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Abstract

Multiple imputation (MI) is a commonly applied method of statistically handling missing
data. It involves imputing missing values repeatedlyto account for the variability due to
imputations. There are di�erent techniques of MI that have proven to be e�ective and available
in many statistical software packages. However, the main problem that arises when statistically
handling missing data, namely, bias, still remains. Indeed, as multiple imputation techniques
are simulation-based methods, estimates of a sample of fully complete data may substantially
vary in every application using the same original data and the same implementation method.
Therefore, the uncertainty is often under- or overestimated, exhibiting poor predictive capability.
A new approach of MI based on regression method is presented. The proposed approach
consists of constructing a possible lower and upper bound around the sum of square of residuals
(SSE) that would have been obtained in a complete case (that is, if there were no missing
data). Then, iteratively implement regression imputation (RI) to replace the missing values
and compute a new SSE with fully completed data. If the new SSE does not fall within
the constructed bounds, the RI method is repeated until the SSE estimated falls into those
bounds.The SSEs of the prediction are used to assess the performance of the proposed approach
compared to expectation-maximization (EM) imputation and multiple imputation by chained
equations (MICE). The results indicate that the three methods work reasonably well in many
situations, particularly when the amount of missingness is low and when data are missing at
random (MAR) and missing completely at random (MCAR). However, when the proportion of
missingness is severe and the data are missing not at random (MNAR), the proposed method
performs better than MICE and EM algorithms.
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1 Introduction

Multiple imputation (MI) is a highly praised simulation-based method to provide consistent and
asymptotically e�cient estimates for the statistical analysis of missing data. This method, �rst
proposed by Rubin (1986) to impute missing data while solving some of issues, relies on the e�ciency
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of classical missing data handling methods such as case deletion and single imputation. Indeed,
case deletion and single imputation are known to be sensitive to missing data mechanisms (MCAR,
MAR, and MNAR) and to underestimate the standard error,leading to an overestimation of test
statistics (Schafer and Graham, 2002; Rubin, 1996). Multiple imputation addresses these issues and
provides more consistent estimates by increasing the number of imputations to reduce bias in the
standard error introduced by the additional uncertainty due to imputations (Allison, 2002; Rubin,
1996; Schafer and Graham, 2002); Little and Rubin, 2002). In addition, unlike other methods,
MI tends to be less sensitive to the di�erent missing data mechanisms: missing completely at
random (MCAR), missing at random (MAR), and missing not at random (MNAR) (Rubin, 1987).
Various methods of multiple imputation have been developed to handle missing data in di�erent
circumstances. These methods include the expectation-maximization (EM) algorithm, multiple
imputation by chained equations (MICE) based on a MonteCarlo Markov chain (MCMC) algorithm,
the imputation-posterior (IP) method and the multiple imputation bypredictive mean matching
(PMM) technique (Dempster et al., 1977; Rubin, (1986, 1987); Oudshoornet al., 1999); King et al.,
2001; White et al., 2011; Azur et al. 2011; Morris et al.,2014; and Kleinke, 2018). However, as
multiple imputation techniques are inherently simulation-based methods, estimates of a sample of
multiplyimputed data may substantially vary in every application using the same original data and
the same implementation method (Nakai and Weiming, 2011; Hippel, 2018). Therefore, uncertainty
is often under- or overestimated, exhibiting poor predictive capability. The determination of the
full additional uncertainty is not straightforward. In addition, the discrepancy between the true
and the estimated parameters becomes considerably large as the fraction of missing data increases.
A possible reduction in this bias requires much more imputation, which requires more resources to
generate, store and analyze the multiplyimputed data.
The present work proposes a new MI approach that addresses these issues by avoiding or at least
reducing bias and improving precision. In contrast to existing MI techniques, the proposed approach
consists of constructing a possible lower and upper bound around the sum of square of residuals
(SSE) that would have been obtained in a complete case (that is, if there were no missing data).
Then,iteratively implement regression imputation (RI) to replace the missing values and compute a
new SSE with fully completed data. If the new SSE does not fall within the constructed bounds, the
RI method is repeated until the SSE estimated falls into those bounds. For a multiple imputation
process, this procedure is repeated for a prede�ned number of times. The rest of this paper is
organized as follows: Section 2 provides a brief description of MICE and EM algorithms and
presents the proposed method with a detailed discussion of the framework. An illustrative example
using real data and the conclusion are given in Sections 3 and 4, respectively.

