
International Journal ofMathematical Analysis and
Optimization: Theory and Applications

Vol. 2019, No. 1 , pp. 455 - 467

Characterization of a class of Symmetric Group

E. E. Edeghagba1?, K. I. Rabiu2 and G. I. Tajudeen3

1 *, 2, Department of Mathematical Science, Bauchi State University, Gadau, Nigeria.
3, Department of Mathematics and Statistics, School of Science and Tecgnology, Abubakar Tatari
Ali Polytechnic, Bauchi, Nigeria.
?Corresponding Author email: eghosaelijah@yahoo.co.uk

Article Info
Received: 19 January 2018 Revised: 21 January 2019
Accepted: 25 April 2019 Available online: 13 May 2019

Abstract

This paper studies a class of permutation group on a nonempty set X = {1, 2, 3, . . . ,n} that maps
even integer to even integer and odd integer to odd integer. We concluded that this collection of
permutations, Bn is a group and that if n is even Bn � (Sn/2)2 but if n is odd Bn � S(n+1)/2 × S(n−1)/2.
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1 Introduction

The notion of deriving subgroups of a symmetric group have appeared in several research works
carried out by different researchers [1, 2, 3, 4, 5].
A subgroup of a symmetric group is called a permutation group. The notion of subgroups of
symmetric group is used with several slightly different meanings, all related to the act of permuting
(rearranging in an ordered fashion) objects or values. Informally, a permutation of a set of values
is an arrangement of those values into a particular order.
It is often convenient to represent group elements as "words" in a few symbols, having certain
relations.
The problem of describing all groups of order n for a positive integer n by giving one presentation
by generators and relations for each isomorphism type of group of order n was initiated by Cayley
[6] in 1878. He called it the general problem for finite groups.
Then W. Von Dyck (1856-1934), an American mathematician in the 1880s was the one who
systematically invented the notion of ‘presentation’ of a group, where he derived the presentation
of S4 given by 〈x, y : x4 = y2 = (xy)3 = e〉, as an example. This work has led to a branch of group
theory called Combinatorial Group Theory.
Good introductions to group theory are provided in the following [7, 8, 9, 10, 11]. Important
concepts we use in describing the computations in this paper are the following. A finite presentation
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〈A|R〉 consists of a finite set A of generators and a finite set R of relators, which are words in the
generators and their inverses.
If G1 and G2 are groups presented as follows G1 = 〈A1|R1〉 and G2 = 〈A2|R2〉, it is well known
that their direct product has a presentation G1 × G2 = 〈A1,A2|R1,R2, xy = yx(x ∈ A1, y ∈ A2)〉. An
immediate consequence of this is that G1 ×G2 is finitely generated if and only if both G1 and G2 are
finitely generated, and is finitely presented if and only if both G1 and G2 are finitely presented.
Thus the study of the structure of groups via their generators and relators have appeared in several
literatures. In [12], the authors in their study of endomorphisms of groups of order 36, presented
the 14 pairwise non-isomorphic groups of order 36 using their presentations.
Our research deals with identification of certain kind of subset of the symmetry group such that
each element of this subset, which of course are permutations, preserves parity of the integers (i.e.
even integer are mapped to even integer and odd integer are mapped to odd integer) and then
characterize this subset by group presentation. Thus, in this work we were able to prove that this
subset as derived turns out to be a permutation group of the given symmetric group. This subset
is denoted by Bn.
In the section of main result we give some characterizations of this subset, Bn and that Bn is
isomorphic to an existing group.
Section two gives some preliminary notions, while in section three we presented the main result
of the paper.
Finally, in section four we give some description and construction of a general way of deriving this
permutation group for some finite positive integer n.
The aim of this research is to study certain collection of permutations of the symmetric group
which turns out to be a subgroup of the symmetric group and isomorphic to existing group.

2 Preliminary

We give some basic definitions and results for the benefit of all.

Definition 1. [9] A permutation of a set A is simply a bijection from A to itself.

Definition 2. [13] The family of all the permutations of a set X, denoted by SX , is called the symmetric
group on X. When X = {1, 2, . . . ,n}, SX is usually denoted by Sn, and it is called the symmetric group on n
letters.

Definition 3. A transposition is a permutation which exchanges any two element and keeps all others fixed.

