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Abstract

In this paper, the exponentiated Lomax-Weibull distribution is constructed as a new lifetime

model using combination of the competing risk and exponentiation methods. Some new and
existing distributions are presented as submodels. Mathematical properties to define the
distribution are presented in details. Statistical inference is presented for the exponentiated
Lomax-Weibull distribution using the method of maximum likelihood estimation to estimate the
parameters of proposed distribution. Two lifetime datasets are used to illustrate the usefulness
and applicability of the proposed distribution in lifetime data analysis. The results of the
analysisof the datasets show the superiority of the exponentiated Lomax-Weibull distribution
over some compared distributions.
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1 Introduction

Over the years, several new flexible univariate lifetime distributions have been generated and
introduced as superior models to classical distributions. They fit complex data from reliability and
survival systems adequately as well as predict their non-monotonic aging events more efficiently
than the classical distributions. Several methods for constructing new univariate distributions are
detailed in the works of [23] and [11]. Competing risk method generates new lifetime distribution
by mixing two or more classical distributions to model data from series or parallel systems. The
Lomax-Weibull ([22]), Lomax-Exponential ([20]), Burr XII-Weibull ([19]) and additive Weibull
([26]) distributions are some lifetime models in literature introduced using the competing risk
method.
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For a series system with i*” (i=1,2,..,n) independent component with i!" reliability function given
as R;(y), the cdf of the distribution of the system is given as

n

Gy)=1-][]Riy)y >0

i=1

For a system with two independent components connected in series, its distribution becomes

F(y) =1—Ri(y)R2(y). (1.1)

New distributions have been generated with this method over the last two decades by many
researchers. Another method of generating new flexible distributions is the exponentiated method
with its cdf given as

Galy) = [F(y:n)], (1.2)

where n > 0 is a parameter vector. [5] pioneered the exponentiated method with the cdf of his
model given as
Fa(y) = (1 —pe )N p,a, A > 0, (1.3)

with its corresponding pdf given as
fa(y) = dape Y (1 — pe2¥)A L,

Equation (1.3) was used to analyse the mortality rates in lifespan of adult human. [14] generalized
equation (1.3) by replacing e~*¥ with e=%" and p = 1, thereby obtaining the exponentiated Weibull
family. Its application to lifetime data analysis was investigated by [15]. [6] introduced a submodel
to equation (1.3) by substituting p=1. Since then, several new exponentiated distributions have
been generated and some are found in the works of [4], [2], [13], [7], [15], [8], [5], [14] and [3].

The exponentiated Lomax-Weibull (ELW) distribution as new lifetime model is generated by the
combination of equations (1.1) and (1.2) with expressions for R;(y) and Rz (y). It is introduced to
analyse lifetime data obtained from systems that exhibit variety of monotonic and non-monotonic
failure patterns. Several submodels can be obtained as special cases. The essence of the proposed
distribution is to present it as a flexible distribution that can be useful in lifetime analysis. Application
of the proposed distribution is presented to show flexibility and usefulness in lifetime analysis.

The organization of the paper is presented as follows. Section 2 presents model definition of
the ELW distribution. This section contains formulation of the new distribution, mathematical
properties and estimation of parameters of the ELW distribution. Section 3 gives the results which

arise from the application of the ELW distribution to lifetime data sets. In section 4, discussion on
the results obtained is presented. Section 5 concludes the study on the ELW distribution.

2 Model definition

2.1 Formulation of the ELW distribution

[19] proposed the Lomax-Weibull distribution from equation (1.1) with its cdf given as
Fly)=1—(1+~y)Pe ™ y>0,7>0,8>0,a>00>0. (2.4)

Substituting equation (2.4) into equation (1.2), we obtain
A
Grly) = (1= (L+y) e )" A >0 (2.5)
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Equation (2.5) defines the cdf of the ELW distribution which will be denoted by ELW (v, 8, a, 8, ),
with corresponding pdf, survival and hazard functions given in equations (2.6), (2.7) and (2.8)
respectively as

