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Abstract
This study investigates the effect of energetic microforces on the plane strain problems of vis-
coplastic bodies. The strain-gradient plasticity theory of the Gurtin-Anand model is considered
and slightly modified to account for an energetic microforce whose energy-conjugate is the di-
vergence of the plastic strain. The modified model, gives rise to a flow rule of viscoplastic bodies
which accounts for two energetic length scales associated with polar and vector microstresses
through quadratic form of the defect energy. It is shown that there are no volumetric changes
accompanied by elastic deformation whenever the energetic length scales are equal.
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1 Introduction
Key concepts such as strain hardening, yield points and failure stresses provide useful information
as to what happens during material failure [1]. Material begins to fail as soon as yielding begins,
so that processes such as size-effects, dislocation etc. during strain hardening are understood from
point view that stresses and free energy are functions of internal variables which account for internal,
irreversible, restructuring of materials during plastic behaviour [2,3].

The inability of the classical plasticity at apprehending size effects has led to the study of strain
gradient plasticity. Studies have revealed that size effects contribute to the strength of materials
[4,5]. For instance, experimental works have shown that the strength of metallic components of
metals undergoing inhomogeneous plastic flow is size dependent [6,7]. This is unaccounted for in the
classical theory of plasticity. Thus to account for size effects, researchers have introduced within the
constitutive theory and force balances, fields that are in themselves explicitly related to the strain
gradient and hence necessitate the need for additional length scales for dimension consistency [8-11].

The strain gradient plasticity theory introduced by Gurtin [12] allows for more than one energetic
material length scales associated with the Burgers tensor or gradient of the plastic strain [13,14]. The
material length scales play crucial role in the weakening and strengthening properties of materials.
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However, no study has been directed towards determining the compressibility properties of materials
based on these intrinsic energetic material length scales.

The purpose of this work is to use a modified form of the Gurin-Anand model [13,15] to determine
the effect of material length scales on the plastic flow of materials under plane strain.

2 The Gurtin-Anand model
The microforce balance for viscoplastic bodies is given as

To = T p − divKp, (2.1)

where To is the deviatoric part of the Cauchy stress T , T p is called the plastic microstress tensor
and Kp is the polar microstress. The force balance (2.1) is obtained by recognizing the energy
conjugates of each of the microstresses and using the principle of virtual power.

The constitutive relations between the force-like variables and their conjugates are given by

T = 2µEeo + κ(trEe)I (2.2)

T p = so

(
dp

do

)m
Ėp

dp
;Kp

dis = l2so

(
dp

do

)m ∇Ėp
dp

, (2.3)

where so is a constant denoting the initial yield strength
The constitutive relations used here, assume the absence of an hardening function used in Gurtin

and Anand [15] so that, the internal stress dimensioned quantity S equals the initial yield strength
so, l is called the dissipative length scale associated with the dissipative part of the polar microstress
Kp
dis, m is the rate sensitivity parameter, do is the initial flow rate and dp is the effective flow rate

defined by

dp =

√
|Ėp|2 + l2|∇Ėp|2. (2.4)

Kp
dis is the dissipative part of the polar microstress Kp. µ and κ are the elastic shear and bulk

modulus respectively, and Ee and Ep are the elastic and plastic strains respectively. The energetic
part Kp

en of the polar microstress Kp is defined in component form as;

(Kp
en)jnq = µL2

[
Epjq,n −

1

2

(
Epjn,q + Epqn,j

)
+

1

3
δjqE

p
rn,r

]
, (2.5)

where L is called energetic length scale associated with energetic part Kp
en of the polar microstress

Kp.
Substituting constitutive relations (2.3) and (2.5) into (2.1), we have the Gurtin-Anand flow

rule given as

To + µL2 (∆Ep − symo (∇divEp)) = so

(
dp

do

)m
Ėp

dp

−l2sodiv

[(
dp

do

)m ∇Ėp
dp

]
. (2.6)

symo(A) is the symmetric deviatoric part of tensor A defined as

symo(A) = sym(A)− 1

3
tr(A)I =

1

2

(
A+AT

)
− 1

3
tr(A)I,

where sym(A) is the symmetric part of tensor A.
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3 Plastic flow rule accounting for an energetic internal micro-
force

The basic rate-like variables in the Gurtin-Anand Model are ~̇u, Ḣe and Ėp. These variables are
not independent of each other because of the kinematic relation given as

