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Abstract

In this paper, we investigate the concept of the perfect product of two squares in the context
of finite full transformation semigroups. We provide a comprehensive analysis of the conditions
under which the product of two idempotent elements in a transformation semigroup forms a
perfect product of two squares. Specifically, we examine the relationship between the kernel
and image of idempotents, as well as the interplay between the domain and image of these
transformations. The main result establishes that for two idempotent elements α and β in Tn,
if the domain and image of α and β satisfy certain equivalence conditions, then their product is
a perfect product of two squares. We also explore related properties of disjoint cycles and how
these contribute to the structural characteristics of the semigroup. Our findings extend the
existing theory of transformation semigroups and offer valuable insights into the decomposition
of semigroup elements into squares, contributing to the broader field of semigroup theory.
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1 Introduction
The study of the semigroup of transformations S(X) and the full transformation semigroup T (X)
has captivated mathematicians for decades, forming the backbone of various mathematical disci-
plines. The semigroup S(X) represents permutations of elements within a set, while T (X) en-
compasses all mappings from a finite set X to itself, with the semigroup operation defined as the
composition of mappings. These mathematical structures are pivotal in understanding the inter-
play between algebraic operations and combinatorial structures. One intriguing aspect of T (X)
lies in the investigation of squares and their products. An element α ∈ T (X) is termed a square
if there exists an element β ∈ T (X) such that α = β2. The product of squares in T (X) refers to
the product of two elements, each of which is a square within the semigroup. Formally, given two
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square elements α and γ in T (X), their product is denoted as αγ. The notion of square roots in
semigroups, specifically within T (X), adds another layer of depth. A square root of an element
α ∈ T (X) is an element β ∈ T (X) such that α = β2. For α and β in T (X), where their respective
square roots are δ and γ, the product of squares is represented as (δγ)2. This concept has garnered
significant attention due to its potential applications in group theory, lattice theory, and universal
algebra. It is important to note that in this work, the composition of transformations is performed
from left to right. Moreover, composition of transformations in T (X) is not commutative; that is,
for transformations α, β ∈ T (X), in general, αβ ̸= βα. The study of squares and their products in
T (X) is a relatively recent area of research. Foundational works by Snowden [1], Higgins [2], [3],
and Annin [4] have laid the groundwork by exploring the existence and properties of square roots
within finite full transformation semigroups. The seminal contributions by Howie [8], [7] provide
crucial insights into the multiplication of elements in transformation semigroups, which serve as
a cornerstone for understanding the product of squares. Recent developments in transformation
semigroup theory have led to the study of quasi-idempotents and their role in semigroup gener-
ation. In particular, [9] investigated quasi-idempotent elements within the semigroup of partial
order-preserving transformations. They demonstrated that the semigroup POn of all partial order-
preserving transformations on a finite set Xn is quasi-idempotent generated. Furthermore, they
established an upper bound for the quasi-idempotent rank of POn, given by ⌈ 5n−4

2 ⌉. This result
provides new insights into the structural composition of transformation semigroups. Addition-
ally, [10] examined the collapse of order-preserving and idempotent elements in the semigroup of
order-preserving full contraction transformations. Their study explores the number of collapsible
elements in this semigroup, providing a formula for their enumeration and shedding light on the
behavior of idempotent elements in transformation semigroups. In this paper, we investigate the
perfect product of two squares within the finite full transformation semigroup T (X). Our primary
focus is to characterize and analyze the algebraic properties of such products, providing a deeper
understanding of their structure and behavior. By incorporating results from quasi-idempotent and
idempotent order-preserving transformations, we extend the scope of previous studies to include
their interactions within transformation semigroups.

2 Preliminaries
Definition 2.1. A semigroup is a set Sϱ together with an associative binary operation usually
denoted by juxtaposition ie (xy)z = x(yz) ∀x, y, z ∈ Sϱ. The semigroup Sϱ is called monoid if it
has identity that is if it contains an element 1 with the property x.1 = 1.x = x ∀x ∈ Sϱ. An elment
0 ∈ Sϱ with the property that 0x = x0 = 0 ∀x ∈ Sϱ.is called zero element of Sϱ and Sϱ a semigroup
with zero. If Sϱ has no identity we can adjoin an extra identity or zero to Sϱ, so that S becomes a
monoid or semigroup with zero. [6]

