Fixed point theorems on A_{p}-metric spaces

Adewale, O. K. ${ }^{1^{*}}$, Umudu J. C. ${ }^{2}$ And Mogbademu A. A. ${ }^{3}$
$1^{*}, 3$ Department of Mathematics, University of Lagos, Nigeria.
2. Department of Mathematics, University of Jos, Nigeria.
*Corresponding author: adewalekayode2@yahoo.com

Article Info

Received: 11 February 2020 Revised: 16 April 2020
Accepted: 02 May $2020 \quad$ Available online: 18 May 2020

Abstract

The notion of A_{p}-metric spaces, which generalizes A-metric spaces, S-metric spaces and $S_{p^{-}}$ metric spaces is introduced in this paper. Analogues of some well known fixed point theorems are established and proved in this space with an application to the solution of a nonlinear integral equation. Our results generalize many known results in fixed point theory.

Keywords: A_{p}-metric spaces, A_{p}-Cauchy sequence, A_{p}-convergent and Fixed point. MSC2010:47H10, 54H25.

1 Introduction

Metric space is an important tool in functional analysis, topology and nonlinear analysis. Its topological structure has attracted the attention of many mathematicians partly because of its usefulness in the fixed point theory. In recent years, diverse applications of fixed point theorems have challenged researchers to introduce different generalizations of metric spaces. These generalized spaces include 2-metric spaces, D-metric spaces, D^{*}-metric spaces, G-metric spaces, b-metric spaces, quasimetric spaces, G_{b}-metric spaces, complex valued G_{b}-metric spaces, S-metric spaces, S_{b}-metric spaces, complex valued S_{b}-metric spaces, A-metric spaces, γ-generalized quasi metric spaces and , most recently, S_{p}-metric spaces (see [1] to [16]).

Motivated by these generalizations, we present the notion of A_{p}-metric space which generalizes A-metric spaces, S-metric spaces and S_{p}-metric spaces. Some fixed point theorems are established and proved in this new space.

The following is the definition of S_{p}-metric spaces, a generalization of both S-metric spaces and S_{b}-metric spaces.
Definition 1.1 [1]. Let X be a non-empty set and $\bar{S}: X^{3} \rightarrow \mathbb{R}^{+}$, a function with a strictly increasing continuous function, $\Omega:[0, \infty) \rightarrow[0, \infty)$ such that $\Omega(t) \geq t$ for all $t>0$ and $\Omega(0)=0$, satisfying the following properties:

IJMAO
(i) $\bar{S}(x, y, z)=0 \quad$ if and only if $x=y=z$;
(ii) $\bar{S}(x, y, z) \leq \Omega(\bar{S}(x, x, a)+\bar{S}(y, y, a)+\bar{S}(z, z, a)) \quad \forall a, x, y, z \in X$ (rectangle inequality).

Then (X, \bar{S}) is called an S_{p}-metric space.

Remark 1.2

(i) If $\Omega(z)=z, S_{p}$-metric space reduces to S-metric space.
(ii) If $\Omega(z)=b z, S_{p}$-metric space reduces to S_{b}-metric space.

In [2], Abass et al. introduced the notion of an A-metric space as follows:
Definition 1.3 [2]. A non-empty set X with a function $A: X^{n} \rightarrow[0, \infty)$ satisfying the following properties:
(i) $A\left(\phi_{1}, \phi_{2}, \phi_{3}, \ldots, \phi_{n}\right) \geq 0$;
(ii) $A\left(\phi_{1}, \phi_{2}, \phi_{3}, \ldots, \phi_{n}\right)=0$ if and only if $\phi_{1}=\phi_{2}=\phi_{3}=\ldots=\phi_{n}$;
(iii) For $\phi_{i}, \varrho \in X, i=1,2,3, \ldots, n$,

$$
\begin{aligned}
A\left(\phi_{1}, \phi_{2}, \phi_{3}, \ldots, \phi_{n}\right) & \leq A\left(\phi_{1}, \phi_{1}, \phi_{1}, \ldots,\left(\phi_{1}\right)_{n-1}, \varrho\right) \\
& +A\left(\phi_{2}, \phi_{2}, \phi_{2}, \ldots,\left(\phi_{2}\right)_{n-1}, \varrho\right) \\
& +A\left(\phi_{3}, \phi_{3}, \phi_{3}, \ldots,\left(\phi_{3}\right)_{n-1}, \varrho\right) \\
& +A\left(\phi_{4}, \phi_{4}, \phi_{4}, \ldots,\left(\phi_{4}\right)_{n-1}, \varrho\right) \\
& \cdot \\
& \cdot \\
& \cdot \\
& +A\left(\phi_{n}, \phi_{n}, \phi_{n}, \ldots,\left(\phi_{n}\right)_{n-1}, \varrho\right)
\end{aligned}
$$

is called an A-metric space.

Remark 1.4.

(i) A-metric space is an n-dimensional S-metric space in [2].
(ii) If $n=2, A$-metric space reduces to ordinary metric space in [3].
(iii) If $n=3, A$-metric space reduces to S-metric space in [4].

