New Subclasses of Analytic Functions with Respect to Symmetric and Conjugate Points Defined by Extended Sǎlăgean Derivative Operator

Hamzat J.O. ${ }^{1^{\star}}$ and Adeyemo A. A. ${ }^{2}$

1*. Department of Mathematics, University of Lagos, Nigeria.
2. Department of Mathematics and Statistics, The Oke-Ogun Polytechnic, Saki, Oyo State. * Corresponding author's E-mail : jhamzat@unilag.edu.ng

Article Info

Received: 06 October 2019 Revised: 12 December 2019
Accepted: 13 February 2020 Available online: 24 February 2020

Abstract

In the present paper, the authors study certain subclasses of analytic p-valent functions $f(z)^{\tau}$ defined by $T^{*}(A, B, \omega, \alpha, \lambda, \tau, l)$ and $T^{c}(A, B, \omega, \alpha, \lambda, \tau, l)$ with respect to other points in the open unit disk $D=\{z:|z|<1\}$. Bounds on the first two coefficients $\left|a_{p+1}\right|$ and $\left|a_{p+1}\right|$ and their connections with the Fekete-Szego functional $\left|a_{p+2}-\mu a_{p+1}^{2}\right|$ were obtained while several other corollaries follow as simple consequences.

Keywords: Analytic, univalent, starlike, Convex, coefficient inequalities, Fekete-Szego functional. MSC2010: 30C45.

1 Introduction

Let $T(\omega)$ be the class of functions which are analytic and univalent in the open unit disk $D=$ $\{z:|z|<1\}$ and of the form

$$
\begin{equation*}
\rho(z)=(z-\omega)+\sum_{k=1}^{\infty} a_{k}(z-\omega)^{k} \tag{1.1}
\end{equation*}
$$

satisfying the conditions

$$
\rho(0)=0, \quad|\rho(z)|>1, z \in D
$$

Also, let $S(\omega)$ denote the class of functions h which are analytic and univalent in the open unit disk D and normalized with $h(\omega)=0$ and $h^{\prime}(\omega)-1=0$ such that

$$
\begin{equation*}
h(z)=(z-\omega)+\sum_{k=2}^{\infty} a_{k}(z-\omega)^{k} . \tag{1.2}
\end{equation*}
$$

http://ijmao.unilag.edu.ng/article/view/453

IJMAO
where ω is an arbitrary fixed point in D.
It is noted here that several authors have studied the subclasses ω-starlike and ω-convex of analytic functions $h(z)$ and several interesting results were obtained.
The aforementioned subclasses were defined respectively, as

$$
S T(\omega)=S^{*}(\omega)=\left\{h(z) \in S(\omega): \Re\left\{\frac{(z-\omega) h^{\prime}(z)}{h(z)}\right\}\right\}>0, \quad z \in D
$$

and

$$
C V(\omega)=S^{c}(\omega)=\left\{h(z) \in S(\omega): \Re\left\{1+\frac{(z-\omega) h^{\prime \prime}(z)}{h(z)}\right\}\right\}>0, \quad z \in D
$$

where ω is an arbitrary fixed point in D (see Acu and Owa [1], Kanas and Ronning [2], Oladipo [3] just to mention but few).
However, Wald [4] established that if $p(\omega) \subset p($ class of Carathoedory functions) and $p(z)$ is given by

$$
\begin{equation*}
p(z)=1+\sum_{k=1}^{\infty} p_{k}(z-\omega)^{k} \tag{1.3}
\end{equation*}
$$

then,

$$
\left|p_{k}\right| \leq \frac{2}{(1+d)(1-d)^{k}}, \quad k \geq 1 \text { and }|\omega|=d
$$

(see $[1,3,5,6]$). Also, we note that if A and B are arbitrary fixed integers and $-1 \leq B<A \leq 1$, then we have

$$
\begin{equation*}
\left|p_{k}\right| \leq \frac{A-B}{(1+d)(1-d)^{k}}, \quad k \geq 1 \text { and }|\omega|=d \tag{1.4}
\end{equation*}
$$

(See also [7]).
Now, let $S_{p}(\omega)$ be the class of p -valent functions $\mathrm{f}(\mathrm{z})$ such that

$$
\begin{equation*}
f(z)=(z-\omega)^{p}+\sum_{k=1}^{\infty} a_{p+k}(z-\omega)^{p+k}, \quad p, k \in N \tag{1.5}
\end{equation*}
$$

Suppose that for real $\tau(\tau>0)$, we write

$$
\begin{equation*}
f(z)^{\tau}=\left[(z-\omega)^{p}+\sum_{k=1}^{\infty} a_{p+k}(z-\omega)^{p+k}\right]^{\tau} \tag{1.6}
\end{equation*}
$$

Then from (1.6), we have that

$$
\begin{aligned}
f(z)^{\tau} & =\left[(z-\omega)^{p}+a_{p+1}(z-\omega)^{p+1}+a_{p+2}(z-\omega)^{p+2}+a_{p+3}(z-\omega)^{p+3}+\ldots\right]^{\tau} \\
& =(z-\omega)^{\tau p}\left[1+a_{p+1}(z-\omega)+a_{p+2}(z-\omega)^{2}+a_{p+3}(z-\omega)^{3}+\ldots\right]^{\tau}
\end{aligned}
$$

Further expansion gives

$$
\begin{aligned}
& f(z)^{\tau}=(z-\omega)^{\tau p}\left[1+\tau\left[a_{p+1}(z-\omega)+a_{p+2}(z-\omega)^{2}+a_{p+3}(z-\omega)^{3}+\ldots\right]\right. \\
&+\frac{\tau(\tau-1)}{2!}\left[a_{p+1}(z-\omega)+a_{p+2}(z-\omega)^{2} a_{p+3}(z-\omega)^{3}+\ldots\right]^{2}
\end{aligned}
$$

IJMAO

$$
\left.+\frac{\tau(\tau-1)(\tau-2)}{3!}\left[a_{p+1}(z-\omega)+a_{p+2}(z-\omega)^{2}+a_{p+3}(z-\omega)^{3}+\ldots\right]^{3}+\ldots\right]
$$

