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Abstract 

This study investigated the heat and mass transfer behaviour of thermally radiating and 

chemically reacting MHD Micropolar fluid over a permeable stretching sheet in a Darcy-

Forchheimer porous medium under the influence of temperature dependent viscosity and 

thermal conductivity. The effects of Soret and Dufour in the presence of non-uniform heat 

source/sink are also examined. The coupled nonlinear partial differential equations 

governing the fluid flow are transformed into coupled nonlinear ordinary differential 

equations by applying Lie-group scaling transformations. The resulting coupled nonlinear 

ODEs are solved by means of Weighted residuals method (WRM) and the obtained solution 

compared with shooting technique alongside fourth order Runge-Kutta method. The 

influences of the emerging flow parameters on the dimensionless velocity, microrotation, 

temperature and species concentration profiles are graphically presented while the effects 

of some selected flow parameters on the skin friction coefficient, wall couple stress, heat 

and mass transfer rates are tabulated. 
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1 Introduction 
In the recent times, the study of non-Newtonian fluids has gain considerable attention from 

engineers and researchers owing to the increasing significance and practical relevance of these 

fluids in many industrial processes. A nonlinear relationship between the shear stress and the 

shear rate describe the flow dynamics of non-Newtonian fluids, these fluids offer great 

applications in the engineering and manufacturing processes, such as in polymer engineering, 

petroleum drilling, food processing manufacturing and many others. Complex rheological 

behaviour that fluids exhibit at micro and nano scales cannot be adequately captured by the 

classical continuum theories, at such, various microcontinuum theories have been formulated 

such as simple microfluids, simple deformable directed fluids, polar fluids, anisotropic fluids and 

micropolar fluids. 
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Prominent among the non-Newtonian fluids models is the micropolar fluids theory introduced by 

Eringen [1] and extended to thermo-micropolar fluids also by Eringen [2]. These are fluids with 

microstructures. The concept of micropolar fluid deals with a class of fluids that exhibit certain 

microscopic effect arising from the local structure and micromotion of the fluid element. Such 

fluids are of a complex nature and individual fluid particles may be of different shapes and may 

shrink and/or expand, occasionally changing shapes and rotating independently of the rotational 

movement of the fluid Lukaszewicz [3]. Physically, micropolar fluids may represent fluids 

consisting of rigid, randomly oriented (or spherical) particles suspended in a viscous medium, 

where particles deformation is ignored, they belong to the group of fluids with non-symmetric 

stress tensor that are called polar fluids which constitute a substantial generalization of the 

Navier-Stokes model. These fluids offer a mathematical model for investigating the flow of 

complex and complicated fluids such as suspension solution, animal blood, liquid crystals, 

polymeric fluids and clouds with dust (Ahmadi, [4]; Hayat  et al., [5]). 

 

The boundary layer flow of such fluids were first studied by Peddieson and McNitt [6], thereafter, 

several authors have investigated these fluids on different geometries and conditions. The 

boundary layer flow past stretching sheet is found applicable in engineering processes such as 

extrusion of plastic sheet, glass blowing, textile and paper production. The pioneering work on 

linearly stretching sheet was carried out by Crane [7] who gave the a similarity solution in closed 

analytical form for the steady two-dimensional problem. Gupta & Gupta [8] extended the work of 

Crane to include heat and mass transfer on stretching sheet with suction or blowing. Eldabe  et 
al., [9] studied MHD flow of a micropolar fluid past a stretching sheet with heat transfer. 

Elbashbeshy and Bazid [10] examined heat transfer over a stretching sheet embedded in a 

porous medium. 

 

The boundary layer flow and heat transfer of an electrically conducting fluid over stretching 

surfaces is of practical applications in manufacturing and engineering operations such as hot 

rolling, wire drawing, the extrusion of polymer sheet from a die and the cooling of metallic 

sheets. In such processes, the properties of the end products depend to some extent on the 

kinematics of stretching and the simultaneous rate of heating and cooling during the fabrication 

processes. Hence, the rate of cooling can be controlled by the use of electrically conducting fluid 

and the application of magnetic field. To this end, Kumar [11] numerically studied the problem of 

heat and mass transfer in a hydromagnetic flow of a micropolar fluid past a stretching sheet 

using the Finite element technique. The author reported that the fluid velocity increased with a 

rise in the material parameter while the opposite was the case with increase in the magnetic field 

parameter. Similarly, microrotation, concentration and temperature were increasing functions of 

magnetic field parameter. 