0 o\ A1
9n(y) =X (YB+ afy’ (1 +y)) (1 +yy) e (1 — (1+7y) Pe v ) : (2.6)
Ra(w) =1 (1— (Lt ) e’ (27)
and
A (V8 + afy’ L (1 +yy)) (1+yy) P lem” (1 -1+ vy)_ﬂe‘aye)k_l

ha(y) = TE—— : (2.8)

Plots for g (y) and hy(y) are presented in Figures (1) and (2) showing the variety of shapes for some
parameter values of ELW(v, 3, v, 0, \). It is observed that the ELW (v, 8, «, 0, \) can fit bimodal
and other skewed lifetime data as shown in Figure 1. A bimodal data is a data set with two modes
and can be split into two unimodal sets. The shapes of the hazard function in Figure 2 indicate the
ability of the proposed distribution to model increasing, decreasing, unimodal, modified bathtub-
shaped and bathtub-shaped failure events.
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Figure 1: Plot for pdf of ELW distribution Figure 2: Plot for h(y) of ELW distribution

It is known that

(1—2)m = 2 (ZL) (—1)izl, 2 < 1,(142)" = 2 (" *j - 1)(-1)&%‘. (2.9)

Employing the series expressions in equation (2.9), the expansion of g)(y) in equation (2.6) is
expressed as

=A Z ( ) ) (v8 + aby’ (14 qy)) (1 + )~ (DT (FDay”

AZ( P G O R e (R P

i,7=0 J

(2.10)
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From equation (2.5), some new and existing submodels can be generated which are listed as follows.
(1) If A=1, the Lomax-Weibull distribution is obtained as a lifetime distribution [22].

(2) If 6=1, the exponentiated Lomax-exponential distribution is obtained [21].

(3) If =2, then a new lifetime distribution called the exponentiated Lomax-Rayleigh distribution
is obtained.

(4) If A=6=1, the Lomax-exponential distribution is obtained [20].

(5) If A=1 and 0=2, then the Lomax-Rayleigh distribution is obtained as a new lifetime distribution.
(6) The Lomax distribution [14] is obtained if A=1 and a=0. If A=0=1 and (=0, then the
exponential distribution is obtained.

(7) The Weibull distribution [25] is obtained if A=1, =0 and the Rayleigh distribution can be
obtained if A=1, #=2 and 3=0.

2.2 Mathematical properties of the ELW distribution

The section considers some mathematical properties that define the ELW (v, 8, a, 0, \) as a lifetime
distribution.

2.2.1 Quantile function

If 0 < ¢ < 1 and a random variable Y follows the ELW (v, 8, a, 8, A), then the quantile function can
be derived from y, = F/\_l(q). This implies that ELW (7, 8, «, 8, \) quantile function is the root
of the equation given by .

Blog(1 + vyq) + ayg +log(l —g>)=0. (2.11)

The root of equation (2.11) which is, y,, gives the unique solution for every value of ¢ € (0,1)
for a particular combination of parameter values of ~,3,a,0 and A, which is obtained by any
known iterative method (such as the Newton-Raphson method). Alternatively, the uniroot package
in the R software can be used to obtain the root of equation (2.11). If ¢ = 0.5, the median of
ELW (v, 8, a, 08, \) denoted by yo.5 can be obtained from equation (2.12) with its expression given
as

Blog(1 + vyo.5) + ayls + log(1 — 0.5%) = 0. (2.12)

Table 1 presents different values of ¢ € (0, 1) and sets of parameters for ELW (v, 8, «, 0, ).