This later yield

$$
\begin{equation*}
=(z-\omega)^{\tau p}\left[1+\sum_{t=1}^{\infty} \tau_{t}\left(a_{p+1}(z-\omega)+a_{p+2}(z-\omega)^{2}+a_{p+3}(z-\omega)^{3}+\ldots\right)^{t}\right] \tag{1.7}
\end{equation*}
$$

where

$$
\tau_{1}=\tau, \tau_{2}=\frac{\tau(\tau-1)}{2!}, \tau_{3}=\frac{\tau(\tau-1)(\tau-2)}{3!}, \ldots
$$

Hence,

$$
\begin{equation*}
f(z)^{\tau}=(z-\omega)^{\tau p}+\sum_{k=1}^{\infty} c_{p+k}(\tau)(z-\omega)^{\tau p+k} \tag{1.8}
\end{equation*}
$$

where

$$
c_{p+1}=\tau_{1} a_{p+1}, \quad c_{p+2}=\tau_{1} a_{p+2}+\tau_{2} a_{p+1}^{2}, \quad c_{p+3}=\tau_{1} a_{p+3}+2 \tau_{2} a_{p+1} a_{p+2}+\tau_{3} a_{p+1}^{3}, \quad \ldots
$$

(see [8, 9] among others).
Using Aouf et al derivative operator discussed in [10], we write for functions $f(z)^{\tau} \in S_{p}(\omega, \tau)$ as follows:
$I_{\omega, p}^{m}(\lambda, l) f(z)^{\tau}=\left(\frac{1+\lambda(\tau p-1)+l}{1+l}\right)^{m}(z-\omega)^{\tau p}+\sum_{k=1}^{\infty}\left(\frac{1+\lambda(\tau p+k-1)+l}{1+l}\right)^{m} c_{p+k}(\tau)(z-\omega)^{\tau p+k} .(1$.
In view of (1.9), we give the following definitions.

Definition 1.1:

(i) Let $S_{s}^{*}(\omega, \tau)$ denote the subclass of $S_{p}(\omega, \tau)$ consisting of functions (1.8) and satisfying the condition:

$$
\Re\left\{\frac{(z-\omega)\left[I_{\omega, p}^{m}(\lambda, l) f(z)^{\tau}\right]^{\prime}}{I_{\omega, p}^{m}(\lambda, l) f(z)^{\tau}-I_{\omega, p}^{m}(\lambda, l) f(-z)^{\tau}}\right\}>0, z \in D
$$

This class of functions shall be called ω-starlike with respect to symmetric points and ω is an arbitrary fixed point in D.
(ii) Let $S_{c}^{*}(\omega, \tau)$ denote the subclass of $S_{p}(\omega, \tau)$ consisting of functions given by (1.8) and satisfying the condition:

$$
\Re\left\{\frac{(z-\omega)\left[I_{\omega, p}^{m}(\lambda, l) f(z)^{\tau}\right]^{\prime}}{I_{\omega, p}^{m}(\lambda, l) f(z)^{\tau}+\overline{I_{\omega, p}^{m}(\lambda, l) \overline{f(z)^{\tau}}}}\right\}>0, z \in D
$$

This class of functions shall be called ω-starlike with respect to conjugate points.
(iii) Let $S_{s}^{c}(\omega, \tau)$ denote the subclass of $S_{p}(\omega, \tau)$ consisting of functions given by (1.8) and satisfying the condition:

$$
\Re\left\{\frac{\left[(z-\omega)\left[I_{\omega, p}^{m}(\lambda, l) f(z)^{\tau}\right]^{\prime}\right]^{\prime}}{\left[I_{\omega, p}^{m}(\lambda, l) f(z)^{\tau}-I_{\omega, p}^{m}(\lambda, l) f(-z)^{\tau}\right]^{\prime}}\right\}>0, z \in D
$$

This class is called ω-convex with respect to symmetric points and ω is an arbitrary fixed point in D.

IJMAO
(iv) Let $S_{c}^{c}(\omega, \tau)$ denote the subclass of $S_{p}(\omega, \tau)$ consisting of functions given by (1.8) and satisfying the condition:

$$
\Re\left\{\frac{\left[(z-\omega)\left[I_{\omega, p}^{m}(\lambda, l) f(z)^{\tau}\right]^{\prime}\right]^{\prime}}{\left[I_{\omega, p}^{m}(\lambda, l) f(z)^{\tau}+\overline{I_{\omega, p}^{m}(\lambda, l) \overline{f(z)^{\tau}}}\right]^{\prime}}\right\}>0, z \in D
$$

This class is called ω-convex with respect to conjugate points.
The above subclasses of analytic functions can also be defined in terms of subordination as follow:

Definition 1.2:

(i) Let $S_{s}^{*}(A, B, \omega, \lambda, \tau, l)$ denote the subclass of $S_{p}(\omega, \tau)$ consisting of functions given by (1.8) and satisfying the condition:

$$
\frac{2(z-\omega)\left[I_{\omega, p}^{m}(\lambda, l) f(z)^{\tau}\right]^{\prime}}{I_{\omega, p}^{m}(\lambda, l) f(z)^{\tau}-I_{\omega, p}^{m}(\lambda, l) f(-z)^{\tau}} \prec \frac{1+A(z-\omega)}{1+B(z-\omega)}, \quad-1 \leq B<A \leq 1, z \in D
$$

and ω is an arbitrary point in D.
(ii) Let $S_{c}^{*}(A, B, \omega, \lambda, \tau, l)$ denote the subclass of $S_{p}(\omega, \tau)$ consisting of functions given by (1.8) and satisfying the condition:

$$
\frac{2(z-\omega)\left[I_{\omega, p}^{m}(\lambda, l) f(z)^{\tau}\right]^{\prime}}{I_{\omega, p}^{m}(\lambda, l) f(z)^{\tau}+\overline{I_{\omega, p}^{m}(\lambda, l) \overline{f(z)^{\tau}}}} \prec \frac{1+A(z-\omega)}{1+B(z-\omega)}, \quad-1 \leq B<A \leq 1, z \in D
$$