 

The influence of thermo-diffusion (Soret) and diffusion-thermo (Dufour) on fluids which have 

higher temperature and concentration gradients cannot be ignored, because when heat and mass 

transfer occur simultaneously in a moving fluid the relations between the fluxes and the driving 

potentials are of intricate nature. Observation has shown that energy flux can be produced not 

only by temperature gradient but also by concentration gradient, such effect is termed as 

diffusion-thermo/Dufour effect. In like manner, mass flux caused by temperature gradient is 

termed as thermo-diffusion/Soret effect. These terms have been mostly neglected by researchers 

on the basis that they have less magnitude than the effects described by Fourier and Ficks laws. 

The applications of these effects are found useful in the study of hydrology, petrology and 

geosciences. In consequence, Hayat  et al., [12] investigated the influence of Soret and Dufour on 

stagnation point flow of a micropolar fluid toward a linear stretching horizontal surface. The 

governing partial differential equations of the fluid flow were transformed into ordinary 

differential equations by similarity transformations and then solved by the Homotopy Analysis 

Method (HAM). The effects of Prandtl number, material parameter, Dufour number and Soret 

parameters on the velocity, temperature and concentration distribution were found to be 

significant on the model. Similarly, Reddy and Chamkha [13] reported Soret and Dufour effects 

on MHD heat and mass transfer flow of a micropolar fluid, Srinivasacharya  et al, [14] studied 
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Soret and Dufour effects on MHD free convection in a micropolar fluid, Srinivasacharya and 

RamReddy [15] investigated Soret and Dufour effects on mixed convection in a non-Darcy porous 

medium saturated with micropolar fluids. Mishra  et al, [16] investigated chemical reaction and 

Soret effects on hydromagnetic micropolar fluid along a stretching sheet. Similarity 

transformation technique was used to transform the governing PDEs into ODEs while Runge-

Kutta integration scheme alongside shooting method was used to solve the nonlinear ODEs. 

  

Flow and heat transfer in Porous media with heat sources are widely applicable in high 

temperature heat exchangers, cooling of underground electric cables, recovery of petroleum 

resources, geothermal energy extractions etc. To this end, Mohammed and Abo-Dahab [17] 

investigated heat and mass transfer in MHD micropolar flow over a vertical moving porous plate 

in a porous medium with heat generation using perturbation technique. The authors reported 

that the translational velocity across the boundary layer and the magnitude of microrotation at 

the wall are decreased with an increase in the values of magnetic, Schmidt and Prandtl 

parameters while the trend was reversed with an increase in the values of radiation, thermal 

Grashof and solutal Grashof parameters. Other researchers who have studied boundary layer 

flow in porous media with heat sources include Olajuwon  et al., [18]; Jat  et al., [19] and Pal and 

Chatterjee, [20]. Many of the engineering and manufacturing operations occur at high 

temperature, thus, the effect of thermal radiation on magnetohydrodynamic flow, heat and mass 

transfer becomes very important for the design of pertinent equipment such as the design of fins, 

steel rolling, nuclear power plants, electric power generation and solar power technology. Due to 

this many researchers have reported the influence of thermal radiation on fluid flow ( Ibrahim, 

[21]; Hamad et al. [22]; Mukhopadhyay, [23] ). 

 

Fluid flows involving chemical reaction have important applications in many engineering 

processes such as drying evaporation at the surface of a water body, food processing, smog 

formation, groves of fruit trees and crop damage due to freezing. Chemical reaction can be of two 

types: homogeneous reaction which is analogous to internal source of heat generation, it occurs 

uniformly throughout a given phase. On the other hand heterogeneous reaction occurs in a 

restricted region or within the boundary of a phase, thus it can be considered as a boundary 

condition such as the constant heat flux in heat transfer. In most situations of practical chemical 

reactions, the rate of reaction depends on the concentration of the species itself, a first order 

reaction occurs if the rate of the reaction is directly proportional to the concentration. Such study 

has attracted researchers such as (Ibrahim, [21]; Kandasamy  et al., [24] ). 

 

Many researchers assumed constant fluid properties, however, physical properties of fluid may 

change largely with temperature. The increase in temperature enhances the transport 

phenomena by decreasing the viscosity across the momentum boundary layer such that the rate 

of heat transfer at wall is affected, similarly, a decrease in fluid viscosity can make the fluid 

velocity decrease appreciably with an increase in transverse distance from a stretching plate. 

