Method
(CFDM) and the Perturbed Chebyshev-Finite Difference Method (PCFDM). These methods were
applied to solve both homogeneous and non-homogeneous boundary value problems of ODEs, and
their results were compared to those obtained using the traditional finite difference method. The
numerical results demonstrated that the perturbed Chebyshev finite difference method outper-
formed both the traditional finite difference method and the unperturbed CFDM. The PCFDM
has proven to be an efficient and powerful mathematical tool for addressing these class of boundary
value problems of ODEs, offering superior accuracy and reliability in solving both homogeneous
and non-homogeneous cases.
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