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Abstract 

Recently, the Weibull-Rayleigh Distribution (WRD) has been derived as a new class of the 

Weibull-X family of distributions and expressions for some of its distributional properties 

defined and studied. Further to these, this article employs the method of maximum 

likelihood to find estimators for parameters of the Weibull-Rayleigh distribution. The 

method of maximum likelihood yielded a closed form estimator for the scale parameter but 

cannot produce a closed form estimator for the shape parameter of WRD. Some properties 

of the estimator of the scale parameter are discussed. Two numerical data sets on 

insurance claims and marriage survival time are used to illustrate the applicability of the 

method of maximum likelihood of the Weibull-Rayleigh Distribution.  
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1 Introduction 
The Weibull distribution is a widely used distribution in survival, reliability, finance and 

climatology. [1]Tadikamalla (1978) illustrates the effectiveness and adequacy the Weibull 

distribution to approximate the lead time demand in inventory control problems. In 

interpreting environmental pollution and biological sciences data, the Weibull distribution 

has been found useful ([2]Mikolaj, 1972; [3]Perry, 1998; [4]Cordeiro et al., 2008). Attempts at 

generalizing and extending the Weibull distribution can be found in the works of 
[5]Mudholkar and Srivastava (1993), [6]Famoye et al. (2005), [7]Alzaatreh et al. (2013a), 
[8]Adeleke et al. (2013) and [9]Akarawak et al. (2014). The Rayleigh distribution and its 

extension are also well investigated and used in survival and environmental studies 

([10]Voda, 2007).  

 

Motivated by the current development in the generalization of the Weibull distribution 

provided by [11]Alzaatreh et al. (2013b) and the need for its continuous extension and 

generalization to more complex situations, [12]Akarawak et al. (2013) considered certain 

results characterizing the generalization of the Weibull and Rayleigh distributions through 

their probability density and distribution functions. Consequently, a new member of the 

Weibull-X family of distributions as introduced by [11]Alzaatreh et al. (2013b) was proposed. 

This continuous probability distribution is the two-parameter Weibull-Rayleigh Distribution 
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(WRD). Expressions for some distributional properties such as the survival function, hazard 

function, moments and moment generating function were derived and studied ([12]Akarawak 

et al., 2013). Simulation studies results revealed that the newly derived distribution is 

unimodal, peaked and right-skewed.  

 

Further extension and generalization of the Weibull distribution need investigation owing to 

the central role this distribution plays in modelling and survival studies. An important 

aspect of this continuous distribution requiring investigation is parameter estimation. This 

article employs the method of maximum likelihood to derive estimators for parameters of the 

Weibull-Rayleigh distribution. R project will be used for the implementations. 

 

The remaining sections of the article are organized as follows. In Section 2, a review of the 

Weibull-Rayleigh distribution and some of its properties are presented. In Section 3, 

parameter estimation for the parameters of the Weibull-Rayleigh Distribution is considered. 

Applications of the distribution are done in Section 4; while Section 5 concludes the article. 

 

 

2 Review of the Weibull-Rayleigh Distribution (WRD) 
2.1 The pdf and cdf of the Weibull-Rayleigh Distribution 
[12]Akarawak et al. (2013) defined and studied a new continuous probability distribution as a 

class of the Weibull-X family of distributions introduced by [11]Alzaatreh et al. (2013b). 

According to the authors, the pdf g(x) and cdf F(x) of the two-parameter Weibull-Rayleigh 

Distribution (WRD) are, respectively, given by 
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Where a is the shape parameter and k is the scale parameter. As shown in [12]Akarawak et 

al. (2013), if a random variable X is WR-distributed, then X2 is Rayleigh distributed. 

Furthermore, the authors has shown that the Rayleigh distribution is a special case of WRD 

for a = 1; while the Weibull distribution is a special case of WRD with parameters m= 2a and 

λ = k . 