Definition 4. [14] Let π ∈ Sn, so that π is a permutation of the set {1, 2, ...,n}. The support of π is defined
to be the set of all i such that π(i) , i, in symbols supp(π). Now let r be an integer satisfying 1 ≤ r ≤ n. Then
π is called an r-cycle if supp(π) = {i1, i2, ..., ir}, with distinct i j , where π(i1) = i2, π(i2) = i3, . . . , π(ir−1) = ir
and π(ir) = i1. So πmoves the integers i1, i2, . . . , ir anticlockwise around a circle, but fixes all other integers:
often π is written in the form π = (i1i2 · · · ir)(ir+1) · · · (in) where the presence of a 1-cycle ( j) means that
π( j) = j.

Definition 5. [14] Permutations π, τ ∈ Sn are called disjoint if their supports are disjoint, i.e., they do not
both move the same element.

Definition 6. The group of symmetries of a regular polygon of n sides is called dihedral group of degree n,
denoted D2n. It is generated by two elements r (rotation) and s (reflection) satisfying the relations

rn = 1, s2 = 1, and srs = r−1. (2.1)

Definition 7. [15] Let (G, ◦) be a group and a ∈ G. If there exists a positive integer n such that an = e,
then the smallest such positive integer is called the order of a. If no such positive integer n exists, then we
say that a is of infinite order.
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Definition 8. [9] A subset S of elements of a group G with the property that every element of G can be
written as a (finite) product of elements of S and their inverses is called a set of generators of G. We shall
indicate this notationally by writing G = 〈S〉 and say G is generated by S or S generates G.

Definition 9. [15] Let (G, ∗) and (G1, ∗1) be groups and φ a mapping from G into G1. Then φ is called a
homomorphism of G into G1 if for all a, b ∈ G,

φ(a ∗ b) = φ(a) ∗1 φ(b).

Thus φ is said to be an isomorphism if φ is bijective. In this case, we write G ' G1 and say that G and G1
are isomorphic.

Theorem 1. (Cayley′sTheorem)[11]. Every group is isomorphic to a group of permutations.

Theorem 2. [15]. Let D2n be the dihedral group of degree n. Then the following assertions hold.
(i ) Every element of D2n is of the form ris j , 0 ≤ i < n, 0 ≤ j < 2.
(ii ) D2n has exactly 2n elements, i.e., o(D2n) = 2n.
(iii ) D2n is a noncommutative group.

Theorem 3. Let G be generated by elements a and b where an = 1 for some n ≥ 3, b2 = 1, and bab−1 = a−1.
Then there is a subjective homomorphism D2n → G and if G has order 2n, then this homomorphism is an
isomorphism.

Theorem 4. [9] Let π, λ ∈ Sn such that π and λ are disjoint. Then π ◦ λ = λ ◦ π, i.e., π and λ commute.

Theorem 5. [16] The order of any permutation σ is the least common multiple of the length of its disjoint
cycles.

Proposition 1. [13] Let G be a finite group. Let H and K be subgroups of G, then

o(HK) =
o(H)o(K)
o(H∩K) ,

where HK = {hk : h ∈ H, k ∈ K}.

Proposition 2. [13] If G is a group containing normal subgroups H and K with H∩K = {1} and HK = G,
then G � H × K.

3 Main Results

Remark 1. The fact that a permutation α on a nonempty set X is usually written as α : X → X, even
though in general the nature of the set X is not of much importance. But since we consider X to be finite
and countable then X can be put in a 1-1 correspondence with a subset of the natural numbers (counting
numbers). Therefore, our notion of preserving parity of counting numbers is not out of place.

Definition 10. The set Bn ⊂ Sn is the set whose elements are permutations that maps even integer to even
integer and odd integer to odd integer.

Proposition 3. Let Sn be the symmetric group on X = {1, 2, 3, . . . ,n}. Then Bn is a subgroup of Sn.

Proof. Let α, β ∈ Bn. We show that Bn is closed under the composition operation. We look at three
cases:
Case I: Suppose α and β fix every even integer. Then since α and β move at least one odd integer,
it follows that for x an odd number in X, there exists an odd integer say y in X such that β(x) = y.
Thus
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αβ(x) = α(β(x)) = α(y),

which is also an odd integer. Thus αβ ∈ Bn.
Case II: Suppose α and β fix every odd integer and move at least one even integer. The argument
follows from Case I.
Case III. We can assume WLOG that α moves at least one even integer and β moves at least one
odd integer. Then for an odd integer i, we have that

αβ(i) = α(β(i)) = α( j) = j

for some odd integer j, where β(i) = j. Now suppose i is an even integer, then

αβ(i) = α(β(i)) = α(i) = k

for some even integer k, where α(i) = k. Hence αβ ∈ Bn. Next, let α ∈ Bn and α−1 be any given
permutation on X. Then for x, y ∈ X such that

α(x) = y and α−1(y) = x .