2 Main results

We introduce the following:
Definition 2.1. For a non-empty set X, let $\omega:[0, \infty) \rightarrow[0, \infty)$ be a strictly increasing continuous function such that $\omega^{-1}(z) \leq z \leq \omega(z)$ and $\omega(0)=0$ for all z. A mapping $A_{p}: X^{n} \rightarrow[0, \infty)$ satisfying the following properties:
(i) $A_{p}\left(\phi_{1}, \phi_{2}, \phi_{3}, \ldots, \phi_{n}\right) \geq 0$;
(ii) $A_{p}\left(\phi_{1}, \phi_{2}, \phi_{3}, \ldots, \phi_{n}\right)=0$ if and only if $\phi_{1}=\phi_{2}=\phi_{3}=\ldots=\phi_{n}$,

IJMAO
(iii) For $\phi_{i}, \varrho \in X, i=1,2,3, \ldots, n$,

$$
\begin{aligned}
A_{p}\left(\phi_{1}, \phi_{2}, \phi_{3}, \ldots, \phi_{n}\right) & \leq \omega\left(A_{p}\left(\phi_{1}, \phi_{1}, \phi_{1}, \ldots,\left(\phi_{1}\right)_{n-1}, \varrho\right)\right. \\
& +A_{p}\left(\phi_{2}, \phi_{2}, \phi_{2}, \ldots,\left(\phi_{2}\right)_{n-1}, \varrho\right) \\
& +A_{p}\left(\phi_{3}, \phi_{3}, \phi_{3}, \ldots,\left(\phi_{3}\right)_{n-1}, \varrho\right) \\
& +A_{p}\left(\phi_{4}, \phi_{4}, \phi_{4}, \ldots,\left(\phi_{4}\right)_{n-1}, \varrho\right) \\
& \cdot \\
& \cdot \\
& \cdot \\
& \left.+A_{p}\left(\phi_{n}, \phi_{n}, \phi_{n}, \ldots,\left(\phi_{n}\right)_{n-1}, \varrho\right)\right)
\end{aligned}
$$

is called an A_{p}-metric and $\left(X, A_{p}\right)$ is a A_{p}-metric space.

Remark 2.2.

(i) A_{p}-metric space is an n-dimensional S_{p}-metric space. Every A-metric space is an A_{p}-metric space when $\omega(z)=z$ but the converse is not true.
(ii) If $n=2$ and $\omega(z)=z, A_{p}$-metric space reduces to an ordinary metric space in [3].
(iii) If $n=2$ and $\omega(z)=b z, A_{p}$-metric space reduces to b-metric space in [5].
(iv) If $n=3$ and $\omega(z)=z, A_{p}$-metric space reduces to S-metric space in [4].
(v) If $n=3, A_{p}$-metric space reduces to S_{p}-metric space in [2].

Example 2.3. Let $X=\mathbb{N} \bigcup\{0\}$ and

$$
\begin{equation*}
A_{p}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=e^{\sum_{i=1}^{n-1}\left|x_{1}-x_{i+1}\right|}-1 \tag{2.1}
\end{equation*}
$$

for all $x_{i} \in X, i=1,2, \ldots, n$ with $\omega(z)=e^{z}-1$. Then $\left(X, A_{p}\right)$ is an A_{p}-metric space.

Verification

(i)

$$
A_{p}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=e^{\sum_{i=1}^{n-1}\left|x_{1}-x_{i+1}\right|}-1 \geq 0
$$

since exponential function is an increasing function.
(ii) If $x_{1}=x_{2}=x_{3}=\ldots=x_{n}$,

$$
\begin{aligned}
A_{p}\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =e^{\sum_{i=1}^{n-1}\left|x_{1}-x_{i+1}\right|}-1 \\
& =e^{\left|x_{1}-x_{2}\right|+\left|x_{1}-x_{3}\right|+\left|x_{1}-x_{4}\right|+\ldots+\left|x_{1}-x_{n}\right|}-1 \\
& =e^{|0|+|0|+|0|+\ldots|0|}-1 \\
& =e^{0}-1=1-1=0
\end{aligned}
$$

Conversely, if

$$
A_{p}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=e^{\sum_{i=1}^{n-1}\left|x_{1}-x_{i+1}\right|}-1=0
$$

then

$$
\ln e^{\sum_{i=1}^{n-1}\left|x_{1}-x_{i+1}\right|}=\ln 1
$$

IJMAO
which implies

$$
\sum_{i=1}^{n-1}\left|x_{1}-x_{i+1}\right|=0
$$

Hence, $x_{1}=x_{i+1} \forall i$.
(iii) Clearly with $\omega(z)=e^{z}-1$,

$$
\begin{aligned}
A_{p}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right) & \leq \omega\left(A_{p}\left(x_{1}, x_{1}, x_{1}, \ldots,\left(x_{1}\right)_{n-1}, \varrho\right)\right. \\
& +A_{p}\left(x_{2}, x_{2}, x_{2}, \ldots,\left(x_{2}\right)_{n-1}, \varrho\right) \\
& +A_{p}\left(x_{3}, x_{3}, x_{3}, \ldots,\left(x_{3}\right)_{n-1}, \varrho\right) \\
& +A_{p}\left(x_{4}, x_{4}, x_{4}, \ldots,\left(x_{4}\right)_{n-1}, \varrho\right) \\
& \cdot \\
& \cdot \\
& \cdot \\
& \left.+A_{p}\left(x_{n}, x_{n}, x_{n}, \ldots,\left(x_{n}\right)_{n-1}, \varrho\right)\right)
\end{aligned}
$$

for $x_{i}, \varrho \in X, i=1,2,3, \ldots, n$.

Remark 2.4.