and ω is an arbitrary fixed point in D.
(iii) Let $S_{s}^{c}(A, B, \omega, \lambda, \tau, l)$ denote the subclass of $S_{p}(\omega, \tau)$ consisting of functions given by (1.8) and satisfying the condition:

$$
\frac{\left[(z-\omega)\left[I_{\omega, p}^{m}(\lambda, l) f(z)^{\tau}\right]^{\prime}\right]^{\prime}}{\left[I_{\omega, p}^{m}(\lambda, l) f(z)^{\tau}-I_{\omega, p}^{m}(\lambda, l) f(-z)^{\tau}\right]^{\prime}} \prec \frac{1+A(z-\omega)}{1+B(z-\omega)},-1 \leq B<A \leq 1, z \in D
$$

and ω is an arbitrary fixed point in D.
(iv) Let $S_{c}^{c}(A, B, \omega, \lambda, \tau, l)$ denote the subclass of $S_{p}(\omega, \tau)$ consisting of functions given by (1.8) and satisfying the condition:
and ω is an arbitrary fixed point in D.
Also the authors wish to introduce respectively, the classes $T^{*}(A, B, \alpha, \omega, \lambda, \tau, l)$ and $T^{c}(A, B, \alpha, \omega, \lambda, \tau, l)$ which consist of analytic function $f(z)^{\tau}$ of the form (1.8) and satisfying

$$
\begin{gathered}
\frac{2(z-\omega)\left[I_{\omega, p}^{m}(\lambda, l) f(z)^{\tau}\right]^{\prime}+2 \alpha(z-\omega)^{2}\left[I_{\omega, p}^{m}(\lambda, l) f(z)^{\tau}\right]^{\prime \prime}}{(1-\alpha)\left[I_{\omega, p}^{m}(\lambda, l) f(z)^{\tau}-I_{\omega, p}^{m}(\lambda, l) f(-z)^{\tau}\right]+\alpha(z-\omega)\left[I_{\omega, p}^{m}(\lambda, l) f(z)^{\tau}-I_{\omega, p}^{m}(\lambda, l) f(-z)^{\tau}\right]^{\prime}} \prec \frac{1+A(z-\omega)}{1+B(z-\omega)}, \\
-1 \leq B<A \leq 1, z \in D
\end{gathered}
$$

and

$$
\frac{2(z-\omega)\left[I_{\omega, p}^{m}(\lambda, l) f(z)^{\tau}\right]^{\prime}+2 \alpha(z-\omega)^{2}\left[I_{\omega, p}^{m}(\lambda, l) f(z)^{\tau}\right]^{\prime \prime}}{(1-\alpha)\left[I_{\omega, p}^{m}(\lambda, l) f(z)^{\tau}+\overline{\left.I_{\omega, p}^{m}(\lambda, l) \overline{f(z)^{\tau}}\right]+\alpha(z-\omega)\left[I_{\omega, p}^{m}(\lambda, l) f(z)^{\tau}+\overline{\left.I_{\omega, p}^{m}(\lambda, l) \overline{f(z)^{\tau}}\right]^{\prime}}\right.} \prec \frac{1+A(z-\omega)}{1+B(z-\omega)}, ., ~, ~\right.}
$$

IJMAO

$$
-1 \leq B<A \leq 1, z \in D
$$

where ω is an arbitrary fixed point in D (see $[6,11]$). With various choices of α, τ and ω, these classes of functions could give rise to those classes earlier defined.
By the definition of subordination, it follows that $u \in T^{*}(A, B, \alpha, \omega, \lambda, \tau, l)$ if and only if

$$
\begin{gather*}
\frac{2(z-\omega)\left[I_{\omega, p}^{m}(\lambda, l) f(z)^{\tau}\right]^{\prime}+2 \alpha(z-\omega)^{2}\left[I_{\omega, p}^{m}(\lambda, l) f(z)^{\tau}\right]^{\prime \prime}}{(1-\alpha)\left[I_{\omega, p}^{m}(\lambda, l) f(z)^{\tau}-I_{\omega, p}^{m}(\lambda, l) f(-z)^{\tau}\right]+\alpha(z-\omega)\left[I_{\omega, p}^{m}(\lambda, l) f(z)^{\tau}-I_{\omega, p}^{m}(\lambda, l) f(-z)^{\tau}\right]^{\prime}}=\frac{1+A h(\omega(z))}{1+B h(\omega(z))} \\
=p(z), \quad z, h \in D \tag{1.10}
\end{gather*}
$$

Also, $u \in T^{c}(A, B, \alpha, \omega, \lambda, \tau, l)$ if and only if

$$
\begin{align*}
\frac{2(z-\omega)\left[I_{\omega, p}^{m}(\lambda, l) f(z)^{\tau}\right]^{\prime}}{}+2 \alpha(z-\omega)^{2}\left[I_{\omega, p}^{m}(\lambda, l) f(z)^{\tau}\right]^{\prime \prime} \\
(1-\alpha)\left[I_{\omega, p}^{m}(\lambda, l) f(z)^{\tau}+\overline{I_{\omega, p}^{m}(\lambda, l) \overline{f(z)}}\right]+\alpha(z-\omega)\left[I_{\omega, p}^{m}(\lambda, l) f(z)^{\tau}+\overline{\left.I_{\omega, p}^{m}(\lambda, l) \overline{f(z)^{\tau}}\right]^{\prime}}=\frac{1+A h(\omega(z))}{1+B h(\omega(z))}\right. \tag{1.11}\\
=p(z), \quad z, h \in D
\end{align*}
$$

where

$$
p(z)=1+\sum_{k=1}^{\infty} p_{k}(z-\omega)^{k}
$$

and

$$
\begin{equation*}
|p(z)| \leq \frac{A-B}{(1+d)(1-d)^{k}}, \quad k \geq 1, \quad|\omega|=d \tag{1.12}
\end{equation*}
$$