Clearly, α−1
∈ Bn, since if x is an odd integer then y must also be an odd integer where α is one to

one. Similar argument holds for when x is an even integer. Hence since α is one to one and onto it
follows that

I(y) = y = α(x) = α(α−1(y)) = αα−1(y) = (αα−1)(y)

and

I(x) = x = α−1(y) = α−1(α(x)) = α−1α(x) = (α−1α)(x)

Where I is the identity permutation. Thus

α−1α = I = αα−1.

Hence α−1 is the inverse of α. Associativity follows immediately. Since if every element is fixed,
then even integer is mapped to even integer while odd integer is mapped to odd integer. Hence
I ∈ Bn. So we have shown that Bn is a group and therefore a subgroup of Sn. �

Proposition 4. If n = 4 or 5, then the maximum order of the elements in Bn is equal to o(Bn)/2.

Corollary 1. If n 6 5, the Bn � D2×o(Bn)/2.

We present a characterization for n = 5.
B5 = {α0 = (1), α1 = (13), α2 = (15), α3 = (35), α4 = (24), β1 = (135), β2 = (153), τ1 = (13)(24), τ2 =
(15)(24), τ3 = (35)(24), σ1 = (135)(24), σ2 = (153)(24)}.

Proposition 5. Given the group B5. Then B5 can be generated by two elements subject to the following
relations

β2 = 1, α6 = 1 and αβ = βα−1

for α, β ∈ B5.
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Proof. First we show that B5 contains an element of order 2. Let β ∈ B5 such that β fixes all odd
integer, clearly β is of order 2. Now let β = β1 ◦β2 for β1, β2 ∈ B5, for which β1 fixes all even numbers
and one odd number, and β2 fixes all odd numbers. Clearly, β = β1◦β2 is the composition of disjoint
permutations, β1 and β2 and by Theorem 5, β is of order 2. Since B5 is a group then β ∈ B5. Next,
if β ∈ B5 fixes all even numbers and fixes one odd number in B5, certainly β is of order 2. Hence
there exists an element of order 2 in B5. Next we show that B5 contains an element of order 6. Let
α1, α2 ∈ B5 where α1 fixes all even numbers and α2 fixes all odd numbers inB5. Clearly, α = α1 ◦α2
is the composition of disjoint permutations α1 and α2. Then again by Theorem 5, α is of order 6
and since B5 is a group then α ∈ B5. Hence there exists an element of order 6 in B5. Therefore,
there exist permutations α and β in B5 such that β2 = 1, and α6 = 1. Hence we have the following
distinct permutations; α1, α2, α3, α4, α5, α6 = 1. Let

β , αi, ∀i ∈ {1, 2, 3, 4, 5, 6}. (3.1)

From equation (3.1) it must be that β is a cycle of odd numbers. This follows from the fact that αi

for i = 3 is a 2-cycle of even numbers which must be the cycle (24). Thus if αi is a transposition
disjoint from β then by Theorem 5

o(αiβ) = 2.

Implying that

αiβ = β−1α−i = βα−i
⇒ αiβ = βα−i.

Next, let αi be a composition of disjoint cycles. Then since α is a composition of a 3-cycle of odd
integer and a 2-cycle of even numbers. It follows that any power of α that is a composition of
disjoint cycles can only be a 3-cycles of odd numbers and 2-cycles of even numbers. Hence if

αi = α1α2.

Then by associative property it follows that

αiβ = (α1α2)β = α1(α2β). (3.2)

So from (3.2) if α2 is the 3-cycle of odd numbers then α2β is a 2-cycle of odd numbers. Thus by
Theorem 5

o(α1(α2β)) = 2,

and so

(α1α2)β = ((α1α2)β)−1.

Hence

αiβ = (αiβ)−1 = β−1α−i = βα−i
⇒ αiβ = βα−i.

Now for the case where αi is a 3-cycle, then it must be a cycle of odd numbers. Thus αiβ is a 2-cycle
and so

o(αiβ) = 2.

Hence

αiβ = βα−i.

Therefore we have shown that the relation
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αiβ = βα−i.

holds in B5. In particular for i = 1

αβ = βα−1.