1. Example 2.3 is an A_{p} metric space but not a metric space because if $n=2$ and $A_{p}=d$, where d is a metric on X, then

$$
\begin{aligned}
d\left(x_{1}, x_{2}\right) & =e^{\left|x_{1}-x_{2}\right|}-1 \\
& >e^{\left|x_{1}-x_{3}\right|}-1+e^{\left|x_{3}-x_{2}\right|}-1
\end{aligned}
$$

for some $x_{1}, x_{2}, x_{3} \in X$. For instance, if $x_{1}=6, x_{2}=16$ and $x_{3}=10$, we obtain:

$$
\begin{aligned}
d(6,16) & =e^{10}-1=22026.5-1=22025.5 \\
& >e^{4}-1+e^{6}-1 \\
& =54.6-1+403.4-1 \\
& =456
\end{aligned}
$$

2. Example 2.3 is not necessarily an S-metric space because if $n=3$ and $A_{p}=S$, then

$$
\begin{aligned}
S\left(x_{1}, x_{2}, x_{3}\right) & =e^{\left|x_{1}-x_{2}\right|+\left|x_{1}-x_{3}\right|}-1 \\
& >e^{\left|x_{1}-x_{4}\right|}-1 \\
& +e^{\left|x_{2}-x_{4}\right|}-1 \\
& +e^{\left|x_{3}-x_{4}\right|}-1
\end{aligned}
$$

for some $x_{1}, x_{2}, x_{3}, x_{4} \in X$. For instance, if $x_{1}=6, x_{2}=9, x_{3}=16$ and $x_{4}=10$, we obtain:

$$
\begin{aligned}
S(6,9,16) & =e^{3+10}-1=e^{13}-1=442412.4 \\
& >e^{4}-1+e^{1}-1+e^{6}-1 \\
& =54.6-1+2.7-1+403.4-1 \\
& =457.7
\end{aligned}
$$

Cls,
IJMAO
3. Example 2.3 is not necessarily an A-metric space because if $A_{p}=A$, as in A-metric space, then

$$
\begin{aligned}
A\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =e^{\left|x_{1}-x_{2}\right|+\left|x_{1}-x_{3}\right|+\ldots+\left|x_{1}-x_{n-1}\right|}-1 \\
& >e^{\left|x_{1}-y\right|}-1 \\
& +e^{\left|x_{2}-y\right|}-1 \\
& +e^{\left|x_{3}-y\right|}-1 \\
& \cdot \\
& \cdot \\
& \cdot \\
& +e^{\left|x_{n}-y\right|}-1
\end{aligned}
$$

for some $x_{i}, y \in X, i=1,2, \ldots, n$.
Lemma 2.5. Let $\left(X, A_{p}\right)$ be an A_{p}-metric space. Then for $u, v, w \in X$ and $n \in \mathbb{N}$,

1. $A_{p}(u, u, u, \ldots, v)=\omega\left(A_{p}(v, v, v, \ldots, u)\right)$.
2. $A_{p}(u, u, u, \ldots, v) \leq \omega\left((n-1) A_{p}(u, u, u, \ldots, t)+A_{p}(v, v, v, \ldots, t)\right)$.

Proof

1.

$$
\begin{aligned}
A_{p}(u, u, u, \ldots, v) & \leq \omega\left(A_{p}(u, u, u, \ldots, u)\right. \\
& +A_{p}(u, u, u, \ldots, u) \\
& +A_{p}(u, u, u, \ldots, u) \\
& +A_{p}(u, u, u, \ldots, u) \\
& \cdot \\
& \cdot \\
& \cdot \\
& \left.+A_{p}(v, v, v, \ldots, v, u)\right) \\
& =\omega\left(A_{p}(v, v, v, \ldots, v, u)\right)
\end{aligned}
$$

Also,

$$
\begin{aligned}
A_{p}(v, v, v, \ldots, u) & \leq \omega\left(A_{p}(v, v, v, \ldots, v)\right. \\
& +A_{p}(v, v, v, \ldots, v) \\
& +A_{p}(v, v, v, \ldots, v) \\
& +A_{p}(v, v, v, \ldots, v) \\
& \cdot \\
& \cdot \\
& \cdot \\
& \left.+A_{p}(u, u, u, \ldots, u, v)\right) \\
& =\omega\left(A_{p}(u, u, u, \ldots, u, v)\right)
\end{aligned}
$$

Therefore, $A_{p}(u, u, u, \ldots, v)=\omega\left(A_{p}(v, v, v, \ldots, u)\right)$.

IJMAO
2.

$$
\begin{aligned}
A_{p}(u, u, u, \ldots, v) & \leq \omega\left(A_{p}(u, u, u, \ldots, t)\right. \\
& +A_{p}(u, u, u, \ldots, t) \\
& +A_{p}(u, u, u, \ldots, t) \\
& \cdot \\
& \cdot \\
& \cdot \\
& \left.+A_{p}(v, v, v, \ldots, t)\right) \\
& =\omega\left((n-1) A_{p}(u, u, u, \ldots, t)+A_{p}(v, v, v, \ldots, t)\right)
\end{aligned}
$$

Definition 2.6. Let $\left(X, A_{p}\right)$ be an A_{p}-metric space. A sequence β_{n} in X is said to be;

1. A_{p}-convergent to a point $\mu \in X$ if for any $\epsilon>0$, there exists a positive integer N_{\circ} such that, for all $n \geq N_{\circ}, A_{p}\left(\beta_{n}, \beta_{n}, \beta_{n}, \ldots, \mu\right)<\epsilon$.
2. A_{p}-Cauchy if for any $\epsilon>0$, there exists a positive integer N_{\circ} such that, for all $n, m \geq N_{\circ}$, $A_{p}\left(\beta_{m}, \beta_{n}, \beta_{n}, \ldots, \beta_{n}\right)<\epsilon$.