2 Methodology

2.1 Brief Description of MICE and EM Algorithms

The MICE procedure �ts a regression model for each variable having missing data and uses fully
observed variables as covariates. In cases where all variables have missing values, the procedure
initially �lls in all missing variables at random and then regresses each missing variable on the
other fully observed variables. Missing values are imputed using posterior predictive distribution
(see Azur et al., 2011); Raghunathan et al., 2001; Van Buuren, 2007).
The EM algorithm (Dempsteret al., 1977) is a general method for obtaining maximum likelihood
estimates;it involves two steps: the E-step and the M-step. The �rst essentially calculates the
expected values of the complete-data su�cient statistics given the observed data, Xobs,i and current

estimates Θt = (µ, σ2). The second step computes new parameter estimates, Θt+1 = (µt+1,
∑t+1

)

where µt+1
j =

∑n
i=1

xt
ij

n and σt+1
jk = 1

n

∑n
i=1{(xtij − µ

t+1
j )(xtik − µ

t+1
k ) + γtjki} .
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The algorithm iteratively proceeds between the E-step and the M-step until the discrepancy
between Θt and Θt+1 converges to a speci�ed criterion. At the �nal E-step, imputed values are
supplied for missing values.

2.2 Proposed Method

Basically, imputation-based techniques involve replacing missing values using available observations.
The purpose of imputation is to provide consistent test statistics, which means providing a sampling
variance that is as close as possible to the sampling variance without missing data. The aim of
our method is to improve accuracy by constructing a limit around the true SSE even though it is
unknown.Indeed, the main idea is to restrict the imputation to values for which the SSE is as close
as possible to the true SSE. The method requires at least one fully observed variable and can be
applied to any missing data pattern. For the �rst step of iteration, a regression model is �tted for
each variable having missing values, and the estimation is restricted to individuals with observed
values. Then, missing values are replaced by the predicted values increased with residuals drawn
from a normal distribution. For the remaining iterations, new values are imputed with respect to
the observed values and current imputed values for the missing data. In each iteration, missing
values are replaced under the condition that the SSE obtained from the completed data set is within
the constructed interval. The proposed iterative method can be summarized as follows:

Step 1: De�ne the number of missing and non-missing variables.

Step 2: Fit a regression model with available observations:
Y obs
j = β0 +

∑q
k=1 βkX

obs + εj
where Y obs

j are the available part of the missing variables Yj(j = 1, 2, ..., p);Xobs
k are the

available part of the fully observed variables; p and q are the number of missing and nonmissing
variables, respectively; β0 and βk are the coe�cients of the regression; and εj is the residual

(εj ∼ N(0, σ2)). Compute the corresponding sum of squares of residuals, SSEj
obs:

SSEj
obs =

∑nj
obs

i=1 ε̂
2
ij =

∑nj
obs

i=1 Y
obs
ij − Ŷ obs

ij , i = 1, 2, ..., nj
obs

Step 3: Use the estimated regression coe�cients β̂ = β̂0, β̂j−1 to replace the missing values, Y
mis
j

Y mis
j = β̂0 +

∑q
j=1 β̂j−1X

mis
k + ε̂j where ε̂j is drawn from N(0, σ̂j , υ) with σ̂j being the sum

of squares of residuals for observed data, and υ is generated from a chi-square distribution
with df degrees of freedom.

Step 4: Construct an approximate limit around the true sum of squares of residuals. This is done as
follows:

i. Compute: SSEj
ref =

SSEj
obs

cj
with cj =

nj
obs

n the sample size and njobs the number of non-

missing values in the corresponding variable Yj .
ii. Compute δj = cj(1− cj) + 0.05. Then, generate a sequence rij from cj − δj , with 0.01 as
the increment of the sequence.

iii. Calculate the quantities SSEj
rl

=
SSEj

obs

rl
with rl ∈ Rj (s is the length of the sequence).