Hence, to predict the flow behaviour accurately, it is important to consider the variation of 

viscosity and thermal conductivity. Pal and Mondal [25] reported the effects of temperature-

dependent viscosity and variable thermal conductivity on Newtonian fluid. The effects of 

radiation and variable fluid viscosity on stagnation point flow past a porous stretching sheet was 

examined by Mukhopadhyay [23]. 

 

The aim of this study is to investigate MHD heat and mass transfer in a thermally radiating and 

chemically reacting micropolar fluid over a vertical permeable stretching sheet in a Darcy-

Forchheimer porous medium with non-uniform heat source/sink, with Soret and Dufour effects 

under the influence of variable viscosity and thermal conductivity. Instead of using similarity 

transformations directly from the literature, similarity variables were developed using the Lie 

group scaling analysis. The similarity variables developed were applied to transform the 

governing PDEs to ODEs and the resulting nonlinear equations were solved by a semi-analytic 

method known as Weighted residuals method (WRM).  
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2 Mathematical formulation of the problem 
Consider steady two-dimensional, viscous, incompressible, electrically conducting, thermally 

radiating and chemically reactive micropolar fluid past a vertical permeable stretching plate 

embedded in a fluid saturated Darcy-Forchheimer porous medium. A uniform magnetic field of 

strength oB  is imposed normal to the flow direction in which ),( zy  depicts the transverse and 

vertical coordinates with corresponding velocity components ),( wv  as depicted in Fig.1 The 

induced magnetic field due to the motion of the electrically conducting fluid is negligible. Also, it 

is assumed that the external electric field is zero and the field due to polarization of charges is 

negligible. The magnetic Reynolds number is assumed to be small such that the induced 

magnetic field is negligible compared to the applied magnetic field. The stretching velocity is 

assumed to be zaww w ==  and the velocity upstream is assumed to be zero. In addition, a 

power law surface temperature and concentration of the form 
p

w zATTT ==  and 

q

w zBCCC ==  is assumed. The physical properties of the fluid are assumed to be isotropic 

and constant except for the dynamic viscosity and thermal conductivity which are  

Fig. 1. Physical model and coordinate systems.  

 

assumed to vary as a linear function of temperature and the density variation in the body force 

term of the momentum equation which is approximated by Boussinesq approximation. The fluid 

is assumed to be gray, absorbing and emitting but non-scattering medium and the radiative heat 

flux term in z  direction is considered negligible as compared to that in the y  direction.  

 

Using the stated assumptions and the boundary layer approximations, the dimensional 

governing boundary layer equations of the fluid flow for mass, momentum, microrotation, energy 

and species concentration equations are given as:  
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 subject to boundary conditions  
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 Here,  ,, ,  ,   and   are dynamic viscosity, kinematic viscosity, fluid density, vortex 

viscosity,   and   are constants.  

Similarly, FBgkNCT TTo ,,,,,,,,   and pK  are the fluid temperature, fluid concentration, 

component of microrotation component, thermal conductivity, acceleration due to gravity, 

magnetic field intensity, coefficient of thermal expansion, coefficient of concentration expansion, 

Forchheimer constant and permeability of the porous medium. 

 

Others are: Tswwpr KcDCTCTqpCk ,,,,,,,,,,,   and rq  represent rate of chemical 

reaction, electrical conductivity, specific heat at constant pressure, wall temperature exponent, 

concentration exponent, fluid temperature of the stretching plate, free stream temperature, plate 

concentration and free steam concentration, molecular diffusivity, concentration susceptibility, 

thermal diffusion ratio and radiative heat flux respectively. 

 

Also, m  is a surface boundary parameter with 10 m . The case when 0=m  corresponds to 

0=N , this represents no-spin condition i.e. strong concentration such that the micro-particles 

close to the wall are unable to rotate. The case 
2

1
=m , indicates weak concentration of micro-

particles and the vanishing of anti-symmetric part of the stress tensor and the case 1=m  

represents turbulent boundary layer flows ( see Peddieson & McNitt [6]; Ahmadi, [4]; Jena and 

Mathur, [26] ). 

 

Also, 

 

       TTBfTTA
z

kw
q w

w
11 =


 (2.7) 

 is the non-uniform heat source/sink (Pal and Chatterjee, 2010). 