2 Coefficient Inequalities

Theorem 2.1: Let $f \in T^{*}(A, B, \alpha, \omega, \lambda, \tau, l)$, then for $0 \leq \alpha \leq 1,-1 \leq B<A \leq 1, \lambda \geq 0, l \geq$ $0, \tau, p \in N$ and $m \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$

$$
\begin{gathered}
\left|a_{p+1}\right| \leq \frac{2(A-B)(\tau p) b_{1}}{\delta_{1} \tau_{1} b_{2} \Phi_{0}\left(1-d^{2}\right)}, \\
\left|a_{p+2}\right| \leq \frac{2(\tau p)(A-B) b_{1}\left[\delta_{1} \tau_{1}^{2} b_{2}^{2} \Phi_{0}^{2}\left(\delta_{1}(1+d)+(\tau p) g_{1}(A-B)^{2}\right)-2(\tau p) \delta_{2} \tau_{2} b_{1} b_{3} \Phi_{1}(A-B)^{2}\right]}{\delta_{1}^{2} \delta_{2} \tau_{1}^{3} b_{2}^{2} b_{3} \Phi_{0}^{2} \Phi_{1}\left(1-d^{2}\right)^{2}}
\end{gathered}
$$

and for real μ

$$
\left|a_{p+2}-\mu a_{p+1}^{2}\right|
$$

$\leq \frac{2(\tau p) b_{1}(A-B)\left\{\delta_{1} \tau_{1}^{2} b_{2}^{2} \Phi_{0}^{2}\left(\delta_{1}(1+d)+(\tau p) g_{1}(A-B)\right)-2(\tau p) \delta_{2} \tau_{2} b_{1} b_{2} \Phi_{1}(A-B)\right\}-4 \mu(\tau p)^{2} \delta_{2} \tau_{1} b_{1}^{2} b_{3} \Phi_{1}(A-B)^{2}}{\delta_{1}^{2} \delta_{2} \tau_{1}^{3} b_{2}^{2} b_{3} \Phi_{0}^{2} \Phi_{1}\left(1-d^{2}\right)^{2}}$
where

$$
\begin{gathered}
b_{1}=[1+\alpha(\tau p-1)], b_{2}=[1+\alpha \tau p], b_{3}=[1+\alpha(\tau p+1)], b_{4}=[1+\alpha(\tau p+2)], \ldots \\
g_{1}=\left[1-(-1)^{\tau p+1}\right], g_{2}=\left[1-(-1)^{\tau p+2}\right], g_{3}=\left[1-(-1)^{\tau p+3}\right], \ldots \\
\delta_{1}=\left[2(\tau p+2)-\tau p g_{1}\right], \quad \delta_{2}=\left[2(\tau p+4)-\tau p g_{2}\right], \delta_{3}=\left[3(\tau p)-\tau p g_{3}\right], \ldots
\end{gathered}
$$

IJMAO
and

$$
\Phi_{j}=\left(\frac{1+\lambda(\tau p+j)+l}{1+\lambda(\tau p-1)+l}\right)^{m} \quad j=0,1,2, \ldots
$$

Proof: From (1.3) and (1.10), we have that

$$
\begin{gather*}
1+\sum_{k=1}^{\infty} \frac{(\tau p+k)[1+\alpha(\tau p+k-1)]}{(\tau p)[1+\alpha(\tau p-1)]}\left(\frac{1+\lambda(\tau p+k-1)+l}{1+\alpha(\tau p-1)+l}\right)^{m} c_{p+k}(z-\omega)^{k} \\
\left(1+\sum_{k=1}^{\infty} \frac{\left[1-(-1)^{\tau p+k}\right][1+\alpha(\tau p+k-1)]}{2[1+\alpha(\tau p-1)]}\left(\frac{1+\lambda(\tau p+k-1)+l}{1+\alpha(\tau p-1)+l}\right)^{m} c_{p+k}(z-\omega)^{k}\right) \cdot\left(1+p_{1}(z-\omega)+p_{2}(z-\omega)^{2}+p_{3}(z-\omega)^{3}+\right. \tag{2.1}
\end{gather*}
$$

It is easily verified from (2.1) that

$$
\begin{equation*}
\delta_{1} b_{2} \Phi_{0} c_{p+1}=2(\tau p) b_{1} p_{1} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta_{1} \delta 2 b_{3} \Phi_{1} c_{p+2}=2(\tau p) b_{1} p_{1}\left(\delta_{1} p_{2}+(\tau p) g_{1} p_{1}^{2}\right) \tag{2.3}
\end{equation*}
$$

But we recall that $c_{p+1}=\tau_{1} a_{p+1}$ and $c_{p+2}=\tau_{1} a_{p+2}+\tau_{2} a_{p+1}^{2}$ then

$$
\begin{equation*}
\delta_{1} b_{2} \Phi_{0} \tau_{1} a_{p+1}=2(\tau p) b_{1} p_{1} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta_{1}^{2} \delta_{2} \tau_{1}^{3} b_{2}^{2} b_{3} \Phi_{0}^{2} \Phi_{1} a_{p+2}=2(\tau p) b_{1}\left[\delta_{1} \tau_{1}^{2} b_{2}^{2} \Phi_{0}^{2}\left(\delta_{1} p_{2}+(\tau p) g_{1} p_{1}^{2}\right)-2 \delta_{2} \tau_{2}(\tau p) b_{1} b_{3} \Phi_{1} p_{1}^{2}\right] \tag{2.5}
\end{equation*}
$$

where

$$
\begin{gathered}
b_{1}=[1+\alpha(\tau p-1)], b_{2}=[1+\alpha \tau p], b_{3}=[1+\alpha(\tau p+1)], b_{4}=[1+\alpha(\tau p+2)], \ldots \\
g_{1}=\left[1-(-1)^{\tau p+1}\right], g_{2}=\left[1-(-1)^{\tau p+2}\right], g_{3}=\left[1-(-1)^{\tau p+3}\right], \ldots \\
\delta_{1}=\left[2(\tau p+2)-\tau p g_{1}\right], \quad \delta_{2}=\left[2(\tau p+4)-\tau p g_{2}\right], \delta_{3}=\left[3(\tau p)-\tau p g_{3}\right], \ldots
\end{gathered}
$$

and

$$
\Phi_{j}=\left(\frac{1+\lambda(\tau p+j)+l}{1+\lambda(\tau p-1)+l}\right)^{m} \quad j=0,1,2, \ldots
$$