 

From (2.1) if a = 1 and k = 22, then we have  
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Also, from (2.1) if a = m/2 and k = 2, then we have 
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 is a Weibull distribution. 

While the procedure for deriving the pdf and cdf in (2.1) and (2.2) are omitted, we state here 

that the two-parameter Weibull-Rayleigh distribution as defined by [12]Akarawak et al. 

(2013) is quite different from the three-parameter Weibull Rayleigh distribution of 
[13]Merovci and Elbatal (2015) and this paper is not intended to bring out the difference 

between the two. 

 

2.2 Moments of Weibull-Rayleigh Distributions 
[12]Akarawak et al. (2013) studied WRD analytically and by simulation and obtained the 

moments and other properties of the distribution. The moments and moment generating 

function are presented in this section. 
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Moments 
The rth moment of WRD is:  
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The standard deviation of X is given by: 
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Coefficient of variation of X is given by:  
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To access skewness and kurtosis, 3  and were obtained as 3 : 
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Moment Generating Function 
The moment generating function of the Weibull-Rayleigh distributed random variable X is 

given by: 
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3 Parameter Estimation of WRD 
 

3.1 The Method of Maximum Likelihood (ML) 

Estimation  
 

For estimating an unknown parameter θ, the likelihood principle can be used to obtain the 

maximum likelihood estimator (MLE) ̂  (
[14]Bai and Fu, 1987). The definition of maximum 

likelihood estimator is presented below. 

 

Definition 3.1: Likelihood Function ([15]Mood et al., 1974)  
The likelihood function of n random variables X1, X2, …, Xn is defined to be the joint density 

of the n random variables, say );,,,( 21,,, 21
nXXX xxxf

n
 , which is considered to be a function 

of  . In particular, if nXXX ,,, 21   is random sample from the density );( xf , then the 

likelihood function is given by );();();()( 111  xfxfxfL  . 

 

Definition 3.2: Maximum Likelihood Estimator (MLE) 
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function of the random variables nXXX ,,, 21   and ),,(ˆ
1 nXXh   a function of the 

random variables. If the value of ̂  given by ),,( 1 nxxh   maximizes )(L , then 

),,(ˆ
1 nXXh   is a maximum likelihood estimator of  . Under certain regularity 

conditions, the maximum likelihood estimator of θ is obtained by solving the likelihood 

equation: 
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For ease of computation, the logarithm of the likelihood function is often used as it has the 

same maximum point as 16Wackerley et al. (1996) remarked that the method of maximum 

likelihood often leads to minimum-variance unbiased estimators (MVUE) and that despite its 

computational complications, MLEs are always preferred because they have optimal 

asymptotic properties. For works on applications of MLE see [17]Golding (1993), [18]Comets 

and Gidas (1991), [19]Gupta and Szekely (1994), [20]Huang and Yu (2008) and [21]Dent and 

Hildreth (1977). 

 

3.2 Derivation of the ML Estimators for the Parameters 

of the Weibull-Rayleigh Distribution  
 
In this section, the estimators for parameters a and k of the Weibull-Rayleigh distribution 

are derived using the method of maximum likelihood.  

 

Let a random sample be taken from WRD with probability density function (pdf) given as: 
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And the log-likelihood function is given by:  
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Equating (3.6) and (3.7) to zero and replacing the parameters by their estimates gives the 
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From (3.10), 
aa

i knx
ˆˆ2 ˆ , and substituting into (3.14) gives: 
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i xxnaxxaxn .     (3.15) 

 

The likelihood equation in (3.15) cannot be solved to obtain â  in closed form; however, it will 

be solved numerically. Once â  is determined, k̂  can be obtained using (3.12).  
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3.3 Expectation and Variance of the Estimator k̂  
The properties of the estimator k̂  of the scale parameter of the Weibull-Rayleigh distribution 

could not be obtained easily due to its complex form. However, an attempt is made in this 

section to obtain the expectation and variance of the estimators using the following 

approximation to expected value and variance obtained by a Taylor series about μ.  