Table 1: Values for quantile function of ELW distribution

q (0.1,8,0.5,0.4,3) (0.07,4,0.03,0.09,5) (0.4,2,0.2,0.01,2.3) (0.6,0.4,8,3,0.8) (1,1,1,1,1)
0.1 0.3676 3.8883 0.3473 0.1452 0.0534
0.2 0.6051 5.2667 0.6898 0.2263 0.1146
0.3 0.8352 6.5325 1.0433 0.2863 0.1860
0.4 1.0787 7.8458 1.4447 0.3380 0.2710
0.5 1.3518 9.3134 1.9317 0.3865 0.3748
0.6 1.6759 11.0674 2.5640 0.4349 0.5065
0.7 2.0882 13.3400 3.4609 0.4863 0.6832
0.8 2.6723 16.6683 4.9273 0.5457 0.9444
0.9 3.7061 22.9362 8.1676 0.6262 1.4191

It is seen that for every value of ¢ € (0,1) and set of parameter values for ELW (v, 8, a, 6, \), the
values obtained from equation (2.10) are monotonic increasing.
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2.2.2 Moments and moment generating function

Suppose a random variable Y follows ELW (v, 3, a, 6, \), then the 7" raw moment (j,.) for the ELW
distribution are evaluated from the following expressions which are given as

o = EYT] = / Y galy)dy

. 0
= Z m,]/ Y (B + aby’ T (1 +qy)) e T dy,
4,J=0

Letting m = (i + 1)ay?, the derivation of 7" raw moment is given as

s Sl o) () ) )|

3,7=0

1

< () dm}
. oowam‘l> a<<m> ( e ))1
i;()n,{/o [0 (((i—s—l)oz)rw’+ ’ (i +1)a) + ! o (i + Do)~ 7

xemdm}.

Employing the relationship between integral of mathematical expression and complete gamma
function which is given as

e = /OOO 27 le*dz,

we have

S | (28) B a( P(% 4+ 1) r(EL ) )1
Hr = Aidzzonzd [( 0 ) (i + 1)a)v'+g+1 + i+ 1)a)r45j+1 +'7((i+ 1)a)r+§.+1+1 . (2.13)

The conditional moment for the ELW (v, 8, «, 6, A) is derived from the expression given as

where 7; ; = (—1)"*7 (*1) (B(Hjl)ﬂ)fyj.

pi=E[Y")Y >t] = ﬁ(t) /too Y galy)dy

\ (2.14)

o0 o)

) 0

= 77/ T (vB8+ aly’ M (14 qy)) e Ty,
1—(1—(1+7t)fﬁefat9)ﬁ;o e b )

Substituting m = (i + 1)ay? into equation (2.13), we have

ritl
0

Py = A Z ni {/oo [vﬁ ( d : )
r 1,5 v\ T rtittr
1 (1 (1 yt)e-at) A2 Jarnae | 0\ (54 1)a) "+

T4 r+y+1
(i + Do) T ((i+ Do)+ 1!
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Hence, the conditional moment for the ELW (v, 8, v, 0, \) is given as

W (B (g 0 Ty (52 41,(i+ D) at?) Do (ZHFL 11 (i41)at?)
o [(3) DL 4 o (M) | et
2ig=0"is |\ ((i+1)a) —F ((i+1)a) 52+ ((i+1)a) —F+1

1— (1= (14~t)Fe-at’)

*

My =

)

(2.15)
respectively, where T, (€, ») = f;o 267 1e7*dz is the incomplete upper gamma function.
The expressions for the first four raw moments j1, po, ps3 and pg are presented as

S (28 & o P +1) I(2H +1)
Ml_AZm”( )((i =t <((. = o

4,5=0

S (28 EGH o D5 +1) I3 4 1)
/1/2—)\2771,] _<9><(2 )3j—|— <(( — + : — 7

4,5=0

8 5 I(%52) T3 +1) I(%L +1)
NS—/\Zﬂm‘ [<9>W“+a G %+1+’y ; =T

,7=0

and

o 5+j 4+j 547
mn S () o v (P T ],

4,7=0

where 1 represents mean of ELW(v, 8, «, 8, A). The values of u1, o, pz and pg are obtained at
different values for sets of parameters in ELW (v, 8, , 0, A). The evaluation of standard deviation
(SD), coeflicients of variation (CV), skewness (CS) and kurtosis (CK) are obtained via moments

2
p3—3puz 1 +245
based relations given by SD = /g — ,u%, CV = 5D cS = ( 1)

B’ (m-u%)?’

and

 pa—4pspy+6puspT—3ul
CK = o\ 2 .
(“2_“1)