 

Here, 1A  and 1B  are coefficients of space and temperature dependent heat source/sink 

respectively. The case 0>1A  and 0>1B  corresponds to internal heat generation while 0<1A  

and 0<1B  corresponds to internal heat absorption. 
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j









2
=


 , is the spin gradient viscosity which denotes the relationship between the 

coefficients of viscosity and micro-inertia, 
a

j


= , is the micro-inertia per unit mass. This 

assumption has been invoked to allow the field of eqns.(2.1 – 2.5) to predict the correct behaviour 

in the limiting case when the microstructure effects becomes negligible and the total spin N  

reduces to the angular velocity (Ahmadi, [4]). All the material constants j,,,,   are non-

negative. 

 

Furthermore, the temperature dependent viscosity and thermal conductivity are respectively 

given as ( Mukhopadhyay  et al., [27]; Bhattacharyya  et al., [28] )  
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   .1=   TTdkk  (2.9) 

 Where   and k  are respectively the constant value of the coefficient of viscosity and thermal 

conductivity in the free stream, b , c  and d  are constants with 0>c  and d  depends on the 

nature of the fluid. For fluids such as air and liquids as water, 0>d  while 0<d  for fluids such 

as lubricating oils. 

 

Using Rosseland approximation,  
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 is the radiative heat flux ( Brewster, [29]; Akinbobola and Okoya, [30] ). 

 

Assuming that there exists sufficiently small temperature difference within the flow such that 
4T  can be expressed as a linear combination of the temperature. Expanding 

4T  in Taylor series 

about T  to get  
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neglecting higher order terms in eqn. (2.11) gives 
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substituting eqn. (2.12) in eqn.(10) to obtain  
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 and differentiating eqn. (2.13) w. r. t. y  gives  
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3 Non-dimensional form of the Governing Equations and 

Transformation to ODEs 
Introducing the following dimensionless quantities  
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Similarly, the stream function ),( zy  is introduced as:  
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Using the stream function (3.2), the continuity equation (1) is automatically satisfied. 

Substituting (2.15) and (2.16) into (2.1 - 2.9) gives  
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w

LB2

 is the magnetic field parameter,  = 
j


  is the 

microrotation density parameter, 1 = 

w

r

w

Lk
 is the homogeneous chemical reaction parameter. 

Also,  TTdh w=  is the thermal conductivity parameter. The range of variation of h  can be 

as follows: for air 60  h , for water 0.120  h  and for lubricating oils 00.1  h  (Seddek 

and Abdelmeguid, [31]). 

 

Introducing simplified form of Lie-group transformations namely, the scaling group of 

transformations to equations (3.3)-(3.7) is equivalent to determining the invariant solutions of 

these equations under a continuous one-parameter group (Mukhopadhyay, [22]; Dada and 

Salawu, [32]). One of the methods is to search for a transformation group from an elementary set 

of one-parameter scaling group of transformations, given as    

 
.=,=,=

,=,=,=,=,=:

8*7*6*

5*4*3*2*1*






vevwewNeN

eeeyeyzez
 (3.8) 

 Here, 1 , 2 , 3 , 4 , 5 , 6 , 7 , and 8  are transformation parameters which are arbitrary 

real numbers not all zero simultaneously and   is a small parameters. Equation (3.8) is 

considered as a point-transformation which transforms coordinate ),,,,,,,( vwNyz   to the 

coordinates ),,,,,,,( ******* vwNyz  . 

 

The task is to establish relationships among the exponents s'  such that equations (3.3)-(3.7) 

will remain invariant under the point transformations. Substituting transformation (3.8) into 

Equations (3.3)-(3.7) and applying invariant conditions yields  

 .
2

1
=,

2

1
=0,==,===== 141382765431   (3.9) 

 Hence, the set of transformations   reduces to one parameter group of transformations as  

 .=,=,=,=,=,=,=,= *1*1*1*1*1**1* vvewNeNeeeyyzez


  (3.10) 

 Finding the absolute invariant, the similarity transformations becomes:  

   ).(=),(=),(=,=,= *******  zzgzNfzy  (3.11) 

 On substituting (3.11) into equations (3.3) - (3.7), the results yield the system of non-linear 

ordinary differential equations as:  

 
  

      0,=11

1
2fFsfMbDa

GcGrgKffffKb








 (3.12) 

  

   0,=2 fgIgfgfg   (3.13) 

  

 
  

0,=)()(1)'(

1
3

4
1

11

22





BfAhfpfPr

PrDufKbPrEchRh













 (3.14) 
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 0,=)( 1 ScfqfScScSr   (3.15) 

 subject to boundary conditions  

 
0. 0, 0, 0,:

1,=1,= ,=,= 1,=:0=









gf

fmgfwff
 (3.16) 

 Where, primes denote differentiation with respect to  . 