We write S1
ϱ and S0

ϱ to denote the semigroup with identity or zero adjoined if necessary. Thus,

S1
ϱ =

{
Sϱ, if Sϱ has an identity;
Sϱ ∪ {1}, otherwise.

and

S0
ϱ =

{
Sϱ, if Sϱ has a zero;
Sϱ ∪ {0}, otherwise,

where we define 1s = s1 = Sϱ, 11 = 1 and 0s = sϱ0 = 00 = 0 ∀s ∈ Sϱ. [6]

Definition 2.2. [5]A non-empty subset T of a semigroup Sϱ is called a subsemigroup of Sϱ, if it
is closed under the binary operation of Sϱ i.e. for all x, y in T , xy is in Tor T 2 ⊆ T . For example,
if Sϱ is a semigroup with zero, the set T of all elements of Sϱ, in which the product of any two
elements is zero, is a subsemigroup of Sϱ.
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Definition 2.3. [5]Let Xn = {1, 2, ..., n}. A mapping α:dom(α) ⊂ Xn → Im(α). Xn is called full
transformation of Xn if dom(α) = Xn. The set of all full transformations of Xn, forms a semgroup
under composition of mappings called the full transformation semigroup.

Definition 2.4. An element e of a semigroup Sϱ is called idempotent if e · e = e, where · denotes
the binary operation in Sϱ. That is, an element is idempotent if, when composed with itself, it
yields itself.

Definition 2.5. Let Sϱ be a semigroup. An element s ∈ Sϱ is a perfect product of two squares if
there exist elements α, β ∈ Sϱ such that

s = α2 · β2,

where α2 = α · α and β2 = β · β are squares of elements in Sϱ.

Definition 2.6. Let X be a finite set, and let T (X) denote the full transformation semigroup on
X. An element α ∈ T (X) is called a square if there exists an element δ ∈ T (X) such that α = δ2.
The product of two squares in T (X) is defined as the element αβ, where both α and β are squares
in T (X).

3 Main Results
Definition 3.1. Let α and β be elements in T (X) with square roots δ and γ in T (X) respectively,
then αβ are said to be perfect product of two square if αβ = (δγ)2.

Example 3.2.

α =

(
1 2 3 45 6 7
3 4 6 7 1 2

)
=

(
1 2 3 45 6 7
6 7 1 2 3 4

)2

⇒ δ =

(
1 2 3 45 6 7
6 7 1 2 3 4

)
β =

(
1 2 3 45 6 7
3 5 6 7 1 2

)
=

(
1 2 3 45 6 7
6 7 1 2 3 5

)2

⇒ γ =

(
1 2 3 45 6 7
6 7 1 2 3 5

)
αβ =

(
1 2 3 45 6 7
6 7 1 2 3 5

)
δγ =

(
1 2 3 45 6 7
3 5 6 7 1 2

)
(δγ)2 =

(
1 2 3 45 6 7
6 7 1 2 3 5

)
⇒ αβ = (δγ)2.

Hence, αβ is a perfect product of two squares.

Theorem 3.3. Let α, β be any two idempotents of height r ≥ 2 in Tn. Then αβ is a perfect
product of two squares if and only if domα = domβ or imα = imβ.

Proof. Suppose that domα = domβ or imα = imβ. We will show that αβ = (δγ)2. If domα =
domβ, then xα = xβ for all x ∈ Xn \kernels. Similarly, if imα = imβ, then xα = xβ for all x ∈ Xn.
Since α and β are both idempotent, clearly they are squares. Suppose δ and γ are the square roots
of α and β, respectively, then α = δ2 and β = γ2. Hence, αβ = δ2γ2. But since xα = xβ, we have:

αβ = (δγ)2.