Using (1.12) in (2.4) and (2.5), then we obtain the required bounds on a_{p+1} and a_{p+2}. Now appealing to (2.4) and (2.5), we can write that for real μ

$$
\begin{equation*}
a_{p+2}-\mu a_{p+1}^{2}=\frac{2(\tau p) b_{1}\left[\delta_{1} \tau_{1}^{2} b_{2}^{2} \Phi_{0}^{2}\left(\delta_{1} p_{2}+(\tau p) g_{1} p_{1}^{2}\right)-2 \delta_{2} \tau_{2}(\tau p) b_{1} b_{3} \Phi_{1} p_{1}^{2}\right]}{\delta_{1}^{2} \delta_{2} \tau_{1}^{3} b_{2}^{2} b_{3} \Phi_{0}^{2} \Phi_{1}}-\mu \frac{4(\tau p)^{2} b_{1}^{2} p_{1}^{2}}{\delta_{1}^{2} b_{2}^{2} \Phi_{0}^{2}} \tag{2.6}
\end{equation*}
$$

Applying (1.12) in (2.6) we obtain the desired bound on the Fekete-Szego functional $\left|a_{p+2}-\mu a_{p+1}^{2}\right|$ and this completes the proof of Theorem 2.1.
Now suppose that $p=1$ in Theorem 2.1, then we obtain the following corollary.
Corollary 2.2: Let $f \in T^{*}(A, B, \alpha, d, \lambda, 1, l)$ then for $0 \leq \alpha \leq 1, \quad-1 \leq B<A \leq 1, \lambda \geq 0, \quad l \geq 0$ and $m \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$.

$$
\left|a_{2}\right| \leq \frac{(A-B)}{2\left(1-d^{2}\right)(1+\alpha)}\left(\frac{1+l}{1+\lambda+l}\right)^{m}
$$

IJMAO

$$
\left|a_{3}\right| \leq \frac{(A-B)(1+d)}{2(1+2 \alpha)\left(1-d^{2}\right)^{2}}\left(\frac{1+l}{1+2 \lambda+l}\right)^{m}
$$

and
$\leq \frac{(A-B)\left[2(1+\alpha)^{2}(1+d)\left(\frac{1+\lambda+l}{1+l}\right)^{2 m}-\mu(A-B)(1+2 \alpha)\left(\frac{1+2 \lambda+l}{1+l}\right)^{m}\right]}{4(1+\alpha)^{2}(1+2 \alpha)\left(1-d^{2}\right)^{2}}\left(\frac{1+l}{1+\lambda+l}\right)^{2 m}\left(\frac{1+l}{1+2 \lambda+l}\right)^{m}$.
Corollary 2.3: Let $f \in T^{*}(A, B, \alpha, d, 1,1,0)$ then for $0 \leq \alpha \leq 1$, and $-1 \leq B<A \leq 1$

$$
\begin{gathered}
\left|a_{2}\right| \leq \frac{2(A-B)}{4\left(1-d^{2}\right)(1+\alpha)}\left(\frac{1}{2}\right)^{m} \\
\left|a_{3}\right| \leq \frac{(A-B)(1+d)}{2(1+2 \alpha)\left(1-d^{2}\right)^{2}}\left(\frac{1}{3}\right)^{m}
\end{gathered}
$$

and

$$
\leq \frac{\left|a_{3}-\mu a_{2}^{2}\right|}{}\left[\begin{array}{c}
(A-B)\left[2(1+\alpha)^{2}(1+d)(2)^{2 m}-\mu(A-B)(1+2 \alpha)(3)^{m}\right] \\
4(1+\alpha)^{2}(1+2 \alpha)\left(1-d^{2}\right)^{2} \\
\left.\frac{1}{2}\right)^{2 m}\left(\frac{1}{3}\right)^{m}
\end{array}\right.
$$

Corollary 2.4: Let $f \in T^{*}(A, B, \alpha, d, 1,1,0)$ then for $0 \leq \alpha \leq 1,-1 \leq B<A \leq 1$ and $m=1$

$$
\begin{aligned}
& \left|a_{2}\right| \leq \frac{(A-B)}{4\left(1-d^{2}\right)(1+\alpha)} \\
& \left|a_{3}\right| \leq \frac{(A-B)(1+d)}{6(1+2 \alpha)\left(1-d^{2}\right)^{2}}
\end{aligned}
$$

and

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{(A-B)\left[8(1+\alpha)^{2}(1+d)-3 \mu(A-B)(1+2 \alpha)\right]}{48(1+\alpha)^{2}(1+2 \alpha)\left(1-d^{2}\right)^{2}}
$$

Suppose that $m=p=1$ in Theorem 2.1, then we obtain the following corollary.
Corollary 2.5: Let $f \in T^{*}(A, B, 0,0,1,1,0)$ then for $-1 \leq B<A \leq 1$

$$
\begin{aligned}
& \left|a_{2}\right| \leq \frac{(A-B)}{4} \\
& \left|a_{3}\right| \leq \frac{(A-B)}{6}
\end{aligned}
$$

and

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{(A-B)[8-3 \mu(A-B)]}{48}
$$

Suppose that $m=p=1$ in Theorem 2.1, then we obtain the following corollary.
Corollary 2.6: Let $f \in T^{*}(A, B, 1,0,1,1,0)$ then for $-1 \leq B<A \leq 1$

$$
\begin{aligned}
& \left|a_{2}\right| \leq \frac{(A-B)}{8} \\
& \left|a_{3}\right| \leq \frac{(A-B)}{18}
\end{aligned}
$$

IJMAO
and

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{(A-B)[32-9 \mu(A-B)]}{3.4 .48}
$$