Now for α, β ∈ B5 we show that α and β generates B5 such that α6 = 1 and β2 = 1. Therefore,
from our argument above we have that αi, i ∈ {1, 2, . . . , 6} are distinct elements. Thus

βαi , βα j, for 0 ≤ i ≤ 5,

with i , j so

B5 = {α0, α1, α2, α3, α4, α5, βα0, βα1, βα2, βα3, βα4, βα5
}.

Therefore B5 = 〈α, β〉.
�

Clearly, from above we have that B5 is not commutative. For example the elements α1, τ3 ∈ B5 do
not commute with themselves;
α1τ3 = (13)((35)(24)) = (135)(24) = σ1
and
τ3α1 = ((35)(24))(13) = (153)(24) = σ2.
Hence, let α = σ2 and β = α3 therefore B5 = 〈σ2, α3〉. Where

〈σ2〉 = {(1), (153)(24), (135), (24), (153), (135)(24)}.

and

〈α3〉 = {(1), (35)}.

Therefore,

〈σ2〉〈α3〉 = {(1), (153)(24), (135), (24), (153), (135)(24), (35),
(13)(24), (15), (24)(35), (13), (15)(24)} = B5.

Next we show that σ2α3 = α3σ−1
2

σ2α3 = ((153)(24))(13) = τ2 and α3(σ2)−1 = (13)((153)(24))−1 = τ2.

Hence the relation, σ2α3 = α3σ−1
2 exists between the generators.

From the above results and computations it follows that B5 is a group and of course a subgroup of
S5 which is generated by two elements σ2 and α3 satisfying the relation

σ6
2 = α0, α2

3 = α0, σ2α3 = α3σ−1
2 .

where α0 is the identity permutation.
Hence, by Cayley’s Theorem and Corollary 3 we assert the existence of an isomorphic copy of the
dihedral group D12 in the symmetric group S5. Therefore the following corollary.

Corollary 2. The subgroup B5 of the symmetric group S5 is isomorphic the dihedral group D12.

Therefore, the group B5 is give by the presentation

B5 = 〈α, β | β2 = α6 = 1, βα = α−1β〉.
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where β = (13) and α = (135)(24).
Below we give the Cayley’s table for the group B5.

◦ α0 α3 α4 α2 α1 β1 β2 τ3 τ1 τ2 σ1 σ2

α0 α0 α3 α4 α2 α1 β1 β2 τ3 τ1 τ2 σ1 σ2
α3 α3 α0 τ3 β1 β2 α2 α1 α4 σ2 σ1 τ2 τ1
α4 α4 τ3 α0 τ2 τ1 σ1 σ2 α3 α1 α2 β1 β2
α2 α2 β2 τ2 α0 β1 α1 α3 σ2 σ1 α4 τ1 τ3
α1 α1 β1 τ1 β2 α0 α3 α2 σ1 α4 σ2 τ3 τ2
β1 β1 α1 σ1 α3 α2 β2 α0 τ1 τ2 τ3 σ2 α4
β2 β2 α2 σ2 α1 α3 α0 β1 τ2 τ3 τ4 α1 σ1
τ3 τ3 α4 α3 σ1 σ2 τ2 τ1 α0 β2 β1 α2 α1
τ1 τ1 σ1 α1 σ2 α4 τ3 τ2 β1 α0 β2 α3 α2
τ2 τ2 σ2 α2 α4 σ1 τ1 τ3 β2 β1 α0 α1 α3
σ1 σ1 τ1 β1 τ3 τ2 σ2 α4 α1 α2 α3 β2 α0
σ2 σ2 τ2 β2 τ1 τ3 α4 σ1 α2 α3 α1 α0 β1

Figure 1: Cayley’s Table for B5
Next we present a characterization for n = 6.
The set B6 contains the following elements:
(1), (13), (15), (35), (24), (26), (46), (13)(24), (13)(26), (13)(46),
(15)(24), (15)(26), (15)(46), (35)(24), (35)(26), (35)(46), (135), (153),
(246), (264), (135)(24), (135)(26), (135)(46), (153)(24), (153)(26),
(153)(46), (246)(13), (246)(15), (246)(35), (264)(13), (264)(15),
(264)(35), (135)(246), (135)(264), (153)(246), (153)(264).