Definition 2.7. An A_{p}-metric space is said to be A_{p}-complete if every A_{p}-Cauchy sequence in it is A_{p}-convergent in it.

Theorem 2.8.

Let $\left(X, A_{p}\right)$ be a complete A_{p}-metric space. Suppose that the mapping $T: X \rightarrow X$ satisfies the contraction condition

$$
\begin{equation*}
A_{p}\left(T \xi_{1}, T \xi_{2}, T \xi_{3}, \ldots, T \xi_{n}\right) \leq a A_{p}\left(\xi_{1}, \xi_{2}, \xi_{3}, \ldots, \xi_{n}\right) \forall \xi_{i} \in X, i=1,2,3, \ldots, n \tag{2.2}
\end{equation*}
$$

where $0<a<1$. Then T has a unique fixed point in X.

Proof:

Choose $\xi_{\circ} \in X$ and set $\xi_{n}=T^{n} \xi_{\circ}, n \geq 1$. We have

$$
\begin{aligned}
A_{p}\left(\xi_{n}, \xi_{n+1}, \xi_{n+1}, \xi_{n+1}, \ldots, \xi_{n+1}\right) & =A_{p}\left(T \xi_{n-1}, T \xi_{n}, T \xi_{n}, T \xi_{n}, \ldots, T \xi_{n}\right) \\
& \leq a A_{p}\left(\xi_{n-1}, \xi_{n}, \xi_{n}, \xi_{n}, \ldots, \xi_{n}\right) \\
& \leq a^{2} A_{p}\left(\xi_{n-2}, \xi_{n-1}, \xi_{n-1}, \xi_{n-1}, \ldots, \xi_{n-1}\right) \\
& \cdot \\
& \cdot \\
& \cdot \\
& \leq a^{n} A_{p}\left(\xi_{0}, \xi_{1}, \xi_{1}, \xi_{1}, \ldots, \xi_{1}\right)
\end{aligned}
$$

IJMAO

Thus, for $m<n$,

$$
\left.\left.\begin{array}{rl}
A_{p}\left(\xi_{n}, \xi_{m}, \xi_{m}, \xi_{m}, \ldots, \xi_{m}\right) & \leq \omega\left(A_{p}\left(\xi_{n}, \xi_{n}, \xi_{n}, \ldots, \xi_{n}, \xi_{n+1}\right)\right. \\
& \left.+(n-1) A_{p}\left(\xi_{m}, \xi_{m}, \xi_{m}, \xi_{m}, \ldots, \xi_{m}, \xi_{n+1}\right)\right) \\
& =A_{p}\left(\xi_{n}, \xi_{n+1}, \xi_{n+1}, \xi_{n+1}, \ldots, \xi_{n+1}\right) \\
& +(n-1) A_{p}\left(\xi_{m}, \xi_{n+1}, \xi_{n+1}, \xi_{n+1}, \ldots, \xi_{n+1}\right) \\
\leq & a^{n} A_{p}\left(\xi_{0}, \xi_{1}, \xi_{1}, \xi_{1}, \ldots, \xi_{1}\right) \\
& +\omega\left((n-1)^{2} A_{p}\left(\xi_{n+1}, \xi_{n+1}, \xi_{n+1}, \ldots, \xi_{n+1}, \xi_{n+2}\right)\right. \\
& \left.+(n-1) A_{p}\left(\xi_{m}, \xi_{m}, \xi_{m}, \xi_{m}, \ldots, \xi_{m}, \xi_{n+2}\right)\right) \\
& =a^{n} A_{p}\left(\xi_{0}, \xi_{1}, \xi_{1}, \xi_{1}, \ldots, \xi_{1}\right) \\
& +a^{n+1}(n-1)^{2} A_{p}\left(\xi_{0}, \xi_{1}, \xi_{1}, \xi_{1}, \ldots, \xi_{1}\right) \\
& +(n-1) A_{p}\left(\xi_{m}, \xi_{n+2}, \xi_{n+2}, \xi_{n+2}, \ldots, \xi_{n+2}\right) \\
\leq & a^{n} A_{p}\left(\xi_{0}, \xi_{1}, \xi_{1}, \xi_{1}, \ldots, \xi_{1}\right) \\
& +a^{n+1}(n-1)^{2} A_{p}\left(\xi_{0}, \xi_{1}, \xi_{1}, \xi_{1}, \ldots, \xi_{1}\right) \\
& +a^{n+2}(n-1)^{2} A_{p}\left(\xi_{0}, \xi_{1}, \xi_{1}, \xi_{1}, \ldots, \xi_{1}\right) \\
+ & (n-1) A_{p}\left(\xi_{m}, \xi_{n+3}, \xi_{n+3}, \xi_{n+3}, \ldots, \xi_{n+3}\right) \\
& \cdot \\
& \cdot \\
& \cdot \\
\leq & a^{n} A_{p}\left(\xi_{0}, \xi_{1}, \xi_{1}, \xi_{1}, \ldots, \xi_{1}\right) \\
& +a^{n+1}(n-1)^{2} A_{p}\left(\xi_{0}, \xi_{1}, \xi_{1}, \xi_{1}, \ldots, \xi_{1}\right) \\
& +a^{n+2}(n-1)^{2} A_{p}\left(\xi_{0}, \xi_{1}, \xi_{1}, \xi_{1}, \ldots, \xi_{1}\right) \\
& \cdot \\
& \cdot \\
& + \\
& +a^{m}(n-1)^{2} A_{p}\left(\xi_{0}, \xi_{1}, \xi_{1}, \xi_{1}, \ldots, \xi_{1}\right) \\
& (n-1) A_{p}\left(\xi_{m}, \xi_{m+1}, \xi_{m+1}, \ldots, \xi_{m+1}\right) \\
& {\left[a^{n} \eta\right.} \\
1-a \\
m
\end{array} a^{m}(n-1)\right] A_{p}\left(\xi_{0}, \xi_{1}, \xi_{1}, \ldots, \xi_{1}\right)\right\}
$$