Suppose that $m=p=1$ in Theorem 2.1, then we obtain the following corollary.
Corollary 2.7: Let $f \in T^{*}(1,-1,0,0,1,1,0)$. then

$$
\begin{aligned}
& \left|a_{2}\right| \leq \frac{1}{2}, \\
& \left|a_{3}\right| \leq \frac{1}{3}
\end{aligned}
$$

and

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{[4-3 \mu]}{12} .
$$

Suppose that $m=p=1$ in Theorem 2.1, then we obtain the following corollary.
Corollary 2.8: Let $f \in T^{*}(1,-1,1,0,1,1,0)$. then

$$
\begin{aligned}
& \left|a_{2}\right| \leq \frac{1}{4}, \\
& \left|a_{3}\right| \leq \frac{1}{9}
\end{aligned}
$$

and

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{[16-9 \mu]}{144}
$$

Suppose that $p=1$ and $m=0$ in Theorem 2.1, then we obtain the following corollary.
Corollary 2.9: Let $f \in T^{*}(A, B, \alpha, d, \lambda, 1, l)$ then for $0 \leq \alpha \leq 1, \quad-1 \leq B<A \leq 1, \lambda \geq 0$, and $l \geq 0$

$$
\begin{aligned}
& \left|a_{2}\right| \leq \frac{2(A-B)}{4\left(1-d^{2}\right)(1+\alpha)}, \\
& \left|a_{3}\right| \leq \frac{(A-B)(1+d)}{2(1+2 \alpha)\left(1-d^{2}\right)^{2}}
\end{aligned}
$$

and

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{(A-B)\left[2(1+\alpha)^{2}(1+d)-\mu(A-B)(1+2 \alpha)\right]}{4(1+\alpha)^{2}(1+2 \alpha)\left(1-d^{2}\right)^{2}} .
$$

Corollary 2.10: Let $f \in T^{*}(A, B, \alpha, 0, \lambda, 1, l)$ then for $0 \leq \alpha \leq 1, \quad-1 \leq B<A \leq 1, \lambda \geq 0$, $l \geq 0$ and $m=0$

$$
\begin{aligned}
& \left|a_{2}\right| \leq \frac{(A-B)}{2(1+\alpha)}, \\
& \left|a_{3}\right| \leq \frac{(A-B)}{2(1+2 \alpha)}
\end{aligned}
$$

and

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{(A-B)\left[2(1+\alpha)^{2}-\mu(A-B)(1+2 \alpha)\right]}{4(1+\alpha)^{2}(1+2 \alpha)}
$$

Corollary 2.11: Let $f \in T^{*}(1,-1, \alpha, 0, \lambda, 1, l)$ then for $0 \leq \alpha \leq 1$ and $m=0$

$$
\begin{aligned}
& \left|a_{2}\right| \leq \frac{1}{(1+\alpha)}, \\
& \left|a_{3}\right| \leq \frac{1}{(1+2 \alpha)}
\end{aligned}
$$

and

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{\left[(1+\alpha)^{2}-\mu(1+2 \alpha)\right]}{(1+\alpha)^{2}(1+2 \alpha)} .
$$

Corollary 2.12: Let $f \in T^{*}(1,-1,0,0, \lambda, 1, l)$ then for $0 \leq \alpha \leq 1, \quad-1 \leq B<A \leq 1, \lambda \geq 0$, $l \geq 0$ and $m=0$

$$
\begin{aligned}
\left|a_{2}\right| & \leq 1, \\
\left|a_{3}\right| & \leq 1
\end{aligned}
$$

and

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq|1-\mu| .
$$

Theorem 2.13: Let $f \in T^{c}(A, B, \alpha, \omega, \lambda, \tau, l)$, then for $0 \leq \alpha \leq 1,-1 \leq B<A \leq 1, \lambda \geq 0, l \geq$ $0, \tau, p \in N$ and $m \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$

$$
\begin{gathered}
\left|a_{p+1}\right| \leq \frac{(A-B)(\tau p) b_{1}}{\tau_{1} b_{2} \Phi_{0}\left(1-d^{2}\right)}, \\
\left|a_{p+2}\right| \leq \frac{(\tau p)(A-B) b_{1}\left[\tau_{1}^{2} b_{2}^{2} \Phi_{0}^{2}((1+d)+(\tau p)(A-B))-2(A-B)(\tau p) \tau_{2} b_{1} b_{3} \Phi_{1}\right]}{\tau_{1}^{3} b_{2}^{2} b_{3} \Phi_{0}^{2} \Phi_{1}\left(1-d^{2}\right)^{2}}
\end{gathered}
$$

$$
\begin{aligned}
& \text { and for real } \mu \\
& \leq \frac{(\tau p) b_{1}(A-B)\left\{\tau_{1}^{2} b_{2}^{2} \Phi_{0}^{2}((1+d)+(\tau p)(A-B))-2(A-B)(\tau p) \tau_{2} b_{1} b_{3} \Phi_{1}\right\}-2 \mu(\tau p)^{2} \tau_{1} b_{1}^{2} b_{3} \Phi_{1}(A-B)^{2}}{2 \tau_{1}^{3} b_{2}^{2} b_{3} \Phi_{0}^{2} \Phi_{1}\left(1-d^{2}\right)^{2}}
\end{aligned}
$$

where

$$
b_{1}=[1+\alpha(\tau p-1)], b_{2}=[1+\alpha \tau p], b_{3}=[1+\alpha(\tau p+1)], b_{4}=[1+\alpha(\tau p+2)], \ldots
$$

and

$$
\Phi_{j}=\left(\frac{1+\lambda(\tau p+j)+l}{1+\lambda(\tau p-1)+l}\right)^{m} \quad j=0,1,2, \ldots
$$

Proof: From (1.3) and (1.11), we have that

$$
\begin{gather*}
1+\sum_{k=1}^{\infty} \frac{(\tau p+k)[1+\alpha(\tau p+k-1)]}{(\tau p)[1+\alpha(\tau p-1)]}\left(\frac{1+\lambda(\tau p+k-1)+l}{1+\alpha(\tau p-1)+l}\right)^{m} c_{p+k}(z-\omega)^{k} \\
\left(1+\sum_{k=1}^{\infty} \frac{[1+\alpha(\tau p+k-1)]}{[1+\alpha(\tau p-1)]}\left(\frac{1+\lambda(\tau p+k-1)+l}{1+\alpha(\tau p-1)+l}\right)^{m} c_{p+k}(z-\omega)^{k}\right) \cdot\left(1+p_{1}(z-\omega)+p_{2}(z-\omega)^{2}+p_{3}(z-\omega)^{3}+\ldots\right) . \tag{2.7}
\end{gather*}
$$