 

 

 

The Physical Quantities of Interest 
The physical quantities of engineering interest are the skin friction coefficient zCf , couple stress 

Cs , the local Nusselt number Nu , local Sherwood number Sh . These are respectively defined as 

(Mohammed and Ado-Dahab, [16]).  

 
   

.=   ,=   ,=   ,=
  CCDm

qz
Sh

TTk

qz
Nu

jw

Mz
Cs

w
Cf

w

m

w

w

w

w

w

w
z




 (3.17) 

 Here, w  is the wall shear stress, wM  is the wall couple stress, wq  is the heat flux and mq  is 

the mass flux. These are respectively defined as:  
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




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 (3.18) 

  

4 Method of solution: Weighted Residuals Method 
Weighted residuals method works by seeking is to seek for an approximate solution, in form of a 

polynomial to the differential equation of the form  

 

      ,    =    ,        )(= YonwBYdomaintheinzfzwH    (4.1) 

 where  wH  denotes a differential operator linear or non-linear involving spatial derivatives of 

dependent variables w , f  is known function of position,  wB  represents the approximate 

number of boundary conditions and Y  is the domain with boundary Y . 

Assuming a polynomial known as trial function with unknown coefficients or parameters 

to be determined later for equations (3.12-3.15)  

 .=)(      ,=)(      =)(,=)(
0=0=0=0=

i

i

n

i

i

i

n

i

i

i

n

i

i

i

n

i

dcbgaf    (4.2) 

 Imposing the boundary conditions (3.16) on the trial functions (4.2). Also substituting equation 

(4.2) into equations (3.12 -3.15) to obtain the residual equations as:  

 

  
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 (4.3) 
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  .261220261220= 234

2

5

3

234

2

5

3  ccccSrScddddr 
 (4.6) 

 where, fr , gr , r  and r  represents the residual for the momentum, microrotation, energy 

and concentration equations respectively. 

 

The residuals equations (35-38) are forced to zero at a number of selected points within the 

domain at a regular interval and symmetry consideration. The values of the governing flow 

parameters are also substituted into the residuals equations. 

 

The resulting equations are then solved to obtain the values of the unknown parameters which 

are then substituted into (4.2) to obtain the velocity )(f , temperature )( , microrotation 

)(g  and concentration )( . This procedure is repeated for four different values each for the 

embedded physical parameters 

 ,,,,,,,,,,,,,,,,,, 111 IBAFsDaDuRScSrEcPrhGcGrKM  and fw . The computational 

results are obtained and compared well with fourth order Runge-Kutta method as shown in 

Table 1.  

 

 

 

 
       (0)f     (0)g    (0)    (0)  

PP   Values   WRM   RK   WRM   RK   WRM   RK   WRM   RK 

 

K  

 0.0   1.718412   1.723056   2.183574   2.185908   0.675616   0.674722   0.884279   0.885054 

 1.0   1.126107   1.130291   1.441585   1.443577   0.658300   0.657592   0.877185   0.877847  

 2.5   0.742326   0.746419   0.971700   0.973528   0.642828   0.642235   0.869633   0.870351  

 

M 

 0.0   1.207297   1.211597   1.531046   1.533090   0.675696   0.675152   0.883442   0.884178  

 1.0   0.857335   0.861449   1.142036   1.144039   0.533804   0.532300   0.859960   0.860470  

 2.5   0.355370   0.359571   0.599722   0.601804   0.430251   0.427495   0.820635   0.820835 

 

Gr   

 4.0   0.635228   0.641268   0.883322   0.886272   0.587104   0.586154   0.821261   0.822212  

 5.5   1.086073   1.091927   1.382347   1.385346   0.602791   0.602066   0.853854   0.854867  

 6.5   1.377550   1.383239   1.712204   1.715193   0.607812   0.607183   0.873790   0.874807  

 

Gc   

 4.0   1.164361   1.168653   1.478715   1.480766   0.598837   0.598014   0.883567   0.884290 

 5.5   1.515117   1.518776   1.887343   1.889051   0.663762   0.663060   0.901510   0.902102 

 6.5   1.767228   1.770583   2.181204   2.182749   0.664131   0.663443   0.916383   0.916929  

 

   

 0.0   1.4075144   1.419027   1.611992   1.621520   0.400097   0.394772   0.917168   0.919440  