where $\eta=\left(1+a n^{2}-2 a n\right)$.
As $n, m \rightarrow \infty, A_{p}\left(\xi_{n}, \xi_{m}, \xi_{m}, \xi_{m}, \ldots, \xi_{m}\right) \rightarrow 0$.
Therefore, $\left\{\xi_{n}\right\}$ is an A_{p}-Cauchy sequence. By completeness, there exists $\lambda \in X$ such that ξ_{n} is A_{p}-convergent to λ.
Suppose $T \lambda \neq \lambda$,

$$
\begin{equation*}
A_{p}\left(\xi_{n}, T \lambda, T \lambda, \ldots, T \lambda\right) \leq a A_{p}\left(\xi_{n-1}, \lambda, \lambda, \ldots, \lambda\right) \tag{2.3}
\end{equation*}
$$

Taking the limit, we obtain

$$
\begin{equation*}
A_{p}(\lambda, T \lambda, T \lambda, \ldots, T \lambda) \leq 0 \tag{2.4}
\end{equation*}
$$

a contradiction. So, $T \lambda=\lambda$.
Suppose $\lambda_{1} \neq \lambda_{2}$ is such that $T \lambda_{1}=\lambda_{1}$ and $T \lambda_{2}=\lambda_{2}$. Then

$$
\begin{equation*}
A_{p}\left(T \lambda_{1}, T \lambda_{2}, T \lambda_{2}, \ldots, T \lambda_{2}\right) \leq a A_{p}\left(\lambda_{1}, \lambda_{2}, \lambda_{2}, \ldots, \lambda_{2}\right) \tag{2.5}
\end{equation*}
$$

Implying

$$
\begin{equation*}
A_{p}\left(\lambda_{1}, \lambda_{2}, \lambda_{2}, \ldots, \lambda_{2}\right) \leq 0 \tag{2.6}
\end{equation*}
$$

?
IJMAO

International Journal of Mathematical Analysis and
Optimization: Theory and Applications Vol. 2020, No. 1, PP. 657-668

A contradiction. So, $\lambda_{1}=\lambda_{2}$.
This shows the uniqueness of the fixed point.
Remark 2.9. If $A_{p}\left(T \xi_{1}, T \xi_{2}, T \xi_{3}, \ldots, T \xi_{n}\right)$ is set as $d\left(T \xi_{1}, T \xi_{2}\right)$, Theorem 2.8 reduces to well known Banach Contraction Principle in metric spaces.

Theorem 2.10.

Let $\left(X, A_{p}\right)$ be a complete A_{p}-metric space. Suppose that the mapping $T: X \rightarrow X$ satisfies the condition

$$
\begin{aligned}
A_{p}\left(T \xi_{1}, T \xi_{2}, \ldots, T \xi_{n}\right) \leq & a \max \left\{A_{p}\left(\xi_{1}, T \xi_{1}, T \xi_{1}, \ldots, T \xi_{1}\right)\right. \\
& A_{p}\left(\xi_{2}, T \xi_{2}, T \xi_{2}, \ldots, T \xi_{2}\right) \\
& \cdot \\
& \cdot \\
& \cdot \cdot \\
& \left.A_{p}\left(\xi_{n}, T \xi_{n}, T \xi_{n}, \ldots, T \xi_{n}\right)\right\}
\end{aligned}
$$

$\forall \xi_{i} \in X, i=1,2,3, \ldots, n$, where $0<a<1$. Then T has a unique fixed point in X.

Proof:

Choose $\xi_{\circ} \in X$ and set $\xi_{n}=T^{n} \xi_{\circ}, n \geq 1$. We have

$$
\begin{aligned}
A_{p}\left(\xi_{n}, \xi_{n+1}, \xi_{n+1}, \xi_{n+1}, \ldots, \xi_{n+1}\right)= & A_{p}\left(T \xi_{n-1}, T \xi_{n}, T \xi_{n}, T \xi_{n}, \ldots, T \xi_{n}\right) \\
\leq & a \max \left\{A_{p}\left(\xi_{n-1}, \xi_{n}, \xi_{n}, \xi_{n}, \ldots, \xi_{n}\right)\right. \\
& \left.A_{p}\left(\xi_{n}, \xi_{n+1}+\xi_{n+1}+\ldots+\xi_{n+1}\right)\right\}
\end{aligned}
$$