Clearly, B6 is not isomorphic to any dihedral group. The obvious reason for this is because in B6,
there does not exist any element (permutation) of order half the order of B6. Therefore the group
B6, can not be generated by two elements, α, β subject to the relations,

αn = 1 , β2 = 1 , αβ = βα−1

B6 is of order 36, but clearly by Theorem 5 the maximum order of elements in B6 is 6 which is less
than 18.

We claim that the group B6 is given by the presentation G = 〈a, b, c, d| a2 = b2 = c3 = d3 = 1, da =
ad−1, cb = bc−1, ab = ba, ac = ca, bd = db, cd = dc〉. Proving this we set a 7→ (13), b 7→ (24), c 7→
(246), d 7→ (135). Since every relations satisfied by {a, b, c, d} are satisfied by {(13), (24), (246), (135)},
clearly we have a (unique) homomorphism ϕ : G→ B6. Hence G is a homomorphic image of B6.
Therefore, we need show that ϕ is injective.

Proposition 6. Let H be a subgroup of B6. If H is an isomorphic copy of D6 in B6 such that each of the
generators of H are not permutations of disjoint cycles in B6, then H is a normal subgroup in B6.

Proof. Suppose H ≤ B6 and H � D6. Let H = 〈a, b〉, then H = {aibk : 0 6 i 6 1, 0 6 k 6 2}. Suppose
α ∈ H, then α = aibk for some i and k. For a nontrivial β ∈ B6, we must show that βαβ−1

∈ H.
Case I : Assume β ∈ H then β = a jbl for some 0 6 j 6 1, 0 6 l 6 2. It follows that

βαβ−1 = (a jbl)(aibk)(a jbl)−1 = (a jbl)(aibk)(b−la j)

= (a jbl)(aibkb−l)a j = (a jbl)(aibk−l)a j = a j(blb−(k−l))aia j

= a jbl−(k−l)ai+ j = a jai+ jb−(l−(k−l)) = a(i+2 j)b(k−2l)

= ambn,

where m ≡ i + 2 j (mod 2) and n ≡ k − 2l (mod 3).
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The formulation above holds since every element of H has the unique representation, aibk, 0 6 i 6
1, 0 6 k 6 2 and any product of two elements in this form can be reduced to this form, where all
exponents are reduced accordingly. Thus βαβ−1

∈ H.
Case II : Assume β < H, it suffices to prove that for α ∈ H, βαβ−1 = aibk

∈ H for some 0 6 i 6 1, 0 6
k 6 2, for α = aibk. Since the generators a and b are not products of disjoint cycles then we consider
first, the case were β and α are disjoint permutations, then it follows that

βαβ−1 = β(aibk)β−1 = ββ−1(aibk) = (aibk).

Thus βαβ−1
∈ H.

Next we consider the case were α and β are not disjoint. Therefore, the permutation, β must
be product of disjoint cycles of order 3 or 6. If β should be otherwise (i.e. a 2-cycle or 3-cycle
permutation), then it must be that β is disjoint from α or an element of H, a contradiction.
Thus, let β = β1β2, where β1 and β2 are disjoint permutations. Since α and β are not disjoint
permutations it follow that either α and β1 or α and β2 are not disjoint. WLOG we assume α and
β1 are not disjoint.

βαβ−1 = (β1β2)−1α(β1β2) = β−1
1 β
−1
2 αβ1β2

= β−1
2 β2β

−1
1 αβ1 = β−1

1 αβ1.

Therefore, by definition of H, it follows that β−1
1 αβ1 ∈ H since β−1

1 αβ1 must either be a 2-cycle or a
3-cycle permutation. Hence β−1αβ ∈ H. This completes the prove. �

The condition in Proposition 6, that the generators of H are not permutations of disjoint cycles in
B6, is very essential. For example the subgroup K = {(1), (13)(24), (15)(26), (35)(46),
(135)(246), (153)(264)} generated by {(13)(24), (135)(246)} ( permutations of which each is a product
of disjoint cycles) is isomorphic to D6 but not normal in B6. For (35)(24) < K, then
((35)(24))(13)(24)((35)(24))−1 = (15)(24) < K.

Corollary 3. The group B6 contains isomorphic copies of the dihedral group D6 which are normal in B6.

Therefore, from Proposition 6 above, the subgroups
G1 = {(1), (13), (15), (35), (135), (153)} and
G2 = {(1), (24), (26), (46), (246), (264)} of B6 generated by the sets {(13), (135)} and {(24), (246)}
respectively are subject to the following relations {(13)2 = (135)3 = ((13)(135))2 = 1} and {(24)2 =
(246)3 = ((24)(246))2 = 1} respectively. We have that o(G1) = 6 and o(G2) = 6, and clearly
G1 ∩ G2 = (1).