Table 2: Values of first four raw moments, standard deviation, coefficients of variation, skewness
and kurtosis for ELW distribution

(0.1,0.3,0.7,0.9,0.9) (1,1,1,1,1) (2.5,0.06,4,8,0.03) (3.2,1.5,9,6,4.7) (2.7,2.5,4,2.4,3.8)
w1 1.3915 0.5963 0.0706 0.5581 0.3456
a2 4.5735 0.8073 0.0453 0.3462 0.1538
13 24.2134 1.7890 0.0325 0.2285 0.0822
L 178.7238 5.6146 0.0245 0.1573 0.0504
SD 1.6239 0.6721 0.2009 0.1865 0.1856
(6AY 1.1670 1.1270 2.8460 0.3342 0.5370
CS 6.0225 6.4159 8.4721 0.2896 0.6778
CK 12.3423 13.1868 10.1792 2.5357 3.5848

It is evident from Table 2 that ELW(~,5,«,0,\) can be used to analyse fairly symmetrical,
moderately and highly (postively) skewed lifetime data. Also, platykurtic and leptokurtic lifetime
data can be analysie using the proposed distribution.
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The moment generating (mgf), My () of a random variable Y following ELW (v, 8, @, 0, ) is
obtained as

My (t) = E[e"] = / eYgx(y)dy = A Z Mij / (V8 + afy? (1 + yy)) ev=(+De’ gy

0 2,7=0

(2.16)
Substituting e = "2 %yk and m = (i + 1)ay?, equation (2.15) becomes

My (t) =AY ni [Z / I (y8 + afy? (1 4 yy)) e~ CFDav’ dy]
k=0

4,7=0

= ole) I (& +1)
_/\Zm,j{z l(tﬁ))((, )Q)W—&-a(_ A (2.17)

i.j=0 i+ 1a (i + 1)) 541

)
i+ Do) )| [

which is the moment generating function of a random variable Y following ELW (v, 8, a, 6, \)

2.2.3 Measures of entropy

The Rényi and Shannon entropies are two important measures in information theory to investigate
the randomness related to random variable following a lifetime distribution. The applications
of the two entropy measures are found in ecology, medicine, engineering, statistics and other
sciencific areas. The Rényi [Zr (p)] and Shannon [Hs(gx)] entropies for ELW (v, 8, «, 6, A) are given
respectively as

1 e P
T pzilog/ g (y)dy = log(\
9
log ZZZ”W a@ (v8)*~ g l TRt | P> 0,p#1
k=0,=01=0 9(p+j)76
where n ;0 = (£) (° ()‘j 1)) (p+B(p+]) P and
Hs(gr) = E[=log(gr(Y / 9A(Y)log(ga(y))dy = —log(Avp)
0
> DEHL 7 af o0 k:+1
k(60— w k
zz(w) (28) (o) s e 5 kp 1)
k=1 w=0 k=1
oo oo o0 kﬁ—Fl (_1)w+l+1 w 5
ran() 0035 (M )w!kwa) B(r)
k=1w=0 I=

where the mathematical expression for F(Y™") is given in equation (2.13).

2.2.4 Mean deviations about mean and median

Mean deviation (MD) is a measure of the aggregate variations in a data set from the mean and
median, thereby presenting the amount of scatter in the data set. The mean deviations about
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the mean (u1) and median (M) for a random variable Y following ELW (v, 8, a, 8, A) are given
respectively as

o0 M1
MD(ur) = E(|Y — u]) = / [y — a9 (v)dy = 211G () — 2 / yox ()dy
0 0
i+2 /. 0 j+1 : 0 it2 i 0
— 2y i.(w)n<9M+yyn+a<n<g+u¢ywn+,n<9+u¢gwﬁﬂ}
{ Z“Jon”[ ") ()T S TR S

—B_—ap? A
+ 2 (1*(1+’W1) e “1>
(2.20)

and

00 M
MD(M):E(IY*MI):/0 Iy*Mlgx(y)dy:ur?/O yga(y)dy =

it2 (s 0 Jt1 ; 0 i+2 . 0
_92d2 <‘)o‘7 iy (ﬁ) FZ(T,(z+l)aM ) Fl(T+1,(z+1)aM ) FZ(T+1,(zfl)aM )
{ Z”J‘On’][ 7)™ I e (e e

(2.21)

where I')(€, ) = fou 2¢~le~%dz is the incomplete lower gamma function and the value of the median
can be obtained by solving equation (2.12) if the values of v, 3, «, 0 and A\ are known.