IJMAO

Equating the like powers of $(z-\omega)$ and $(z-\omega)^{2}$ in (2.7), we obtain

$$
\begin{equation*}
b_{2} \Phi_{0} \tau_{1} a_{p+1}=(\tau p) b_{1} p_{1} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
2 \tau_{1}^{3} b_{2}^{2} b_{3} \Phi_{0}^{2} \Phi_{1} a_{p+2}=(\tau p) b_{1}\left[\tau_{1}^{2} b_{2}^{2} \Phi_{0}^{2}\left(p_{2}+(\tau p) p_{1}^{2}\right)-2 \tau_{2}(\tau p) b_{1} b_{3} \Phi_{1} p_{1}^{2}\right] \tag{2.9}
\end{equation*}
$$

where

$$
b_{1}=[1+\alpha(\tau p-1)], b_{2}=[1+\alpha \tau p], b_{3}=[1+\alpha(\tau p+1)], b_{4}=[1+\alpha(\tau p+2)], \ldots
$$

and

$$
\Phi_{j}=\left(\frac{1+\lambda(\tau p+j)+l}{1+\lambda(\tau p-1)+l}\right)^{m} \quad j=0,1,2, \ldots
$$

Using (1.12) in (2.8) and (2.9), then we obtain the required bounds on a_{p+1} and a_{p+2}. Now appealing to (2.8) and (2.9), and for real μ we have that

$$
\begin{equation*}
a_{p+2}-\mu a_{p+1}^{2}=\frac{(\tau p) b_{1}\left[\tau_{1}^{2} b_{2}^{2} \Phi_{0}^{2}\left(p_{2}+(\tau p) p_{1}^{2}\right)-2 \tau_{2}(\tau p) b_{1} b_{3} \Phi_{1} p_{1}^{2}\right]}{2 \tau_{1}^{3} b_{2}^{2} b_{3} \Phi_{0}^{2} \Phi_{1}}-\mu \frac{(\tau p)^{2} b_{1}^{2} p_{1}^{2}}{b_{2}^{2} \Phi_{0}^{2} \tau_{1}^{2}} \tag{2.10}
\end{equation*}
$$

Applying (1.12) in (2.10) we obtain the desired bound on the Fekete-Szego functional $\left|a_{p+2}-\mu a_{p+1}^{2}\right|$ and this completes the proof of Theorem 2.13.
Now suppose that $p=1$ in Theorem 2.13, then we obtain the following corollary.
Corollary 2.14: Let $f \in T^{c}(A, B, \alpha, d, \lambda, 1, l)$, then for $0 \leq \alpha \leq 1, \lambda \geq 0, \geq 0$ and $m \in N_{0}$

$$
\begin{gathered}
\left|a_{2}\right| \leq \frac{(A-B)}{\left(1-d^{2}\right)(1+\alpha)}\left(\frac{1+l}{1+\lambda+l}\right)^{m} \\
\left|a_{3}\right| \leq \frac{(A-B)[(1+d)+(A-B)]}{2\left(1-d^{2}\right)^{2}(1+2 \alpha)}\left(\frac{1+l}{1+2 \lambda+l}\right)^{m}
\end{gathered}
$$

and for real μ

$$
\leq \frac{\left|a_{3}-\mu a_{2}^{2}\right|}{(A-B)\left[(1+\alpha)^{2}[(1+d)+(A-B)]\left(\frac{1+\lambda+l}{1+l}\right)^{2 m}-2 \mu(A-B)(1+2 \alpha)\left(\frac{1+2 \lambda+l}{1+l}\right)^{m}\right]}\left(\frac{1+l}{1+\lambda+l}\right)^{2 m}\left(\frac{1+l}{1+2 \lambda+l}\right)^{m} .
$$

Corollary 2.15: Let $f \in T^{c}(A, B, \alpha, d, 1,1,0)$, then for $0 \leq \alpha \leq 1$, and $m \in N_{0}$

$$
\begin{gathered}
\left|a_{2}\right| \leq \frac{(A-B)}{2^{m}\left(1-d^{2}\right)(1+\alpha)}, \\
\left|a_{3}\right| \leq \frac{(A-B)[(1+d)+(A-B)]}{2.3^{m}\left(1-d^{2}\right)^{2}(1+2 \alpha)}
\end{gathered}
$$

and for real μ

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{(A-B)\left[(1+\alpha)^{2}[(1+d)+(A-B)] 2^{m}-2 \mu(A-B)(1+2 \alpha) 3^{m}\right]}{2^{2 m+1} 3^{m}\left(1-d^{2}\right)^{2}(1+\alpha)^{2}(1+2 \alpha)}
$$

Corollary 2.16: Let $f \in T^{c}(A, B, \alpha, d, 1,1,0)$, then for $0 \leq \alpha \leq 1$, and $m=1$

$$
\left|a_{2}\right| \leq \frac{(A-B)}{2\left(1-d^{2}\right)(1+\alpha)}
$$

$$
\left|a_{3}\right| \leq \frac{(A-B)[(1+d)+(A-B)]}{6\left(1-d^{2}\right)^{2}(1+2 \alpha)}
$$

and for real μ

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{(A-B)\left[(1+\alpha)^{2}[(1+d)+(A-B)]-3 \mu(A-B)(1+2 \alpha)\right]}{12\left(1-d^{2}\right)^{2}(1+\alpha)^{2}(1+2 \alpha)}
$$