Conversely, suppose αβ = (δγ)2. We will show that domα = domβ or imα = imβ. Since αβ =
(δγ)2, clearly:

αβ = (δγ)2 = δ2γ2,

which implies that α = δ2 and β = γ2. Thus, for all x ∈ Xn:

xα = xβ,

which implies that imα = imβ or domα = domβ.
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Example 3.4. α =
(
1 23 45 6
1 2 4 6

)
β =

(
1 23 45 6
1 3 5 6

)
αβ =

(
1 23 45 6
1 2 4 6

)(
1 23 45 6
1 3 5 6

)
=

(
1 23 45 6
1 3 5 6

)
= δ2γ2 = (δγ)2

Example 3.5. α =
(
1 23 45 67 8
1 3 4 6 8

)
β =

(
1 23 4 56 78
1 3 4 6 8

)
αβ =

(
1 23 45 67 8
1 3 4 6 8

)(
1 23 4 56 78
1 3 4 6 8

)
=

(
1 23 45 67 8
1 3 4 6 8

)
= δ2γ2 = (δγ)2

Example 3.6. this example is a counter example
α =

(
1 234 56
1 2 5

)
, β =

(
1 2 3 45 6
1 2 3 4 6

)
αβ =

(
1 234 56
1 2 5

)(
1 2 3 45 6
1 2 3 4 6

)
=

(
1 234 56
1 2 4

)
clearly αβ is not an idempotent. and element of this nature may or may not be a square.

Theorem 3.7. Let α, β ∈ Jn(Tn) each of which is a square, then αβ is a perfect product of two
squares if and only if α and β are disjoint.

Proof. Suppose α and β are disjoint. Then αβ = βα. Since α and β are squares, there exist δ and
γ in Jn such that α = δ2 and β = γ2. Thus, αβ = δ2γ2, and therefore, δ2 and γ2 can be written as
the product of disjoint cycles. We have:

δ2 = (c1, c2, . . . , cn)
2 and γ2 = (d1, d2, . . . , dn)

2,

where for i = 1, 2, . . . , n, ci and di are cycles. Now, we have:

δ2 = (c21, c
2
2, . . . , c

2
n),

and
γ2 = (d21, d

2
2, . . . , d

2
n).

Thus:

δ2γ2 ⇔ (c21, c
2
2, . . . , c

2
n)(d

2
1, d

2
2, . . . , d

2
n) ⇔ (c1, c2, . . . , cn)

2(d1, d2, . . . , dn)
2 ⇔ [(c1, c2, . . . , cn)(d1, d2, . . . , dn)]

2
.

Hence:
⇔ (c1d1, c2d2, . . . , cndn)

2 = (δγ)2.

Therefore:
⇔ αβ = (δγ)2.

Example 3.8. α =
(
1 2 3 4 5 6
2 3 1 4 5 6

)
=

(
1 2 3 4 5 6
3 1 2 4 5 6

)2 ⇒ the square root

δ =
(
1 2 3 4 5 6
3 1 2 4 5 6

)
β =

(
1 2 3 4 5 6
1 2 3 5 6 4

)
=

(
1 2 3 4 5 6
1 2 3 6 4 5

)2 ⇒ the squre root

γ =
(
1 2 3 4 5 6
1 2 3 6 4 5

)
αβ =

(
1 2 3 4 5 6
2 3 1 5 6 4

)
δγ =

(
1 2 3 4 5 6
3 1 2 6 4 5

)
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(δγ)2 =
(
1 2 3 4 5 6
2 3 1 5 6 4

)
⇒ αβ = (δγ)2

Hence αβ is a perfect product of two square. It is possible in group of permutation if Shift(α)
= Fix(β) and Shift(β) = Fix(α) which makes it disjoint.

Theorem 3.9. Suppose that α, β ∈ Jn−1(Tn), kerα = kerβ = |i, j|, α = δ2, and β = γ2. Then,

αβ = (δγ)2 if and only if imα = Xn \ {i}, imβ = Xn \ {j},

and
α | im(α) \ {j} = β | im(β) \ {i}.

Proof. Assume αβ = (δγ)2. We need to show (i), (ii), and (iii).

(i) im(α) = Xn \ {i}: Assume, by contradiction, that there exists x ∈ Xn such that xα = i.
Then:

x(αβ) = (xα)β = iβ.

Since αβ = (δγ)2, it implies:

x(αβ) = x(δγ)2 ⇒ (xα)β = x(δγ)2 ⇒ iβ = (δγ)2,

which leads to a contradiction.

(ii) im(β) = Xn \ {j}: Similarly, assume for the sake of contradiction that there exists x ∈ Xn

such that xβ = j. Using αβ = (δγ)2, one can show that jα = (δγ)2, which again leads to a
contradiction.