2.2.5 Lorenz and Bonferroni curves

The applications of the Lorenz and Bonferroni curves are found in poverty and income study in
economics, medicine, lifetime analysis, demography and insurance. The Lorenz and Bonferroni
curves for a random variable Y following ELW (v, 3, «, 0, \) are defined respectively as

]_ q 1 [e'e]
L(p =7/ ygxydy:<u1—/ ygAydy>
( ) E(Y) 0 ( ) M1 q ( )
o ﬂ) Lo (52 (i+Dag”) | <Fu<jzl+1,<z+1>aq"> n ru<ﬂ';2+1,@+1>aqe)>]
2ui.4=0 g K S S N Y e

:]_—

M1
(2.22)

B(p) = pEl(Y) /Oq yar(y)dy = 2%1 (m - /qoo ygx(y)dy>

o 45\ Tu (352 (i+1)aq?) Py (3L 41,G41)0?) | Tu (352 41,G4+1)ad?)
1 A i—0 Mg (T) T2 o FT + T2
- ((i+1)a) © ((i+1)a) 0 ((i+D)a) 0
D M1

(2.23)

where ¢ = G5 ' (p) and E(Y) = ; is the mean. Tt is obvious that L(p) = pB(p).
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2.2.6 Order statistics, its cdf and raw moment

Let Y3,Ys,...,Y, be v continuous independent variables from ELW(v, 8, @, 0, \), then pdf of w®
(1 < w < v) order statistics is given by

_ V'QA(@/) w—1 _ V—w
gw;u(y) - (OJ — 1)'(1/ — LU)' [G)\(y)} [1 G)\(y)]
Viga(y) i w— 1) i v
= (=1)" [RA(y)]
— Dl —w)!
(w—=Dl(r—w)! =\ k (2.24)
VI N w1\ [A—i s
- -1 +1 6—1 1
(1 _|_,Yy)75(V+k+i7w+1)7187(1/+k+i7w+1)o¢y9
The corresponding cdf for g, (y) of ELW(v, 8, «, 0, \) is given as
" (v 4 il
Gunt) = 3 () (6301 1= Gty ZZ( )(5) v imr
k=w k=w j=0 (225)
= Z Z ( ) (k> Y (1 +~y)~ Blr+j—k) o= (v+i—k)ay’
k=w j=0 J
The 7" raw moments of g,,.,(y) of ELW (v, 8, a, 8, )) is evaluated from
00 w—1 oo w1
EY", :/ Y Gorw (y)dy = ( >< > 1)kt
2= | (v) (w_l =PI (—1)
/ Y (V8 + afy’ L (1 +yy)) (14 y) PEhtimet L= (thtizwt oy g,
0
which results as
w—1 oo . .
A w—1 Bv+k+i—w+1)+) k+itj
RS =D 0 M ) [ | R [
k=0 1,7=0
B L) D(=5+1) D= +1)
g - e - 7 11 + ) (EVES!
(v+k+i—w+1l)a) ™ @ (v+k+i—w+1l)a) @ (v+k+i—w+1l)a) ™ @
(2.26)

2.2.7 Residual and reversed residual lifetimes

Residual and reversed residual lifetime functions are important measures of reliability and life-
testings for systems experiencing failures in diverse scientific fields. The residual lifetime function
defines the lifetime remaining for a system beyond age ¢ > 0 until failure time is known and it
is the conditional random variable Y; = [(Y —¢)/Y > t)]. The reversed residual lifetime function
(also known as the inactivity time) defines the elapsed lifetime for a system from its failure for
which its lifetime is less than or equals to age t > 0 . It is the conditional random variable
Yy = [(t—Y)/Y <))