Thus, by Proposition 1 it follows that o(G1G2) = 36 and by Proposition 6 we have that G1 and G2
are isomorphic to D6 and clearly are normal in B6.
Hence, by Proposition 2, G1G2 � G1 × G2, hence o(G1 × G2) = 36. Therefore, since G1 and G2 are
isomorphic to D6 then,

D6 = 〈a, d | a2 = d3 = 1, da = ad−1
〉 � G1, for a 7→ (13), d 7→ (135)

and

D6 = 〈b, c | b2 = c3 = 1, cb = bc−1
〉 � G2, for b 7→ (24), c 7→ (246)

Thus,
D6 × D6 = 〈a, b, c, d | a2 = b2 = c3 = d3 = 1, da = ad−1, cb = bc−1, ab = ba, ac = ca, bd = db, cd =
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dc〉 � G1 × G2 = G.

Hence we have that ϕ is injective. Therefore, B6 � D6 ×D6.

Next we present a characterization for n = 7.
The set B7 contains the following elements:
(1), (13), (15), (17), (35), (37), (57), (24), (26), (46), (13)(24),
(13)(26), (13)(46), (15)(24), (15)(26), (15)(46), (17)(24), (17)(26),
(17)(46), (35)(24), (35)(26), (35)(46), (37)(24), (37)(26), (37)(46),
(57)(24), (57)(26), (57)(46), (13)(57), (15)(37), (17)(35), (13)(57)(24),
(13)(57)(26), (13)(57)(46), (15)(37)(24), (15)(37)(26), (15)(37)(46),
(17)(35)(24), (17)(35)(26), (17)(35)(46), (135), (153), (137), (173),
(157), (175), (357), (375), (246), (264), (135)(24), (135)(26),
(135)(46), (153)(24), (153)(26), (153)(46), (137)(24), (137)(26),
(137)(46), (173)(24), (173)(26), (173)(46), (157)(24), (157)(26),
(157)(46), (175)(24), (175)(26), (175)(46), (357)(24), (357)(26),
(357)(46), (375)(24), (375)(26), (375)(46), (246)(13), (246)(15),
(246)(17), (246)(35), (246)(37), (246)(57), (264)(13), (264)(15),
(264)(17), (264)(35), (264)(37), (264)(57), (135)(246),
(135)(264), (153)(246), (153)(264). (137)(246), (137)(264),
(173)(246), (173)(264), (157)(246), (157)(264), (175)(246),
(175)(264), (357)(246), (357)(264) (375)(246), (375)(264),
(13)(57)(246), (13)(57)(264), (15)(37)(246), (15)(37)(264),
(17)(35)(246), (17)(35)(264), (1357), (1573), (1735), (1537),
(1375), (1753), (1357)(24), (1357)(26), (1357)(46), (1375)(24),
(1375)(26), (1375)(46), (1537)(24), (1537)(26), (1537)(46),
(1573)(24), (1573)(26), (1573)(46), (1735)(24), (1735)(26),
(1735)(46), (1753)(24), (1753)(26), (1753)(46), (1357)(246),
(1357)(264), (1375)(246), (1375)(264), (1537)(246), (1537)(264),
(1573)(246), (1573)(264), (1735)(246), (1735)(264),
(1753)(246), (1753)(264).
For the symmetric group S7, B7 has 144 elements and the maximum order of elements in B7 is
12 < 72 and so B7 is not isomorphic to any dihedral group.

We claim that the group B7 is given by the presentation H = 〈a, b, c, d | a2 = b2 = c3 = d4 = (ad)3 =
1, ab = ba, cb = bc−1, ac = ca, bd = db, cd = dc〉. Proving this we set a 7→ (13), b 7→ (24), c 7→
(246), d 7→ (1357). Since every relations satisfied by {a, b, c, d} are satisfied by {(13), (24), (246), (1357)},
clearly we have a (unique) homomorphism φ : H → B7. Hence H is a homomorphic image of B7.
Next we show that φ is injective.

Corollary 4. The groupB7 contains isomorphic copies of the symmetric groups S4 and S3 which are normal
in B7.