If the maximum is $A_{p}\left(\xi_{n}, \xi_{n+1}+\xi_{n+1}+\ldots+\xi_{n+1}\right)$, then from (2.12) we obtain $A_{p}\left(\xi_{n}, \xi_{n+1}+\xi_{n+1}+\right.$ $\left.\ldots+\xi_{n+1}\right) \leq a A_{p}\left(\xi_{n}, \xi_{n+1}+\xi_{n+1}+\ldots+\xi_{n+1}\right)$ which is a contradiction.
Therefore, the maximum is $A_{p}\left(\xi_{n-1}, \xi_{n}, \xi_{n}, \xi_{n}, \ldots, \xi_{n}\right)$. Hence, we have

$$
\begin{aligned}
A_{p}\left(\xi_{n}, \xi_{n+1}, \xi_{n+1}, \xi_{n+1}, \ldots, \xi_{n+1}\right) & =A_{p}\left(T \xi_{n-1}, T \xi_{n}, T \xi_{n}, T \xi_{n}, \ldots, T \xi_{n}\right) \\
& \leq a A_{p}\left(\xi_{n-1}, \xi_{n}, \xi_{n}, \xi_{n}, \ldots, \xi_{n}\right) \\
& \leq a^{2} A_{p}\left(\xi_{n-2}, \xi_{n-1}, \xi_{n-1}, \xi_{n-1}, \ldots, \xi_{n-1}\right) \\
& \cdot \\
& \cdot \\
& \cdot \\
& \leq a^{n} A_{p}\left(\xi_{0}, \xi_{1}, \xi_{1}, \xi_{1}, \ldots, \xi_{1}\right)
\end{aligned}
$$

IJMAO

Thus, for $m<n$,

$$
\begin{aligned}
A_{p}\left(\xi_{n}, \xi_{m}, \xi_{m}, \xi_{m}, \ldots, \xi_{m}\right) & \leq \omega\left(A_{p}\left(\xi_{n}, \xi_{n}, \xi_{n}, \ldots, \xi_{n}, \xi_{n+1}\right)\right. \\
& \left.+(n-1) A_{p}\left(\xi_{m}, \xi_{m}, \xi_{m}, \xi_{m}, \ldots, \xi_{m}, \xi_{n+1}\right)\right) \\
& =A_{p}\left(\xi_{n}, \xi_{n+1}, \xi_{n+1}, \xi_{n+1}, \ldots, \xi_{n+1}\right) \\
& +(n-1) A_{p}\left(\xi_{m}, \xi_{n+1}, \xi_{n+1}, \xi_{n+1}, \ldots, \xi_{n+1}\right) \\
& \leq a^{n} A_{p}\left(\xi_{0}, \xi_{1}, \xi_{1}, \xi_{1}, \ldots, \xi_{1}\right) \\
& +\omega\left((n-1)^{2} A_{p}\left(\xi_{n+1}, \xi_{n+1}, \xi_{n+1}, \ldots, \xi_{n+1}, \xi_{n+2}\right)\right. \\
& \left.+(n-1) A_{p}\left(\xi_{m}, \xi_{m}, \xi_{m}, \xi_{m}, \ldots, \xi_{m}, \xi_{n+2}\right)\right) \\
& =a^{n} A_{p}\left(\xi_{0}, \xi_{1}, \xi_{1}, \xi_{1}, \ldots, \xi_{1}\right) \\
& +a^{n+1}(n-1)^{2} A_{p}\left(\xi_{0}, \xi_{1}, \xi_{1}, \xi_{1}, \ldots, \xi_{1}\right) \\
& +(n-1) A_{p}\left(\xi_{m}, \xi_{n+2}, \xi_{n+2}, \xi_{n+2}, \ldots, \xi_{n+2}\right) \\
\leq & a^{n} A_{p}\left(\xi_{0}, \xi_{1}, \xi_{1}, \xi_{1}, \ldots, \xi_{1}\right) \\
& +a^{n+1}(n-1)^{2} A_{p}\left(\xi_{0}, \xi_{1}, \xi_{1}, \xi_{1}, \ldots, \xi_{1}\right) \\
& +a^{n+2}(n-1)^{2} A_{p}\left(\xi_{0}, \xi_{1}, \xi_{1}, \xi_{1}, \ldots, \xi_{1}\right) \\
& +(n-1) A_{p}\left(\xi_{m}, \xi_{n+3}, \xi_{n+3}, \xi_{n+3}, \ldots, \xi_{n+3}\right) \\
& \cdot \\
& \cdot \\
& \cdot \\
\leq & a^{n} A_{p}\left(\xi_{0}, \xi_{1}, \xi_{1}, \xi_{1}, \ldots, \xi_{1}\right) \\
& +a^{n+1}(n-1)^{2} A_{p}\left(\xi_{0}, \xi_{1}, \xi_{1}, \xi_{1}, \ldots, \xi_{1}\right) \\
& +a^{n+2}(n-1)^{2} A_{p}\left(\xi_{0}, \xi_{1}, \xi_{1}, \xi_{1}, \ldots, \xi_{1}\right) \\
& \cdot \\
& \cdot \\
& + \\
& +a^{m}(n-1)^{2} A_{p}\left(\xi_{0}, \xi_{1}, \xi_{1}, \xi_{1}, \ldots, \xi_{1}\right) \\
& (n-1) A_{p}\left(\xi_{m}, \xi_{m+1}, \xi_{m+1}, \ldots, \xi_{m+1}\right) \\
& {\left[\frac{a^{n} \eta}{1-a}+a^{m}(n-1)\right] A_{p}\left(\xi_{0}, \xi_{1}, \xi_{1}, \ldots, \xi_{1}\right) } \\
&
\end{aligned}
$$