Let m,.(t) = E[(Y —t)"/Y >t)] and m}(t) = E[(t—Y)"/Y <t)] denote the r'* moments for
residual and reversed residual lifetime functions for a random variable Y following ELW (v, 8, a, 8, ),
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then m..(t) and mk(t), r =1,2,3, ..., are given as

() = 505 / Tt ()dy

_ A . A—1 (H—l)ﬁ—l—j) ()it
1— (1= (1+~t)Fe- at@AZ() ;O< i )( J U™
[(#) Ty (L’”l (i+1)at?) +a (Fu(w+1,(?+1)atg) +7F (L’“*H—l (i+1)at? ))]

((i+1)a) 7 ((i+1)a) ! (i+1)a) 7t
(2.27)
and
1 t
my(t) = W/o (t—y)"gx(y)dy
A - = /A-1 i+ DB+ L
T (L= (L4t Feart) 2 </z)(_1)r+ktk 2 ( i )(u J)'B ])(_DHW
- Y € k=0 i,j=0
ﬁ) Py (PHGEEL (i 1)) +a<rz<’"+z.é’“+1,<zj+1>at9> N rz<7"“9’““+1_,<i+1>at9>)1
[( O (e T (D) 57 (e e
(2.28)
respectively.

2.2.8 Statistical Inference for ELW (v, 8, a, 0, \)

The maximum likelihood estimation (MLE) is the most frequently used method among methods of
estimating parameter(s) of distributions in statistical inference. The maximum likelihood estimates
for parameters of ELW (v, 8, «, 8, \) are obtained using the procedures for the MLE method. Let a
v-sized random sample for a variable Y following ELW(~, 8, o, 0, A) be given as y1, y2, ..., Y, then
its log-likelihood function defined by v, = In(l,) becomes

=2 Inlga(i) = vinA + 3 in(y8 + oyl = (1 +99:) = (B+1) D _In(1+ i) = 3 o]

i=1 i=1 i=1

A—1) Zln(l — (14 yyi) el
- (2.20)

where [,, is the likelihood function of the v-sized random sample.
The first partial derivatives of equation (2.29) with respect to each of the parameters give the
components of the score function, ¥ = (68%, %, %, %, %) which are equated to zero. The

nonlinear equations are given as

v v —ay?
57/4» _ 7(5 + 1) Z Yi 5% 1 +’7y ) (B+1) Ys
dv — (1+y:) 2.21 1— (1 +~y;)~Beov!

0-1
+Z< ﬁ—|—o¢9y ):O,

Y8+ Byl (1 + vyi)
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8% (L) Pe o In(l + yy,)
= log(1 + A—1)
Z g(1+vyi) ;( e

v

+ =0,

Z <75+a9y (1+vyi)>

awu B Yl (1 4 y;) Peov! - YA+ yy) -
XA z(

= \1—(1+y) vﬂ+a9y9 Y1+ )

am o C [yl (14 yys) e W in(y;)
—_ l 1 13
Zy " );< 1= (1+ yy;)~Pemov!

ST A ) (4 0in(y:) |
+2< VB + aldy! " (1 + yys) >_0’

1=

and

by
oA

_b - _ N—B—ayly _
—X—I—;ln(l (1+~yy)Peovi) = 0.

The nonlinear equations are simultaneously solved by numerical method (Newton-Raphson or
Nelder- Mead method) to obtain unique solutions for ~, 3, o, #, A which are the maximum likelihood
estimates given as ﬁ,B,&,é,S\. Also, the AdequacyModel package in R can be used to obtain
;5/7 B? &7 é’ 5\'

Given that " = (W,B,d,é,j\) is the maximum likelihood estimate obtained for = (v, [, a,0,\),
then the asymptotic distribution of /v(—) <, N5(0,171()) where 0 = (0,0,0,0,0)” and I() =

Ui 6,155 = E (— gigg) ,kyj = 1,2,3,4,5 is the expected Fisher’s information. If () replaces

I(), then a valid asymptotic results exist with J() as observed information matrix evaluated at "
. The multivariate normal distribution given as N5(0, 7 ~!()) is needed to construct approximate
confidence regions and intervals for v, 5, a;, 8, \. The approximation of the total Fisher information
matrix, vI(), is given as
37'}/ \j'yﬁ J'ya 370 3’7/\

. Jps Jsa Jse Ipa

'.711()"% - . . \Jaa Gaa J(x)\
« Jeo  Aox
Iax
; _ P o~ P AL Oy : ;
where the expressions for ., = T2 B = Groh - - 0 UM = e are presented in the appendix.