 1.5   1.2258581   1.240265   1.532391   1.543496   0.368647   0.362446   0.897862   0.900352 

 3.0   1.1178133   1.136146   1.421850   1.437156   0.357776   0.351022   0.885396   0.888246 

h    0.0   0.977015   0.982033   1.286872   1.289290   1.040160   1.039052   0.853483   0.854388 

 0.75   1.091327   1.095720   1.406018   1.408113   0.729567   0.728791   0.871801   0.872523 

 1.5   1.192344   1.196119   1.508416   1.510212   0.541395   0.540790   0.887415   0.887963  

 

Pr   

 0.72   1.126107   1.130291   1.441585   1.443577   0.658300   0.657592   0.877185   0.877847  

 1.0   0.984367   0.988116   1.302759   1.304381   0.886908   0.886654   0.853620   0.854075 

 1.5   0.826048   0.829614   1.141669   1.143070   1.224923   1.225006   0.828212   0.828538 

 

 Table 1: The values of (0)f  , (0)g , (0)  and (0)  for variation in K , M , Gr , Gc ,  , h  

and Pr  for both WRM and RK (PP-Physical Parameters) 
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5 Results and Discussion 
To have a clear insight into the behaviour of the fluid flow, a computational analysis has been 

carried out for the velocity, temperature, concentration and microrotation. The default values 

adopted for computation are: ,1==== IfwK 4==GcGr , 0.5== DuR , 

0.2==== 11 EcMBA , mFsDa ==0.5= , 0.01=1 , 0.1=Sr , 0.72=Pr , and 0.22=Sc . 

Hence, the graphs correspond to these values unless otherwise indicated on the graph. 

 

Table 1 shows the computational values of  the skin friction coefficient    ( )  the wall couple 

stress   ( )  the local Nusselt number    ( ) and the local Sherwood number    ( ) for selected 

physical parameters. The obtained values by Weighted residuals method ( WRM ) are also 

validated by comparison with fourth order Runge-Kutta technique alongside shooting method. 

The presentation shows a perfect agreement between the two methods. From this table, the 

material parameter    the magnetic parameter  , the viscosity parameter   and the Prandtl 

parameter    have a decreasing influence on the skin friction coefficient.  In addition, the 

increase in the viscosity   and material    parameters reduce the wall couple stress, rate of heat 

and mass transfers as well. 

 

The skin friction coefficient increases in value for a rise in thermal conductivity parameter        
thermal and solutal Grashof  numbers (    and    ). Also Prandtl Pr and thermal Grashof Gr 

parameters cause an increase the local Nusselt number while a rise in the solutal Grashof 

parameter Gc produces an increase in the local Sherwood number.. 

 

Figs. 2-3 depict the influence of magnetic field parameter M on the velocity and temperature 

profiles. As shown, the velocity decreases with an increase in the value of the magnetic field 

parameter M . This response is due to the imposition of the transverse magnetic field in an 

electrically conducting fluid which induces a resistive force known as Lorentz force acting against 

the fluid motion and slows it down. However, due to the resistance to the fluid motion imposed by 

the Lorentz force due to magnetic field, the temperature rises with increasing values of M  as 

displayed in Fig. 3.  

 

Fig. 4 displays the impact of the material parameter K  on the velocity distribution. It is evident 

that the velocity profiles near the plate decrease as K  increases due to the reduction in the 

boundary layer thickness. Further from the plate, the profiles overlap due to the dominance of 

kinematic viscosity, and then decrease with an increase in K  with the velocity of non-Newtonian 

micropolar fluid higher than that of Newtonian fluid (i.e. 0=K ). 

 

Figs. 5 and 6 describe the combined influence of increasing Dufour Du  while decreasing Soret 

Sr  on the velocity  profiles. The values of Sr  and Du  are selected in such a way that their 

products are constant according to their definition, assuming that the mean fluid temperature 

mT  is kept constant. Evidently, both the velocity and temperature rise with increasing Dufour 

Du  (while decreasing Soret ) due to increase in momentum and thermal boundary layer 

thickness. 

 

Figs. 7-10 describe the influence the suction/injection parameter fw  on the velocity, 

temperature, concentration and microrotation profiles. A decrease in the velocity, temperature 

and microrotation profiles is observed with an increase in the suction parameter )( fw .  The 

thinning effects of 0)>( fw  on these profiles  can be attributed to the fact that the heated fluid 

is being pushed towards the plate such that the buoyancy force acted to retard the fluid as a 

result of high influence of viscosity. In addition, the fluid is brought closer to the surface such 

that it reduces the thermal and solutal boundary layer thickness. However, the imposition of wall 
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fluid injection 0<fw  produces the opposite effect as it enhances velocity distribution within the 

boundary layer. The microrotation profiles rises near the plate with increase in fw  whereas 

away from the plate the profiles overlap and then fall. Negative values indicate reverse rotation 

of micro-elements. 