∇~u = He + Ep, with trEp = 0, (3.1)

where ~u is the displacement vector of an arbitrary point ~x in the deformed body and He is the
elastic part of the displacement gradient ∇~u. The microforce balance (2.1) of the Gurtin-Anand
model [15] are obtained through the principle of virtual power following the assumptions that

• An elastic macrostress T is energy-conjugate to He

• A plastic microstress T p is energy-conjugate to Ep

• A polar plastic microstress Kp is energy-conjugate to ∇Ep.
These assumptions allow the power expenditure Wint(P ) due to internal agencies over a sub-region
P of the body B be written in the form

Wint(P ) =

∫
P

(
T : Ḣe + T p : Ėp +Kp

...∇Ėp
)
dV. (3.2)

The operations : and
... are the inner products on second-order and third-order tensors respectively.

Suppose there exists an energetic internal microforce ~χ assumed energy-conjugate to the diver-
gence divEp of the plastic strain so that the microforce balance of Gurtin -Anand model takes the
modified form1[13]

To = T p − symo(∇~χ)− divKp (3.3)
with

~χ =
∂ψ

∂divEp
, (3.4)

where ψ is the free energy measured per unit volume. The free energy assumes the form [13]

ψ = µ|Eeo |2 +
1

2
κ|trEe|2 +

1

2
µL2|∇ × Ep|2 +

1

2
µQ2|divEp|2, (3.5)

where Q is the energetic length scale due to the presence of the energetic internal microforce ~χ.
Following from equations (3.4) and (3.5) we have

~χ = µQ2divEp. (3.6)

By substituting equations (2.3), (2.5) and (3.6) in (3.3), we have the flow rule accounting for an
energetic dependence on the internal microforce ~χ given as

To + µ
(
L2∆Ep + (Q2 − L2)symo (∇divEp)

)
= so

(
dp

do

)m
Ėp

dp

−l2sodiv

[(
dp

do

)m ∇Ėp
dp

]
. (3.7)

The microscopic boundary conditions following that of Gurtin and Anand [15] assume the form

Ėp = 0 on Γh and Kp~n+ symo(~χ⊗ ~n) = ~0 on Γf , (3.8)

where ~n is the outward unit normal on the surface Γf . Γh represents part of the boundary Γ that
is micro-hard and Γf represents part of the boundary Γ that is micro-free with Γ = Γh ∪ Γf and
Γh ∩ Γf is a smooth curve.

1This microforce balance is obtained via the principle of virtual power and the use of divergence theorem
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4 Plane strain-gradient formulation of visco-plastic media
Here we shall consider the plane strain-gradient plasticity theory of the modified Gurtin-Anand
model given by (3.7). This will enable us to determine the effect of the energetic internal microforce
on the flow rule of a visco-plastic material. As an aid to finite element implementation, the weak
formulation of the flow rule for the following cases would be derived:

• m = 1

• m ≥ 0 and Q = L.

Let x1−coordinate axis be represented by the x-axis and the x2−axis be represented as y−axis.
Suppose a body undergoes a plane strain so that the displacement vector ~u can be written as

~u = u1(x, y)~e1 + u2(x, y)~e2, (4.1)

where ~e1 and ~e2 are unit vectors parallel to the x and y- axes respectively. The non-vanishing
components of the strain are defined by

E11 =
∂u1

∂x
, E22 =

∂u2

∂y
and E12 =

1

2

(
∂u1

∂y
+
∂u2

∂x

)
. (4.2)

By plastic incompressibility given in (3.1)2 we have

Ep11 + Ep22 = 0. (4.3)

Since the non-vanishing components of the plastic strain are Ep11, E
p
22 and Ep12 then, the components

of the plastic strain can be written as a column matrix in the form

Ep =


Ep11

Ep22

Ep12

 , (4.4)

so that the laplacian of the plastic strain is defined as

∆Ep =



∂2Ep
11

∂x2 +
∂2Ep

11

∂y2

∂2Ep
22

∂x2 +
∂2Ep

22

∂y2

∂2Ep
12

∂x2 +
∂2Ep

12

∂y2

 (4.5)

and the symmetric deviatoric part of gradient of the divergence of the plastic strain is given by

symo(∇divEp) =



1
3

(
2
∂2Ep

11

∂x2 +
∂2Ep

12

∂x∂y −
∂2Ep

22

∂y2

)
1
3

(
2
∂2Ep

22

∂y2 +
∂2Ep

12

∂x∂y −
∂2Ep

11

∂x2

)
1
2

(
∂2Ep

11

∂x∂y +
∂2Ep

12

∂x2 +
∂2Ep

12

∂y2 +
∂2Ep

22

∂x∂y

)