Therefore, from Corollary 4 above we have that B7 contains subgroups;
H1 = {(1), (13), (15), (17), (35), (37), (57), (13)(57), (15)(37),
(17)(35), (135), (137), (153), (157), (173), (175), (357), (375), (1357),
(1375), (1537), (1573), (1735), (1753), }
and
H2 = {(1), (24), (26), (46), (246), (264)},
which are generated by the sets {(13), (1357)} and {(24), (246)} respectively. Clearly, these generators
are subject to the following relations {(13)2 = (1357)4 = ((13)(1357))3 = 1} and {(24)2 = (246)3 =
1, (24)(246) = (246)−1(24)} respectively. It follows then that o(H1) = 24 and o(H2) = 6. Thus,
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H1 ∩H2 = (1).
Thus by Proposition 1 it follows that o(H1H2) = 144 and by Corollary 4 we have that H1 and H2 are
isomorphic to S4 and S3 respectively. Clearly they are normal in B7.
Hence, by Proposition 2, H1H2 � H1×H2, hence o(H1×H2) = 144. Therefore, since H1 is isomorphic
to S4 and H2 is isomorphic to S3 then,

S4 = 〈a, d | a2 = d4 = (ad)3 = 1〉 � H1, for a 7→ (13), d 7→ (1357)

and

S3 = 〈b, c | b2 = c3 = 1, cb = bc−1
〉 � H2, for b 7→ (24), c 7→ (246)

Thus,
S4 × S3 = 〈a, b, c, d | a2 = b2 = c3 = d4 = (ad)3 = 1, ab = ba, cb = bc−1, ac = ca, bd = db, cd = dc〉 �
H1 ×H2 = H.

Hence we have shown that φ is injective. Therefore, B7 � S4 × S3.

Next we present a characterization for n = 8 and n = 9.
For the symmetric groups S8 and S9,B8 andB9 have 576 and 2880 elements respectively. Of course
they are not isomorphic to any dihedral group.

Corollary 5. The group B8 contains isomorphic copies of the symmetric group S4 which are normal in B8.

The subgroups: H1 = {(1), (13), (15), (17), (35), (37), (57), (13)(57),
(15)(37), (17)(35), (135), (137), (153), (157), (173), (175), (357),
(375), (1357), (1375), (1537), (1573), (1735), (1753), } and
H2 = {(1), (24), (26), (28), (46), (48), (24)(68), (26)(48), (28)(46), (246),
(248), (264), (268), (284), (286), (468), (486), (2468), (2486), (2648),
(2684), (2846), (2864)}, of B8 generated by the sets {(13), (1357)} and
{(24), (2468)}, respectively and subject to the following relations {(13)2 = (1357)4 = ((13)(1357))3 = 1}
and {(24)2 = (2468)4 = (24)(2468)3 = 1} respectively are normal in B8 . Clearly, o(H1) = o(H2) = 24
and H1 ∩H2 = (1).
Thus by Proposition 1 it follows that o(H1H2) = 576. By Corollary 5 we have that H1 and H2 are
both isomorphic to S4.

Therefore, we have that;

S4 = 〈a, d | a2 = d4 = (ad)3 = 1〉 � H1, for a 7→ (13), d 7→ (1357)

and

S4 = 〈b, c | b2 = c4 = (bc)3 = 1〉 � H2, for b 7→ (24), c 7→ (2468)

Thus,
S5 × S4 = 〈a, b, c, d | a2 = b2 = c4 = d4 = (ad)3 = (bc)3 = 1, ab = ba, ac = ca, bd = db, cd = dc〉 �
H1 ×H2.
Clearly, H1H2 = B8. Therefore, by Proposition 2, we have that H1H2 � H1 ×H2.

Hence, B8 � S4 × S4.

Corollary 6. The groupB9 contains isomorphic copies of the symmetric groups S4 and S5 which are normal
in B9.
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Let H1 and H2 subgroups be subgroups ofB9 generated by the sets {(13), (13579)} and {(24), (2468)},
respectively and subject to the following relations
{(13)2 = (13579)5 = ((13)(13579))4 = ((13579)(13)(13579)−2(13)
(13579))2 = 1} and {(24)2 = (2468)4 = (24)(2468)3 = 1} respectively.
Thus by Proposition 1 it follows that o(H1H2) = 2880. By Corollary 6 we have that H1 is isomorphic
to S5 and H2 is isomorphic to S4.