where $\eta=\left(1+a n^{2}-2 a n\right)$.
As $n, m \rightarrow \infty, A_{p}\left(\xi_{n}, \xi_{m}, \xi_{m}, \xi_{m}, \ldots, \xi_{m}\right) \rightarrow 0$.
Therefore, $\left\{\xi_{n}\right\}$ is an A_{p}-Cauchy sequence. By completeness, there exists $\lambda \in X$ such that ξ_{n} is A_{p}-convergent to λ.
Suppose $T \lambda \neq \lambda$,

$$
\begin{aligned}
A_{p}\left(\xi_{n}, T \lambda, T \lambda, \ldots, T \lambda\right) \leq & a \max \left\{A_{p}\left(\xi_{n-1}, \xi_{n}, \xi_{n}, \ldots, \xi_{n}\right),\right. \\
& \left.A_{p}(\lambda, T \lambda, T \lambda, \ldots, T \lambda)\right\}
\end{aligned}
$$

Taking the limit, we obtain

$$
\begin{equation*}
A_{p}(\lambda, T \lambda, T \lambda, \ldots, T \lambda) \leq 0 \tag{2.7}
\end{equation*}
$$

A contradiction. So, $T \lambda=\lambda$.
Suppose $\lambda_{1} \neq \lambda_{2}$ is such that $T \lambda_{1}=\lambda_{1}$ and $T \lambda_{2}=\lambda_{2}$. Then

$$
\begin{aligned}
A_{p}\left(T \lambda_{1}, T \lambda_{2}, T \lambda_{2}, \ldots, T \lambda_{2}\right) \leq & a \max \left\{A_{p}\left(\lambda_{1}, T \lambda_{1}, T \lambda_{1}, \ldots, T \lambda_{1}\right)\right. \\
& \left.A_{p}\left(\lambda_{2}, T \lambda_{2}, T \lambda_{2}, \ldots, T \lambda_{2}\right)\right\}
\end{aligned}
$$

IJMAO

Implying

$$
\begin{equation*}
A_{p}\left(\lambda_{1}, \lambda_{2}, \lambda_{2}, \ldots, \lambda_{2}\right) \leq 0 \tag{2.8}
\end{equation*}
$$

A contradiction. So, $\lambda_{1}=\lambda_{2}$.
This shows the uniqueness of the fixed point.
Remark 2.11. If $A_{p}\left(T \xi_{1}, T \xi_{2}, T \xi_{3}, \ldots, T \xi_{n}\right)$ is set as $d\left(T \xi_{1}, T \xi_{2}\right)$ and $d\left(\xi_{1}, \xi_{2}\right)$ denotes the maximum, Theorem 2.10 reduces to well known Banach Contraction Principle in metric spaces.

3 An Application to the Solution of A Nonlinear Integral Equation

Consider the following nonlinear integral equation

$$
\begin{equation*}
\gamma(x)=\frac{1}{\lambda} \int_{a}^{b} g(x, s) H(x, s, s, \ldots, \gamma(s)) d s \tag{3.1}
\end{equation*}
$$

where $g:[a, b] \times[a, b] \rightarrow \mathbb{R}, H:[a, b]^{n} \times \mathbb{R} \rightarrow \mathbb{R}$ are continuous functions and $\lambda \in \mathbb{R}, \lambda \neq 0$ is a given number.
Let X be the set of all real continuous functions $\gamma:[a, b] \rightarrow \mathbb{R}$ for which γ is continuous and $\gamma(x) \subset \mathbb{R}$ for each $x \in[a, b]$. endowed with the A_{p} metric

$$
A_{p}\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right)=e^{\sum_{i=1}^{n-1}\left|\gamma_{1}-\gamma_{i+1}\right|}-1
$$

for all $\gamma_{i} \in X, i=1,2, \ldots, n$. Then $\left(X, A_{p}\right)$ is a complete A_{p}-metric space. Consider the following conditions:
(i) There exists $\sigma>0$ such that $\left|H\left(x, s, s, \ldots, \rho_{1}\right)-H\left(x, s, s, \ldots, \rho_{2}\right)\right| \leq \sigma\left|\rho_{1}-\rho_{2}\right|$ for each $x, s \in$ $[a, b]$ and each $\rho_{1}, \rho_{2} \in \mathbb{R}$.
(ii) $\max _{a \leq t \leq b} \int_{a}^{b} g(x, s) d s \leq 1$, for all $x, s \in[a, b]$.

Theorem 3.1. Suppose that Theorem 2.8 and the conditions (i) - (ii) above holds. Then (3.1) has a unique solution.

Proof. Define a mapping $T: C[a, b] \rightarrow C[a, b]$ by

$$
\begin{equation*}
(T \gamma)(x)=\frac{1}{\lambda} \int_{a}^{b} g(x, s) H(x, s, s, \ldots, \gamma(s)) d s, \quad \forall x \in[a, b] \tag{3.2}
\end{equation*}
$$

Then the integral equation (3.1) is equivalent to the fixed point problem $\gamma=T \gamma$ where T is defined by (3.2).