. (4.6)

The components of the macrostress in (2.2) are defined by

T11 = κθ + 2µ

(
Ee11 −

1

3
(Ee11 + Ee22)

)
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so that
T11 =

(
3κ− 2µ

3

)
θ + 2µEe11, (4.7)

where θ = Ee11 + Ee22 = E11 + E22 with E11 and E22 the components of the total strain.
Similarly,

T22 =

(
3κ− 2µ

3

)
θ + 2µEe22, (4.8)

and
T12 = 2µEe12. (4.9)

Recall that under plane strain T33 is in general non-zero, where

T33 =

(
3κ− 2µ

3

)
θ. (4.10)

Let M = 3κ−2µ
3 and N = 3κ+4µ

3 . The components of the macrostress in terms of M and N are
defined by

T11 = N
∂u1

∂x
+M

∂u2

∂y
− 2µEp11. (4.11)

T22 = N
∂u2

∂y
+M

∂u1

∂x
− 2µEp22. (4.12)

T12 = 2µ

(
1

2

(
∂u1

∂y
+
∂u2

∂x

)
− Ep12

)
. (4.13)

and
T33 = M

(
∂u1

∂x
+
∂u2

∂y

)
. (4.14)

Recall that the deviatoric part of the macrostress To is defined by

To = T − 1

3
tr(T )I, (4.15)

where I is the rank-two unit tensor. Clearly

To11 = T11 −
1

3
(T11 + T22 + T33)

To11 =
2

3

(
N
∂u1

∂x
+M

∂u2

∂y
− 2µEp11

)
− 1

3

(
N
∂u2

∂y
+M

∂u1

∂x
− 2µEp22

)
−1

3
M

(
∂u1

∂x
+
∂u2

∂y

)
.

By simplifying it is obvious that

To11 = 2µ

(
2

3

∂u1

∂x
− 1

3

∂u2

∂y
− Ep11

)
. (4.16)

Similarly,

To22 = 2µ

(
2

3

∂u2

∂y
− 1

3

∂u1

∂x
− Ep22

)
, (4.17)

To12 = 2µ

(
1

2

(
∂u1

∂y
+
∂u2

∂x

)
− Ep12

)
. (4.18)
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and
To33 = −2

3
µ

(
∂u1

∂x
+
∂u2

∂y

)
. (4.19)

Without loss of generality and for the purpose of determining the significance of length scale Q,
assume that rate-sensitivity parameter m = 1, then the flow rule (3.7) becomes a linear partial
differential equation given as

To + µ
[
L2∆Ep + (Q2 − L2)symo(∇divEp)

]
=
so
do
Ėp − l2

do
sodiv∇Ėp. (4.20)

For this case of rate-sensitvity parameter the flow rule in component form after substituting (4.16)-
(4.18) in (4.20) is given in component form as follows

0 = 2µEp11 +
so
do
Ėp11 − 2µ

(
2

3

∂u1

∂x
− 1

3

∂u2

∂y

)
− ∂

∂x

(
µ

3
(L2 + 2Q2)

∂Ep11

∂x

)

− ∂

∂x

(
µ

3
(Q2 − L2)

∂Ep12

∂y

)
− ∂

∂y

(
µ

3
(2L2 +Q2)

∂Ep11

∂y

)

− ∂

∂x

(
l2
so
do

∂Ėp11

∂x

)
− ∂

∂y

(
l2
so
do

∂Ėp11

∂y

)
(4.21)

0 = 2µEp22 +
so
do
Ėp22 − 2µ

(
2

3

∂u2

∂y
− 1

3

∂u1

∂x

)
− ∂

∂y

(
µ

3
(L2 + 2Q2)

∂Ep22

∂y

)
− ∂

∂y

(
µ

3
(Q2 − L2)

∂Ep12

∂x

)
− ∂

∂x

(
µ

3
(2L2 +Q2)

∂Ep22

∂x

)

− ∂

∂y

(
l2
so
do

∂Ėp22

∂y

)
− ∂

∂x

(
l2
so
do

∂Ėp22

∂x

)
(4.22)

and
0 = 2µEp12 +

so
do
Ėp12 − µ

(
∂u1

∂y
+
∂u2

∂x

)
− ∂

∂x

(
µ

2
(L2 +Q2)

∂Ep12

∂x

)

− ∂

∂y

(
µ

2
(L2 +Q2)