Set B as the set of SSEj
rl
< the integer rounding of SSEj

ref + 1
2SSE

j
ref .

Set SSEj
low as the mean of the set of B less than the integer rounding of SSEj

ref .

Set SSEj
up as the mean of the set of B greater than the integer rounding of round SSEj

ref .

Step 5: Fit a regression model for the fully complete data. If the corresponding
SSEj does not fall into the interval [SSEj

low − SSEj
up] repeat steps 2-4 until this condition

is met.
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Step 6: For each missing value, draw new ε̂lj from N(0, σ̂lj .υ), with σ̂lj being the sum of squares of
residuals (SSEij) for the current fully complete data, and add to the initial predicted value,
Y mis
ij .

Step 7: Repeat steps1-5 for each missing variable for a �xed number of times.

3 Results

The dataset used in this study is the estimate of government e�ectiveness collected by the Word
Bank for 213 countries in the world over 17 years. Originally, the dataset contained missing values,
but we took the complete observations available (n=182), almost ignoring the possible dependencies
of the missing values in the data. As variables, we used the estimate of government e�ectiveness
collected over 1996, 2003, 2007, and 2010, with the �rst two years being predictors and the remaining
two years being missing variables. Missing values were generated under the three main missing data
mechanisms (MCAR, MAR and MNAR) using R software with the �ampute� function included in
the MICE package. For purposes of demonstration, each missing value is imputed �ve times for
each missing variable using EM, MICE and the proposed method, and the results are presented in
Table 1 and 2.
Table 1 and2 show the sum of squares of residuals arising from the use of the three di�erent
techniques under the condition that the data are MCAR, MAR and MNAR. Column 2 provides the
number of missing values in each variable (Y1 and Y2), while columns 3 and 4 give the constructed
bounds (lower and upper) around the true SSE in column 5. The three remaining columns show
the SSE arising from the three imputation techniques: MICE, EM and PM.

Table 1: Comparison of three imputation techniques under MCAR based on SSE
for the �rst variable Y1 .
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Y 1 N.mis Lower Upper True MICE EM PM

MCAR

5 8.6735 10.1258 9.3151 9.7395 9.7722 9.36
10 8.5599 10.5904 9.3151 10.3643 10.2819 9.4595
18 8.4089 11.3886 9.3151 10.5842 10.2833 9.9149
36 7.8078 13.2014 9.3151 11.89947 12.2057 9.1846
55 7.8226 11.2932 9.3151 11.6032 12.4745 8.9501
73 6.6857 10.2436 9.3151 9.7966 10.8701 8.0189
91 7.2597 11.658 9.3151 14.9306 12.716 8.4517
109 5.2714 8.8164 9.3151 10.398 9.8927 7.9908
127 6.6419 11.7138 9.3151 13.5721 17.3383 10.1268

MAR

5 8.7966 10.2696 9.3151 9.5222 9.6094 9.2506
10 8.5541 10.5833 9.3151 9.8496 9.8428 9.3514
18 7.5688 10.2508 9.3151 9.8847 9.9969 8.9988
36 7.6738 12.9748 9.3151 11.1334 12.0294 9.4578
55 7.7929 11.2607 9.3151 11.8589 11.5096 9.1952
73 9.0928 13.7472 9.3151 14.3103 14.8817 10.8612
91 6.3904 10.262 9.3151 11.2638 10.7526 8.5284
109 8.4276 14.0008 9.3151 16.6353 17.8809 11.3495
127 5.8627 10.3734 9.3151 17.714 16.8891 8.7946