 

Approximation to Expected value and Variance: ([22]Benaroya et al., 2005)    
Let f(X) be any function of the random variable X. The expected value and variance of f(X) 

can be approximated by: 

)(
2

)()]([
2




 ffXfE X  .       (3.16) 

  22 )]([)(  fXfVar X
 .         (3.17) 

These approximations are expected to be accurate provided f(X) is a decreasing function that 

does not have a closed form for its estimate and it is consistent. 

 

Expectation of k̂  
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By (3.16), 
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Substituting for 
2  and 
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(3.22) implies that the estimator k̂  is a biased estimator for k .  

 

 

Variance of k̂ : 
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3.4 Unbiased Estimators for the parameter k 
Here attempt is made to obtain an unbiased estimator for the scale parameter k using the 

concept of sufficient statistics and Rao-Blackwell theorem. 

 

Unbiased Estimator for k: 

Theorem 3.1: 
A possible unbiased estimator for the parameter k  is given by: 
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The expectation of a sum is the sum of the expectation. So, (3.27) becomes 
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Recall from (2.3) that 
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
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Thus, )(kE


= k. 

Theorem 3.2 (Minimum Variance Unbiased Estimator for k): 

The estimator 
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 is a minimum variance unbiased estimator (MVUE) of the 

parameter k. 

 

Proof: 

Joint Sufficient Statistics for a and k: 

 Let nXXX ,,, 21   be a random sample from WRD with pdf given by,
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Therefore, ix  and 
2

ix are joint sufficient statistics for a and k. Hence, ix  and 
2

ix best 

summarize all information about the parameters a and k. 

Joint Complete Sufficient Statistics of Weibull-Rayleigh Distribution Parameters 

Let           denote a random sample from a Weibull-Rayleigh distribution 

that depends on  parameters a and k has a pdf   
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Exponential Class Form 

A distribution is said to belong to exponential class of distributions if its pdf can be expressed 

in the form: 

 ),()()(),( 2121  qxSxKPExp      

 

 ),...,,(),...,,(exp),...,,( 212121 mimm qxPxxxR       (3.32)

 
To show that the pdf of WRD is in form of (3.32), we do the following: 
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 Comparing equation (3.32) and (3.33) 
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Since the pdf can be written as a family of an exponential class, then it is complete. We 

proceed to finding the joint complete sufficient statistics as follows: 
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 Comparing equation (3.32) and (3.34), we have 
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The joint complete sufficient statistics for the parameters of Weibull-Rayleigh distributionn 

are      and   for k and a.  

 

Therefore, by the Rao-Blackwell theorem, since the unbiased estimator of k, k
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 is a function 

of the complete sufficient statistics  2

iX , it is a minimum variance unbiased estimator.  
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Clearly, the variance of k


 in (3.35) is smaller than the variance of k̂  given in (3.25).  

     

4 Applications and Results 
In this section, the Weibull-Rayleigh distribution is applied to two data sets on vehicle 

insurance claims and marriage survival. The performance criterion used is the Kolmogorov-

Smirnov (K-S) statistics and smaller value of the K-S statistics is desirable.    

 

 

4.1 Application to Insurance Claims Data 
 

Data Description and Exploration 
The distribution was applied to a real life data on 1721 claims on motor vehicle from an 

insurance company. A characteristic feature of the claims data is that many of the insurees 

were paid very little claims. Table 1 shows the summary of statistics for the claims data. The 

histogram of the vehicle claims data generated in SPSS 18.0 is also presented in Figure 1.  

 

 

Statistics N Mean Variance Std Dev. Skewness 

Std Error of 

Skewness Kurtosis 

Std Error of 

Kurtosis 

Values 1721 48663.5 2.355 × 1011 485286.93 25.387 0.059 786.557 0.118 

Table 1: Summary of Statistics for claims data 
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Figure 1: Histogram of Claims Data 

 

 
It is seen from both the descriptive statistics and histogram that the distribution of the data 

is highly peaked and skewed to the right. 