∂Ep12

∂y

)
− ∂

∂x

(
l2
so
do

∂Ėp12

∂x

)
− ∂

∂y

(
l2
so
do

∂Ėp12

∂y

)
. (4.23)

4.0.1 Effect of internal microforce on the flow rule

The flow rule presented in (4.21)-(4.23) for the special case of Q = L will result to the following
equations

0 = 2µEp11 +
so
do
Ėp11 − 2µ

(
2

3

∂u1

∂x
− 1

3

∂u2

∂y

)
− ∂

∂x

(
µL2 ∂E

p
11

∂x

)

− ∂

∂y

(
µL2 ∂E

p
11

∂y

)
− ∂

∂x

(
l2
so
do

∂Ėp11

∂x

)
− ∂

∂y

(
l2
so
do

∂Ėp11

∂y

)
(4.24)

0 = 2µEp22 +
so
do
Ėp22 − 2µ

(
2

3

∂u2

∂y
− 1

3

∂u1

∂x

)
− ∂

∂y

(
µL2 ∂E

p
22

∂y

)
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− ∂

∂x

(
µL2 ∂E

p
22

∂x

)
− ∂

∂y

(
l2
so
do

∂Ėp22

∂y

)
− ∂

∂x

(
l2
so
do

∂Ėp22

∂x

)
(4.25)

and
0 = 2µEp12 +

so
do
Ėp12 − µ

(
∂u1

∂y
+
∂u2

∂x

)
− ∂

∂x

(
µL2 ∂E

p
12

∂x

)

− ∂

∂y

(
µL2 ∂E

p
12

∂y

)
− ∂

∂x

(
l2
so
do

∂Ėp12

∂x

)
− ∂

∂y

(
l2
so
do

∂Ėp12

∂y

)
. (4.26)

By adding (4.24) and (4.25) with the fact that Ep11 + Ep22 = 0 then(
∂u1

∂x
+
∂u2

∂y

)
= 0. (4.27)

This implies that
tr(E) = 0, (4.28)

where E is the total strain defined by E = Ee + Ep with tr(Ep) = 0, so that we have as a
consequence of Q = L, elastic incompressibility given by

tr(Ee) = 0. (4.29)

Thus (4.24) and (4.25) for fixed k (k = 1, 2) become

0 = 2µEpkk +
so
do
Ėpkk − 2µEekk −

∂

∂x

(
µL2 ∂E

p
kk

∂x

)

− ∂

∂y

(
µL2 ∂E

p
kk

∂y

)
− ∂

∂x

(
l2
so
do

∂Ėpkk
∂x

)
− ∂

∂y

(
l2
so
do

∂Ėpkk
∂y

)
(4.30)

By assuming that for Q = L
Ep11 = 0, Ep22 = 0, Ep12 6= 0 (4.31)

then
Ee11 = 0, Ee22 = 0, Ee12 6= 0. (4.32)

4.1 Weak formulation of the flow rule for m = 1

Let ω1(x, y) and ω2(x, y) and ω3(x, y) be weight functions satisfying the homogeneous boundary
conditions of the flow rule. These weight functions have been chosen so that the force balances are
satisfied for each approximate solution of the flow rule. The weight functions ω1(x, y), ω2(x, y) and
ω3(x, y) are chosen so that the weak formulation of the flow rule (4.21)-(4.23) are

0 =

∫
Ω

(
2µω1E

p
11 + ω1

so
do
Ėp11

)
dxdy −

∫
Ω

2µω1

(
2

3

∂u1

∂x
− 1

3

∂u2

∂y

)
dxdy

+

∫
Ω

[
µ

3
(L2 + 2Q2)

∂ω1

∂x

∂Ep11

∂x
+
µ

3
(Q2 − L2)

∂ω1

∂x

∂Ep12

∂y

]
dxdy

+

∫
Ω

[
µ

3
(2L2 +Q2)

∂ω1

∂y

∂Ep11

∂y
+ l2

so
do

∂ω1

∂x

∂Ėp11

∂x
+ l2

so
do

∂ω1

∂y

∂Ėp11

∂y

]
dxdy
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−
∫

Γ

ω1

[(
µ

3
(L2 + 2Q2)

∂Ep11

∂x
+
µ

3
(Q2 − L2)

∂Ep12

∂y
+ l2

so
do

∂Ėp11

∂x

)
ηx

]
dS

−
∫

Γ

ω1

[(
µ

3
(2L2 +Q2)

∂Ep11

∂y
+ l2

so
do

∂Ėp11

∂y

)
ηy

]
dS. (4.33)