(iii) α | im(α) \ {j} = β | im(β) \ {i}:
Suppose there exists x ∈ im(α) \ {j} such that xα ̸= xβ. Then, αβ ̸= (δγ)2, contradicting
our assumption that αβ = (δγ)2. Hence:

α | im(α) \ {j} = β | im(β) \ {i}.

Conversely:
Assume (i), (ii), and (iii) hold. We need to show that αβ = (δγ)2.
Consider any x ∈ Xn:

x(αβ) = (xα)β = xβ if x = j,

x(αβ) = (xα)β = xα if x = i,

x(αβ) = (xα)β = x(δγ)2 if x /∈ {i, j}.

Therefore, αβ = (δγ)2, and the reverse direction is established.

Example 3.10. α =
(
1 2 3 4 5 6 7 89 10 11 12 13
3 4 10 11 6 5 8 7 12 13 1 2

)
=(

1 2 3 4 5 6 7 89 10 11 12 13
2 3 4 10 7 8 6 5 11 12 13 1

)2 ⇒ δ =
(
1 2 3 4 5 6 7 89 10 11 12 13
2 3 4 10 7 8 6 5 11 12 13 1

)
β =

(
1 2 3 4 5 6 7 89 10 11 12 13
3 4 10 11 6 5 9 7 12 13 1 2

)
=

(
1 2 3 4 5 6 7 89 10 11 12 13
2 3 4 10 7 9 6 5 11 12 13 1

)2 ⇒

γ =
(
1 2 3 4 5 6 7 89 10 11 12 13
2 3 4 10 7 9 6 5 11 12 13 1

)
αβ =

(
1 2 3 4 5 6 7 89 10 11 12 13
10 11 12 13 5 6 7 9 1 2 3 4

)
δγ =

(
1 2 3 4 5 6 7 89 10 11 12 13
3 4 10 11 6 5 9 7 12 13 1 2

)
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(δγ)2 =
(
1 2 3 4 5 6 7 89 10 11 12 13
10 11 12 13 5 6 7 9 1 2 3 4

)
⇒ αβ = (δγ)2.

Hence αβ is a perfect product of two squares.

4 Conclusion
In conclusion, this work demonstrates the conditions under which the product of two idempotent
elements in a finite full transformation semigroup is a perfect product of two squares. The key
findings reveal that the kernel, image, and domain properties of these elements play a crucial role
in determining when their product exhibits this perfect square structure. Additionally, our analy-
sis of disjoint cycles provides a deeper understanding of the interaction between the square roots
of transformation semigroup elements. The results presented here not only enrich the theoretical
framework of transformation semigroups but also lay the groundwork for future research on related
semigroup decompositions. The study of perfect products of squares offers potential applications in
various areas of mathematics, including algebraic structures, combinatorics, and theoretical com-
puter science, where semigroups and their decompositions are of central importance.

5 Recommendations
The results obtained in this work contribute significantly to semigroup theory, particularly in the
study of transformation semigroups. The exploration of the perfect product of two squares within
the finite full transformation semigroup T (X) provides a deeper understanding of algebraic prop-
erties associated with these structures. However, further investigations can enhance the scope and
impact of this study.

• Incorporation of Rank Considerations: One potential extension of this research is the
analysis of the rank of transformations and its influence on whether a transformation can be
expressed as a product of two squares. The rank of a transformation, which is the cardinality
of its image, plays a crucial role in understanding transformation semigroups. Investigating
how rank constraints affect the formation of square products can lead to a more comprehensive
characterization of these elements.

• Classification of Transformations Based on Rank: A systematic classification of trans-
formations in T (X) based on rank and their decomposition into square products can provide
a more structured approach to understanding semigroup composition. This classification
may reveal deeper algebraic patterns and potential applications in computational semigroup
theory.

• Exploration of Generalized Square Products: While this study focuses on perfect prod-
ucts of two squares, future research can examine the properties of multiple square compositions
and their implications in transformation semigroups. Extending the analysis to higher-order
power products could yield interesting algebraic results.

• Application to Related Semigroups: The techniques and results obtained here could be
extended to other semigroups, such as the symmetric inverse semigroup or other transformation-
related algebraic structures. Studying the existence and behavior of square products in these
broader settings may provide a unified framework for semigroup decomposition.

By addressing these areas in future research, the study of transformation semigroups can be
further enriched, providing a more complete understanding of their structural properties and ex-
panding their theoretical and practical significance.
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