IJMAO

International Journal of Mathematical Analysis and
Optimization: Theory and Applications Vol. 2020, No. 1, PP. 657-668

Now,

$$
\begin{aligned}
A_{p}\left(T \gamma_{1}(s), T \gamma_{2}(s), T \gamma_{3}(s), \ldots, T \gamma_{n}(s)\right) & =\epsilon^{\sum_{i=1}^{n-1}\left|T \gamma_{1}(s)-T \gamma_{i+1}(s)\right|}-1 \\
& =\epsilon^{\sum_{i=1}^{n-1}\left|\frac{1}{\lambda} \int_{a}^{b} g(x, s) H\left(x, s, s, \ldots, \gamma_{1}(s)\right) d s-\frac{1}{\lambda} \int_{a}^{b} g(x, s) H\left(x, s, s, \ldots, \gamma_{i+1}(s)\right) d s\right|}-1 \\
& =\epsilon^{\frac{1}{\lambda \lambda} \int_{a}^{b} g(x, s) d s \sum_{i=1}^{n-1}\left|H\left(x, s, s, \ldots, \gamma_{1}(s)\right)-H\left(x, s, s, \ldots, \gamma_{i+1}(s)\right)\right|}-1 \\
& \leq \epsilon^{\frac{\sigma}{\lambda \mid} \sum_{i=1}^{n-1}\left|\gamma_{1}(s)-\gamma_{i+1}(s)\right|}-1 \\
& =k A_{p}\left(\gamma_{1}(s), \gamma_{2}(s), \gamma_{3}(s), \ldots, \gamma_{n}(s)\right)
\end{aligned}
$$

where $k=\epsilon^{\frac{\sigma}{|\lambda|}} \in[0,1),|\lambda|>\sigma$.
Therefore,

$$
A_{p}\left(T \gamma_{1}(s), T \gamma_{2}(s), T \gamma_{3}(s), \ldots, T \gamma_{n}(s)\right) \leq k A_{p}\left(\gamma_{1}(s), \gamma_{2}(s), \gamma_{2}(s), \ldots, \gamma_{2}(s)\right)
$$

and T has a unique fixed point which is the unique solution of the integral equation (3.1).

Acknowledgements

The authors are thankful to Prof. J. O. Olaleru and Dr. S. A. Bishop for their helpful comments/suggestions leading to the improvement of this revised manuscript.

Competing Financial Interests

The authors declare no competing financial interests.

References

[1] Mustafa, Z., Shahkoohi, R. J., Parvaneh, V., Kadelburg, Z. \& Jaradat, M. M. M. Ordered S_{p}-metric spaces and some fixed point theorems for contractive mappings with application to periodic boundary value problems. Fixed Point Theory and Applications 2019, 1-20 (2019).
[2] Abbas, M., Ali, B. \& Suleiman, Y. I. Generalized coupled common fixed point results in partially ordered A-metric spaces. Fixed Point Theory and Applications 2015, 1-24 (2015).
[3] Frechet, M. Sur queiques points du calcul fonctionnel. Rendic. Circ. Mat. Palermo 22, 1-74 (1906).
[4] Sedghi, S., Shobe, N. \& Aliouche, A. A generalization of fixed point theorem in S-metric spaces. Mat. Vesn. 64, 258-266 (2012).
[5] Branciari, A. A fixed point theorem of Banach-Caccippoli type on a class of generalized metric spaces. Publ. Math. Debrecen 57, 31-37 (2000).
[6] Adewale, O. K., Olaleru, J. O. \& Akewe, H. Fixed point theorems on a quaternion valued G-metric spaces. Communications in Nonlinear Analysis 7, 73-81 (2019).
[7] Dhage, B. Generalized metric space and mapping with fixed points. Bulletin of the Calcutta Mathematical Society 84, 329-336 (1992).

IJMAO
[8] Gahler, S. 2-Metrische Raume und ihre topologische Struktur. Mathematishe Nachrichten 26, 115-148 (1963).
[9] Mustafa, Z.\& Sims, B. A new approach to generalized metric spaces. J. Nonlinear Convex Analysis 7(2), 289-297 (2006).
[10] Olaleru, J. O. Common fixed points of three self-mappings in cone metric spaces. Applied Mathematics, E-Note 11, 41-49 (2010).
[11] Olaleru, J. O. \& Samet, B. Some fixed point theorems in cone rectangular metric spaces. J. Nigeria Mathematics Society 33, 145-158 (2014).
[12] Sedghi, S., Shobe, N. \& Zhou, H. A common fixed point theorem in D*-metric spaces. Fixed Point Theory and Applications 2007, Article ID 027906 (2007).
[13] Aghajani, A., Abbas, M. \& Roshan, JR. Common fixed point of generalized weak contractive mappings in partially ordered G_{b} - metric spaces. Filomat 28(6), 1087-1101 (2014).
[14] Adewale, O. K., Olaleru, J. O., Olaoluwa, H. \& Akewe, H. Fixed point theorems on a γ generalized quasi-metric spaces. Creative Mathematica and Informatics 28, 135-142 (2019).
[15] Adewale, O. K. \& Osawaru, K. G-cone metric Spaces over Banach Algebras and Some Fixed Point Results. International Journal of Mathematical Analysis and Optimization 2019, 546-557 (2019).
[16] Kakde, A., Biradar, S. S. \& Hiremath, S. S. Solution of differential and integral equations using fixed point theory. International Journal of Advanced Research in Computer Engineering and Technology 3(5), 1656-1659 (2014).