MNAR

5 8.7843 10.2552 9.3151 9.738 9.9855 9.3294
10 7.5983 9.4007 9.3151 8.813 8.9204 8.5477
18 7.7749 10.5299 9.3151 9.9857 9.9386 9.0218
36 7.8203 13.2225 9.3151 11.4748 10.9633 9.335
55 6.9131 10.2094 9.3151 10.6906 9.1451 8.5186
73 6.6697 10.2062 9.3151 11.5968 12.0234 8.3331
91 8.569 13.5828 9.3151 19.7374 22.4621 10.0657
109 8.4264 13.9988 9.3151 21.8685 18.6521 11.4969
127 6.5209 11.2585 9.3151 17.0477 15.7509 10.3996

Table 2: Comparison of three imputation techniques under MCAR based on SSE
for the �rst variable Y2.
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Y 2 Lower Upper True MICE EM PM

MCAR

12.3243 14.388 13.3086 13.3737 13.5326 13.2585
12.3014 15.2194 13.3086 14.0902 13.8183 14.1601
11.7613 15.9287 13.3086 15.5506 15.1741 13.4568
10.6571 18.019 13.3086 15.3601 16.5956 12.9549
11.4209 16.6117 13.3086 18.3583 17.1985 13.7546
9.9318 15.1793 13.3086 14.3128 14.6456 12.0647
11.8683 18.4889 13.3086 18.6878 19.1183 14.5525
9.2833 15.1176 13.3086 14.4278 18.4212 13.7646
10.7228 18.4555 13.3086 21.9708 31.6509 16.8492

MAR

12.5535 14.6555 13.3086 13.709 13.5618 13.3505
12.2666 15.1764 13.3086 14.2115 13.5344 14.0913
11.1989 15.1671 13.3086 13.8068 13.6584 12.889
11.3107 19.1241 13.3086 16.4912 16.9257 13.7574
11.8632 17.1424 13.3086 16.9726 16.5702 13.4449
13.2819 20.033 13.3086 23.0195 21.8117 14.7588
10.1789 16.1347 13.3086 14.4793 15.6275 14.9975
12.2084 19.8811 13.3086 21.1317 20.7962 15.9713
11.4998 19.7928 13.3086 26.9311 21.291 15.0145

MNAR

12.3138 14.3757 13.3086 13.5481 13.6318 13.2058
11.3266 14.0134 13.3086 12.6284 12.9213 13.301
11.8877 16.1001 13.3086 14.6709 15.403 13.4561
11.7398 19.8495 13.3086 17.7909 18.1661 14.0918
10.5839 15.5549 13.3086 17.1281 17.0028 12.9565
9.9369 15.187 13.3086 15.0493 16.2449 12.9912
11.0973 17.5623 13.3086 22.5529 22.9957 14.0125
11.5177 19.1345 13.3086 28.9392 25.3928 14.5682
11.0017 18.8785 13.3086 21.473 22.0808 13.8547

4 Discussion and conclusion

In this work, we proposed an iterative method based on regression for the imputation of missing
values. The proposed method is e�ective only if : (i) the chosen regression model describe adequately
the data under study, and (ii) the increment of the sequence used to construct the lower and upper
bounds is very small (0.01); otherwise, it will be very likely to obtain bounds that do not include
the true SSE. We used data sets from real life to evaluate the performance of the proposed method
compared to other imputation methods, such as EM and MICE algorithms. Some elements are
removed from these data matrices following the three main missing data mechanisms (MCAR,
MAR and MNAR), and the number of removed data varies from 5 to 127. The removed data
are replaced �ve times for each variable, and the mean of the SSEs obtained from the individual
analysis of the multiply imputed data is used for the comparison.
Through the results, we �nd that PM can perform either like or better than EM and MICE in
estimating missing values. With respect to the sum of squares of errors (SSE), it is con�rmed that
the three methods work reasonably well in many situations, with slight deviation from the true
SSE. However, this deviation becomes substantially large as the degree of missingness increases and
under the MNAR mechanism. Nonetheless, even in such a situation, PM seems to be better than
EM and MICE. Indeed, we observe that the lower and upper bounds of SSE estimated are close to
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the true SSE under the three missing data mechanisms and that PM always provide SSEs within
these bounds. However, MICE and EM tend to provide SSEs that are considerably di�erent than
the true SSE when the number of missing data increases and under MNAR.
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