0 =

∫
Ω

(
2µω2E

p
22 + ω2

so
do
Ėp22

)
dxdy −

∫
Ω

2µω2

(
2

3

∂u2

∂y
− 1

3

∂u1

∂x

)
dxdy

+

∫
Ω

[
µ

3
(L2 + 2Q2)

∂ω2

∂y

∂Ep22

∂y
+
µ

3
(Q2 − L2)

∂ω2

∂y

∂Ep12

∂x

]
dxdy

+

∫
Ω

[
µ

3
(2L2 +Q2)

∂ω4

∂x

∂Ep22

∂x
+ l2

so
do

∂ω2

∂y

∂Ėp22

∂y
+ l2

so
do

∂ω2

∂x

∂Ėp22

∂x

]
dxdy

−
∫

Γ

ω2

[(
µ

3
(L2 + 2Q2)

∂Ep22

∂y
+
µ

3
(Q2 − L2)

∂Ep12

∂x
+ l2

so
do

∂Ėp22

∂y

)
ηy

]
dS

−
∫

Γ

ω2

[(
µ

3
(2L2 +Q2)

∂Ep22

∂x
+ l2

so
do

∂Ėp22

∂x

)
ηx

]
dS, (4.34)

and
0 =

∫
Ω

(
2µω3E

p
12 + ω3

so
do
Ėp12

)
dxdy −

∫
Ω

µω3

(
∂u1

∂y
+
∂u2

∂x

)
dxdy

+

∫
Ω

[
µ

2
(L2 +Q2)

∂ω3

∂x

∂Ep12

∂x
+
µ

2
(L2 +Q2)

∂ω3

∂y

∂Ep12

∂y

]
dxdy

+

∫
Ω

[
l2
so
do

∂ω3

∂x

∂Ėp12

∂x
+ l2

so
do

∂ω3

∂y

∂Ėp12

∂y

]
dxdy

−
∫

Γ

ω3

[(
µ

2
(L2 +Q2)

∂Ep12

∂x
+ l2

so
do

∂Ėp12

∂x

)
ηx

]
dS

−
∫

Γ

ω3

[(
µ

2
(L2 +Q2)

∂Ep12

∂y
+ l2

so
do

∂Ėp12

∂y

)
ηy

]
dS. (4.35)

4.2 General Weak formulation of the flow rule for m ≥ 0 and Q = L

Suppose m ≥ 0 and Q = L, the flow rule takes the form

To + µL2∆Ep = soFĖ
p − l2sodiv(F∇Ėp), (4.36)

where F =
(
dp

do

)m
1
dp .

Given that H is a test function satisfying homogeneous boundary condition of the flow rule then
by divergence theorem, the weak formulation of the flow rule is given by

0 =

∫
Ω

[
l2soF∇Ėp

...∇H + µL2∇Ep
...∇H + soFĖ

p : H − To : H

]
dV

−
∫

Γ

[
l2soFH : (∇Ėp~n) +H : (µL2∇Ėp~n)

]
dS, (4.37)
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where ~n is the outward unit normal to the boundary Γ of Ω.
Suppose, under plane strain, Ep11 and Ep22 are neglected, then in component form, the weak

formulation of the flow rule is given by

0 =

∫
Ω

[
2µω4E

p
12 + ω4soFĖ

p
12

]
dxdy −

∫
Ω

2µω4

(
∂u1

∂y
+
∂u2

∂x

)
dxdy

+

∫
Ω

[
l2soF

∂ω4

∂x

∂Ėp12

∂x
+ l2soF

∂ω4

∂y

∂Ėp12

∂y
+ µL2 ∂ω4

∂x

∂Ėp12

∂x
+ µL2 ∂ω4

∂y

∂Ėp12

∂y

]
dxdy

−
∫

Γ

ω4

[(
l2soF

∂Ėp12

∂x

)
ηx +

(
l2soF

∂Ėp12

∂y

)
ηy

]
dS

−
∫

Γ

ω4

[(
µL2 ∂Ė

p
12

∂x

)
ηx +

(
µL2 ∂Ė

p
12

∂y

)
ηy

]
dS, (4.38)

where ηx and ηy are the components of the outward unit normal ~n.

5 Conclusion
The additional length scale Q associated with the divergence of the plastic strain gives rise to elastic
incompressibility whenever the length scales Q and L are equal. Thus elastic incompressibility is
achievable, even in the presence of the energetic length scale L associated with the gradient of the
plastic strain.
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