Corollary 2.17: Let $f \in T^{c}(A, B, \alpha, d, 1,1,0)$, then for $0 \leq \alpha \leq 1$, and $m=0$

$$
\begin{gathered}
\left|a_{2}\right| \leq \frac{(A-B)}{\left(1-d^{2}\right)(1+\alpha)}, \\
\left|a_{3}\right| \leq \frac{(A-B)[(1+d)+(A-B)]}{2\left(1-d^{2}\right)^{2}(1+2 \alpha)}
\end{gathered}
$$

and

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{(A-B)\left[(1+\alpha)^{2}[(1+d)+(A-B)]-2 \mu(A-B)(1+2 \alpha)\right]}{2\left(1-d^{2}\right)^{2}(1+\alpha)^{2}(1+2 \alpha)}
$$

Corollary 2.18: Let $f \in T^{c}(A, B, 0,0,1,1,0)$, then for $0 \leq \alpha \leq 1$, and $m=1$

$$
\begin{gathered}
\left|a_{2}\right| \leq \frac{(A-B)}{2} \\
\left|a_{3}\right| \leq \frac{(A-B)[1+A-B]}{4}
\end{gathered}
$$

and

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{(A-B)[1+A-B]-3 \mu(A-B)]}{12}
$$

Corollary 2.19: Let $f \in T^{c}(1,-1,0,0,1,1,0)$, then for $0 \leq \alpha \leq 1$, and $m=0$

$$
\begin{aligned}
& \left|a_{2}\right| \leq 2 \\
& \left|a_{3}\right| \leq 3
\end{aligned}
$$

and

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq|3-4 \mu|
$$

Corollary 2.20: Let $f \in T^{c}(1,-1,0,0,1,1,0)$, then for $0 \leq \alpha \leq 1$, and $m=1$

$$
\begin{aligned}
& \left|a_{2}\right| \leq 1 \\
& \left|a_{3}\right| \leq \frac{3}{2}
\end{aligned}
$$

and

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{2}|1-2 \mu| .
$$

Corollary 2.21: Let $f \in T^{c}(A, B, 1,0,1,1,0)$, then for $0 \leq \alpha \leq 1$, and $m=1$

$$
\left|a_{2}\right| \leq \frac{(A-B)}{4}
$$

$$
\left|a_{3}\right| \leq \frac{(A-B)[1+A-B]}{12}
$$

and

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{(A-B)[4[1+A-B]-9 \mu(A-B)]}{48} .
$$

Corollary 2.22: Let $f \in T^{c}(1,-1,1,0,1,1,0)$, then for $0 \leq \alpha \leq 1$, and $m=1$

$$
\begin{aligned}
& \left|a_{2}\right| \leq \frac{1}{2} \\
& \left|a_{3}\right| \leq \frac{1}{2}
\end{aligned}
$$

and

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{4}|2-3 \mu| .
$$

Corollary 2.23: Let $f \in T^{c}(A, B, 1,0,1,1,0)$, then for $0 \leq \alpha \leq 1$, and $m=0$

$$
\begin{gathered}
\left|a_{2}\right| \leq \frac{(A-B)}{2}, \\
\left|a_{3}\right| \leq \frac{(A-B)[1+A-B]}{6}
\end{gathered}
$$

and

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{(A-B)[4[1+A-B]-6 \mu(A-B)]}{8} .
$$

Corollary 2.24: Let $f \in T^{c}(A, B, 1,0,1,1,0)$, then for $0 \leq \alpha \leq 1$, and $m=0$

$$
\begin{aligned}
\left|a_{2}\right| & \leq 1, \\
\left|a_{3}\right| & \leq 1
\end{aligned}
$$

and

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq 3|1-\mu| .
$$

For relevant results on the classes of analytic functions with respect to other points (see [12, 13, 14]) among others.

References

[1] M. Acu and S.Owa, On some subclasses of univalent functions, J Ineq. Pure and Appl. Math., vol. 6, Issue 3. Article 70(2005), pp.1-14.
[2] S.Kanas, and F.Ronning, Uniformly starlike and convex functions and other related classes of univalent functions, Ann. Univ. Mariae Curie-Sklodowska section A, 53 (1999), pp.95-105.
[3] A. T. Oladipo, On subclasses of analytic and Univalent Functions, Advances in Applied Mathematical Analysis, 4(1)(2009), pp.87-93.
[4] J.K Wald, On starlike functions, Ph.D Thesis, University of Delaware, New Ark, Delaware (1978).

IJMAO
[5] A. T. Oladipo and D. Breaz, On the family of Bazilevic functions, Acta Universitatis Apulensis, 24(2010), 319-330.
[6] R.M. Goel and B.C. Mehok, A subclass of starlike functions with respect to symmetric points, Tamkang J. Math., 13(1), (1982), pp.11-24.
[7] J. O. Hamzat and O. J. Adeleke, A new subclass of p - valent functions defined by Aouf et al. derivative operator, Int. J. Pure and Appl. Math., 101(2015), 33-41.
[8] J. O. Hamzat and M. T. Raji, Bessel functions in the space of λ - pseudo Starlike functions with respect to other pointss associated with modified sigmoid function, Asian J. Math. and Compt. Research. 25(2018), 38-49.
[9] A. T. Oladipo and D. Breaz, A brief study of certain class of Harmonic Functions of Bazilevic Type, ISRN Math. Anal., 2013, Art. ID179856, 11 pages. http://dx.doi.org/10.1155/2013/179856, 2013.
[10] M.K Aouf, A.Shamandy, A.O Mostafa, and S.M Madian, A subclass of M - W starlike functions, Acta Universitatis Apulensis No 21 (2010), pp.135-142.
[11] C. Selvaraj and N. Vasanthi, Subclasses of Analytic Functions with respect to symmetric and Conjugate points, Tamkang J. Math.; 42(1),(2011), pp.87-94.
[12] A. T. Oladipo, New Subclasses of Analytic functions with Respect to Other Points, Int. J. Pure and Applied Math.; 75(1),(2012), pp.1-12.
[13] P. T. Ajai and M. Darus, On coefficient problems of an operator with respect to symmetric point, Fasciculi Mathematici, (2016), 147-155. DOI:10.1515/fascmath-2016-0022.
[14] S. O. Olatunji and A. T. Oladipo, On a subfamilies of analytic and univalent functions with negative coefficient with respect to other points, Bull. Math. Anal. Appl., vol. 3, Issue 2, (2011), 159-166.