 

Data Analysis and Results  

 
Figure 2: Density Plots for the Claims Data 
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 Distribution Estimates of the Parameters K-S Statistics 

Weibull α = 0.1307, β = 4.8836 0.4550 

Rayleigh σ= 74380.0788 0.8460 

Gamma Shape = 0.0233, Rate = 527.788 0.9995 

WRD a = 0.0653, k= 23.4452  0.4546 

Table 2: Estimates of Parameters and K-S Statistics for Claims Data  

 

Discussion of Result 
The results presented in Figure 2 above show the density plots of the data generated in R, 

respectively for the best fit, Weibull distribution, Gamma distribution, Rayleigh distribution 

and WRD. The estimates and fits of the data from the various distributions are presented in 

Table 2. The K-S statistics in the results show that WRD distribution is the best with 

smallest K-S statistic, followed by Weibull, Rayleigh and Gamma. However, the difference 

between WRD and Weibull is extremely small and insignificant. So, WRD does not perform 

differently from Weibull distribution. WRD is, therefore competitive in fitting the claims 

data. Or, since the difference between Weibull and WRD is little and as already shown 

analytically, WRD can be used as an alternative distribution to the Weibull distribution.   

 

 

4.2 Application to Marriage Survival Data 

 

Data Description and Exploration 
The marriage survival data represents time to divorce of marriage from when it was 

contracted. The sample size for the study is 300. A questionnaire was used to collect the 

primary data for the study. Table 3 gives the summary of statistics for the survival data 

while Figure 3 gives the histogram of the data generated in SPSS 18.0.  

 

Statistics N Mean Variance Std Dev. Skewness 

Std Error of 

Skewness Kurtosis 

Std Error of 

Kurtosis 

Values 300 12.233 57.731 7.598 0.925 0.141 0.724 0.281 

Table 3: Summary of Statistics for survival data 

 

 
      Figure 3: Histogram of Claims Data 
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Data Analysis and Results  

 
 Distribution Estimates of the Parameters K-S Statistics 

Weibull α = 1.6859, β = 13.7432 0.0623 

Rayleigh σ = 14.3949 0.1261 

Gamma Shape = 2.4508, Rate = 4.9915 0.7955 

WRD a = 0.8425, k = 188.3980  0.0617 

Table 4: Estimates of Parameters and Goodness of fits 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: Density Plots for Marriage Survival Data 

 

Discussion of Result 
The estimates of the parameters and K-S statistics for the survival data are given in Table 4 

for the Weibull, Rayleigh, Gamma distributions as well as WRD. Again, the K-S statistics 
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show that WRD fits the survival data best followed by the Weibull, Rayleigh and Gamma 

distributions. However, as stated before, the difference between WRD and Weibull is 

extremely small and insignificant. WRD, therefore can be an alternative distribution to 

Weibull distribution and its performance shows a little improvement on Weibull distribution. 

WRD is more of a Weibull distribution than a Rayleigh distribution.   

 

5 Conclusion 
In this research work, parameter estimation and applications of the two-parameter Weibull-

Rayleigh Distribution (WRD) have been considered. The method of likelihood estimation has 

been used to estimate the shape and scale parameters of WRD. The maximum likelihood 

method only yields closed form estimator for the scale parameter. The expected value and 

variance of the estimator of the scale parameter has been derived.  Furthermore, minimum 

variance unbiased estimator has been obtained for the scale parameter.  

The distribution is then applied to two data sets on vehicle insurance claims and marriage 

survival in Lagos State. The results show that WRD produce good fits and performs 

competitively well in fitting both data types compared to Weibull, Rayleigh and Gamma 

distributions.  

 

We therefore recommended that the newly derived Weibull-Rayleigh distribution be used as 

an alternative to some existing distributions in modelling data on survival, reliability and 

financial studies. 
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