 

Fig. 11 illustrates the temperature profiles with   for different values of  Prandtl number  

Pr . Clearly, an increase in the value of the Prandtl number Pr  produces a dampen effect on the 

temperature profiles. Physically, Prandtl number expresses the ratio of momentum diffusivity to 

thermal diffusivity and it controls the relative thickness of the momentum and thermal boundary 

layers. Hence, increasing Prandtl number Pr  implies reduction in thermal boundary layer 

thickness which in turn lowers the average temperature within the boundary layer. Thus, 

Prandtl parameter Pr  can therefore be applied to enhance the rate of cooling as fluids with 

moderate Prandtl number Pr  creates higher conductivities and at such heat diffuses quickly 

away from the heated vertical plate than for higher values of Prandtl number Pr . 

 

Figs. 12-15 portray the influences of space dependent heat source 0)>( 1A  and space dependent 

heat sink 0)<( 1A  on the dimensionless velocity and temperature profiles. Clearly, an increase 

in 0)>( 1A  enhances both the velocity and temperature distributions due to a rise in momentum 

and thermal boundary layer thickness as 0)>( 1A  increases. In addition, energy is generated by 

the imposition 0>1A  leading to an increase in the micropolar fluid temperature, thereby 

causing a rise in the temperature profiles. In consequence, the buoyancy force rises leading to a 

rise in the fluid motion in the presence of micro-elements. The trend is however reversed for the 

space dependent heat sink 0)<( 1A  as shown in Fig. 13 due to the thickening of momentum 

boundary layer thickness. 

 

The influences of 0>1A  and 0<1A  on temperature profiles are displayed in Figs. 14 and 15. It 

is evident from from Fig. 14 that the thermal boundary layer thickness increases with a rise in 

the magnitude of 0)>( 1A , while it falls with an increase in 0<1A . Fig. 16 describes the effect 

of heat generation parameter 0>1B  on temperature profiles across the boundary layer. 

Observation shows that the presence of heat source 0>1B  enhances the fluid temperature and 

also causing the thermal boundary layer thickness to increase due to the fact that more energy is 

generated in the boundary layer leading to a rise in the micropolar fluid temperature. 

 

Figs. 17-18 depict the impact of the homogeneous chemical reaction parameter 1  on the 

concentration distribution. It is shown that an increase in destructive chemical reaction 

parameter ( 0>1 ) leads to a decrease in concentration of the micropolar fluid as displayed in 

Fig. 17 due to the reduction in the solutal boundary layer thickness. On the other hand, 

generative reaction ( 0<1 ), produces a reverse trend as illustrated in Fig.18. In addition, the 

magnitude of destructive chemical reaction ( 0>1 ) is lower than that of generative chemical 

reaction ( 0<1 ) due to the fact that 0>1  occurs with much disturbances than 0<1 , hence, 

molecular motion in the case of 0>1  is much greater which leads to an increase in mass 

transport phenomenon. 

 

The influences of Darcy Da  and Forchheimer Fs  parameters on the velocity profiles are 

displayed in Figs. 19-20. It is observed that the velocity decreases for both Da  and Fs  

parameters. Increase in the Darcy Da  and Forchheimer parameters imply that the porous 
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medium is causing more resistance to the fluid flow, as a result of this, the flow velocity 

decreases. 

 

The increase in thermal conductivity parameter h  enhances both the fluid velocity and 

temperature due to increase in momentum and thermal boundary layer thickness as displayed in 

Figs. 21-22. Fig. 23 illustrates the effect of viscosity variation parameter   on the velocity 

profiles. Observation shows that velocity profiles decrease rapidly near the plate whereas, 

further from the plate as   increases the effect of   becomes negligible. This response is due to 

the growth in magnitude of   implying an increase in )( TTw   at a constant value c . In 

consequence, the time of interaction between neighbouring molecules and intermolecular forces 

between the fluid is reduced. This causes the fluid viscosity to increase leading to the reduction 

in the flow motion. 