For w% level of significance, 100(1 — w)% aymptotic confidence intervals for v, 8, «, 6 and A are

given as y £ ¢ fjw, B:I: cx/fjgg, == C\/jaa, 0+ C\/jgg and \ + C\/jM, where ¢ = Zy is the

standard normal critical value at %

3 Applications of ELW distribution to real lifetime data

The flexibility and applicability of ELW (v, 8, «, 8, \) are presented in this study by fitting two
lifetime data sets. Some nested and non-nested distributions are compared with the proposed
distribution using well-known discrepancy criteria. The computations of parameter estimates (with
standard errors in parentheses) and discrepancy criteria are achieved using AdequacyModel package
in R software. The other non-nested competing distributions include exponentiated additive Weibull
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(EAW)[4], exponentiated generalized Weibull Gompertz (EGWG)[5], exponentiated Weibull Weibull
(EWW)[10], exponentiated exponentiated exponential-Weibull (EEEW)[1], new Weibull-Lomax
(NWL)[24], Gompertz-Fréchet (GFr)[18] and Weibull inverse Lomax (WIL)[6]. The cdfs of the
non-nested distributions are listed as follows.

uye
Fpww(y) =1 —e 7 DA 550 8>0,a>0,0>0,\>0.

oy
Frpew(y) = (1 — eV (min(=(1—em® )ﬁ))))\,’}/ >0,0>0,aa>0,6>0X>0.
1/9
Frpewa(y) = (1— e @ =X 5 5 0.8>0,a > 0,0 >0, > 0.
Fpaw(y) = (1 —e " ") 4>0,8>0,a>0,0>0,\>0.

Fywi(y) =1—e @™ 550 8>0,a>0\>0.

(ayB

Forr(y) =1—e31=0=e 9707 5 08>0, > 0,A > 0.

Fwir(ly) =1- 67’1((1+%)ﬁ*1)_x,7 >0,8>0,a>0,\>0.

3.1 First data set: Exceedances of flood peaks from 1958-1984

The first data set represents 72 exceedances of flood peaks (in m?3/s) of Wheaton river, Canada
for the years 1958-1984, rounded to one decimal place. The data set had been analysed by several
researchers and recently by [3].

1.7, 2.2, 14.4, 1.1, 0.4, 20.6, 5.3, 0.7, 1.9, 13.0, 12.0, 9.3, 1.4, 18.7, 8.5, 25.5, 11.6, 14.1, 22.1, 1.1,
2.5, 14.4, 1.7, 37.6, 0.6, 2.2, 39.0, 0.3, 15.0, 11.0, 7.3, 22.9, 1.7, 0.1, 1.1, 0.6, 9.0, 1.7, 7.0, 20.1, 0.4,
2.8, 14.1, 9.9, 10.4, 10.7, 30.0, 3.6, 5.6, 30.8, 13.3, 4.2, 25.5, 3.4, 11.9, 21.5, 27.6, 36.4, 2.7, 64.0, 1.5,
2.5, 27.4, 1.0, 27.1, 20.2, 16.8, 5.3, 9.7, 27.5, 2.5, 27.0.

The descriptive statistics of the first data set is summarized in the Table 4. Table 3 presents values
for the parameter estimates and their standard errors (in parentheses), loglikelihood function, AIC,
CAIC, W* A* and KS test with p-value in parantheses for the competing distributions for data
set 1.

825


doi.org/10.6084/m9.figshare.13359584.