Therefore, we have that;

S5 = 〈a, d | a2 = d5 = (ad)4 = (dad−2ad)2 = 1〉 � H1, for a 7→ (13), d 7→ (13579)

and

S4 = 〈b, c | b2 = c4 = (bc)3 = 1〉 � H2, for b 7→ (24), c 7→ (2468)

Thus,
S5 × S4 = 〈a, b, c, d | a2 = b2 = c4 = d5 = (ad)4 = (bc)3 = (dad−2ad)2 = 1, ab = ba, ac = ca, bd =
db, cd = dc〉 � H1 ×H2.
Clearly, H1H2 = B9. Therefore, by Proposition 2, we have that H1H2 � H1 ×H2.

Hence, B9 � S5 × S4.

From our constructions above, where S3 � D6 and D12 � D6×C2, for C2 � S2, we have the following
result.

Proposition 7. For the group Bn, if n is even, then Bn � Sn/2 × Sn/2 and if n is odd, then Bn �
S(n+1)/2 × S(n−1)/2.

4 Discussion

In this section we present some generalizations, which will be useful and considered as a starting
point for further research in this direction. We present some combinatoric and set theoretic notions
enabling us to deal with these structures easily.
In the previous section we were able to give some characterization of Bn, where we obtained Bn
by collecting the permutations on the set X = {1, 2, 3, 4, 5, . . . ,n} which maps even number to even
number and odd number to odd number. But in some sense we could see that this is a partition
of the set X into even numbers and odd numbers. Then we obtain the symmetric groups arising
from each of the partitions and after which the product of these symmetric groups is taken i.e.
SASB = {ab : a ∈ A, b ∈ B}. Clearly this contains the identity element. This product turns out to be
the permutation group Bn of the symmetric group, Sn on the given nonempty set. Therefore given
a set X = {a1, a2, . . . , an}, X can be partitioned into two disjoint subset such that

X = A ∪ B

Where subset A is the set containing the elements indexed with the even numbers and subset B
the set containing the elements indexed with odd numbers. Therefore, we have the following two
cases in obtaining the elements of the subset A and subset B for a given n.
Case 1: For n an odd positive integer;

A = {a2, a4, . . . , an−1} and B = {a1, a3, . . . , an}

Thus o(A) = (n − 1)/2 and o(B) = (n + 1)/2.
Case II: if n is an even integer;

A = {a2, a4, . . . , an} and B = {a1, a3, . . . , an−1}
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Thus o(A) = o(B) = n/2
Therefore, the collection of all the permutations on each of the subset is the corresponding
symmetric group, donated by SA and SB for the subsets A and B respectively. Clearly,

SA ∩ SB = (a1) (The identity permutation).

Hence, since SA and SB are disjoint up to the identity permutation and by our product, we have
that,

o(SASB) = ((n + 1)/2)! × ((n − 1)/2)!, for n an odd number,

and

o(SASB) = ((n/2)!)2, for n an even number.

For example, if n = 5 clearly, o(A) = (5 − 1)/2 = 2 and o(B) = (5 + 1)/2 = 3 and the order of SASB is
12. That is, in cycle form
SASB = {(a1), (a3a5), (a1a5), (a1a3), (a1a5a3), (a1a3a5), (a2a4), (a2a4)(a3a5),
(a2a4)(a1a5), (a2a4)(a1a3), (a2a4)(a1a5a3), (a2a4)(a1a3a5)}
where SA = {(a1), (a2a4)} and SB = {(a1), (a3a5), (a1a5), (a1a3), (a1a5a3),
(a1a3a5)}. Clearly, SASB is equivalent to B5 as presented above. Should ai, i ∈ {1, 2, . . . , 5} be replace
by the set {1, 2, . . . , 5} then SASB is equal to B5. Therefore in replacing the set {a1, . . . , an} with the
set {1, 2, . . . ,n}, Bn can be represented as product of the two symmetric groups obtained from the
partition of the set {1, 2, . . . ,n} into two subsets of even and odd numbers (i.e., disjoint subsets)
respectively.

5 Conclusion

In this paper we studied a particular class of permutation on a given finite set. Our study considered
permutations that map even integer to even integer and likewise odd integer to odd integer. It
was established that this collection of permutations, Bn is a permutation group. In particular, it
was observe that this group, Bn is isomorphic to S(n+1)/2 × S(n−1)/2 if n is odd and to Sn/2 × Sn/2 if n
is even.
Our next task which is ongoing, is intended to investigate more on the algebraic and combinatoric
properties of this group and then investigating its subclasses using some activation functions[17].
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