 

 The effects of radiation parameter R  on velocity and temperature distributions are displayed in 

Figs. 24 and 25. Both the dimensionless fluid velocity and temperature increase as the 

magnitude of radiation parameter R  increases. By implication, radiation parameter R  enhances 

both velocity and temperature distributions across the boundary layer. As the rate of radiative 

heat transfer to the fluid increases, the fluid temperature rises which in turn induces thermal 

buoyancy effect, leading to a rise in the fluid velocity. Hence, to have the cooling process at a 

faster rate R  should be reduced 

 

Fig. 2. Effect of M  on velocity profiles     

 
Fig. 3. Effect of M  on temperature profiles 
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Fig. 6. Effect of  &  on temperature p 1 

 

Fig. 7. Effect of   on velocity profiles 1 

 

 

 

 

 

 

  

 

 

   

Fig. 4. Effect of on velocity profiles  1 Fig. 5. Effect of   &   on velocity prof 1 
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Fig. 8. Effect of fw  on temperature profiles                    Fig. 9. Effect of fw  on concentration 

profiles 

 

 

 

 

  

  
Fig.10. Effect of fw  on microrotation profiles     Fig.11. Effect of Pr  on temperature profiles 

 

 

  



INTERNATIONAL JOURNAL OF MATHEMATICAL ANALYSIS AND 
                                    OPTIMIZATION: THEORY AND APPLICATIONS 

                                                                                   VOL. 2017 , PP. 211- 232 

 

 

 

 

226 

   

 

Fig. 12. Effect of 0>1A  velocity profiles     Fig. 13. Effect of 0>1A  on velocity profiles 
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Fig. 14. Effect of 0>1A  on temperature profiles       Fig. 15. Effect of 0>1A  on temperature profiles 

   

  

  

Fig. 16. Effect of 0>1B  on temperature profiles     Fig. 17. Effect of 0>1  on concentration 

profiles 
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Fig. 18. Effect of 0<1  on concentration profiles         Fig. 19. Effect of Da  on velocity profiles 

 

 

    
Fig. 20. Effect of Fs  on velocity profiles       Fig. 21. Effect of h  on velocity profiles 
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Fig. 22. Effect of h  on temperature profiles       Fig. 23. Effect of   on velocity profiles 

  

    
Fig. 24. Effect of R  on velocity profiles      Fig. 25. Effect of R  on temperature profiles  

 

 

6 Conclusion 
The present study is an investigation of heat and mass transfer of thermally radiating and 

chemically reacting MHD micropolar fluid flow past a permeable stretching sheet in a porous 

medium with Soret and Dufour effects and non-uniform heat source/sink. Lie-group scaling 

analysis was used to develop similarity variables which were in turn applied to transform the 

governing PDEs of the fluid flow into non-linear ODEs. The resulting equations were solved by 

Weighted residuals method via collocation technique. The results compared well with shooting 

method alongside with fourth order Runge-Kutta method. The influences of the emerging 

physical parameters on the dimensionless velocity, microrotation, temperature and species 

concentration profiles are graphically presented and discussed. Moreso, the effects of pertinent 

flow parameters on the skin friction (0)f  , wall couple stress (0)g , Nusselt number (0)  

and the Sherwood number (0)  are tabulated. 

 

The following conclusions were drawn from this study:   

• The material (micropolar) parameter K  causes a decrease in the fluid velocity near the plate 

while   increasing it further away from the plate. 
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 • The influence of K  is to decrease the skin friction coefficient (0)f  , heat transfer (0)  and 

wall couple stress (0)g . Thus K  can be useful in reducing drag along the plate.  

 • An increase in the magnetic parameter M  reduces the fluid motion but enhances temperature 

distribution.  

• Increasing Dufour number Du  while decreasing Soret number Sr  causes a rise in both the 

fluid velocity and Temperature while decreasing the concentration.  

• Thermal Grashof number Gr  and solutal Grashof number Gc  increase the skin friction 

coefficient, wall couple stress, heat and mass transfer whereas viscosity parameter   deceases 

these quantities.  

• Prandtl number Pr  reduces the skin friction but enhances heat transfer rate while thermal 

conductivity parameter h  enhances skin friction coefficient.  

 • An increase in destructive chemical reaction parameter ( 0>1 ) causes a decrease in 

concentration while generative chemical reaction parameter ( 0<1 ) enhances it.  

• The influences of space dependent heat source 0>1A  and temperature dependent heat source 

0>1B  is to increase both velocity and temperature distributions whereas 0<1A  dampens 

temperature. 
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