9¢8

Table 3: Parameter

estimates, loglikelihood, information criteria and goodness-of-fit values of compared distributions for first data set
«

gl 7 X : i KS
Model (std. error) (std. error) (std. error) (std. error) (std. error) ~2loglik AIC CAIC w* A* (p-value)
4.4325 0.3556 0.0054 2.6203 2.6203 ror or 0.0682
ELW (8.7084) (0.0044) (0.0041) (0.2068) (0.2068) 4957978 505.7978 5067069  0.0421  0.2660  (g'ggne)
o 0.5957 0.3000 0.0046 1.6884 B 1980036 506,093 - 03762 0.0728
W (0.4511) (0.1452) (0.0032) (0.1845) : - 506.690 : : (0.8395)
20.8407 0.2578 0.0650 - 3.8639 190.5 L ) . 0.0823
ELE (87.6556) (0.1395) (0.0134) (7.0062) 99.5006 5075007  508.0977  0.0992  0.5578 (0.7130)
EL 0.0201 46291 — — 09361 505.4080 5114081 5117610 01717  0.9656 01005
(0.0134) (2.4147) (0.1598) ' ' ' : : (0.4615)
, 0.1097 0.9008 0.1051
Weibull — — (0.0302) (0.0855) — 502.9974  506.9973  507.1712  0.1380  0.7856 (0.4043)
0.0086 104711 B B B 6oL . . L504 0.1269
Lomax (0.0058) (6.6403) 504.6010  508.6010  508.6010  0.150 0.8537 (0.1963)
oW 3.4518 0.1419 0.0414 1.2430 18.1352 081832 5084833 5000024 00648 08910 0.0778
WwW (1.3134) (0.0833) (0.0654) (0.4165) (25.9622) ' : : : : (0.7758)
1.3145 0.1275 0.0078 1.4501 4.8491 oL - - 154 0.1012
EEEW (0.5161) (0.2067) (0.0078) (0.2596) (8.7516) 5014988  511.4987 5124078  0.1097  0.645 (0.4527)
EGWG 0.0259 L3517 06350 00211 05261 502.0509  512.0509 5129600 01056  0.6444 01075
Wi (0.0796) (2.5353) (2.4729) (2.4238) (0.3247) : ' : : : (0.3764)
W 0.0037 1.7125 2.3080 0.1650 20.2357 074 . 0854 ) 0.0820
EAW (0.0026 (0.1928) (1.2167) (0.0721) (25.7797) 974311 5074311  508.3402  0.0629  0.3753 (0.7182)
L 254448 20638 0.0807 — 04417 5037300 5117301  512.3271  0.1401 0.8067 01073
W (31.2078) (4.9081) (0.4791) (1.0502) ' ' ' : : (0.3781)
0.6672 0.3400 9.0279 B 3.6353 601 04 .\ " ) 0.1020
GFr (0.9991) (0.1445) (29.7279) (2.9812) 500.769 508.7694  509.366 01158 06495 (0.4424)
0.0616 6.4419 0.0577 B 0.8544 L0 , . 132 0.0946
WIL (0.2136) (16.7628) (0.0763) (0.0041) 501.8020  509.8020  510.3990  0.1327  0.7353 (0.5393)
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Table 4: Summary of the exceedances of flood peaks
Statistics Minimum Maximum Mean Qo.25 Qo.50 Qo.75 Kurtosis  Skewness
Ist
data

0.1000 64.0000 12.2040 2.1250 9.5000 20.1250 5.8895 1.4725

Estimated pdfs ecdf(dataset1)

012
|
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I

Density
006
L
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I
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e
N X})-;

o 10 20 30 40 50 60 o 20 40 60

Figure 3: Histogram and estimated pdfs for Figure 4: Ecdf vs ELW cdf for flood peaks
flood peaks exceedances exceedances

The approximate 95% confidence intervals for v, 3,, 6 and X are given by 6.0211 4 32.9370,
0.3589 4+ 0.1889, 0.0055 £ 0.0082, 1.6541 + 0.4077 and 3.0143 + 7.8633.

3.2 Second data set: Remission times of bladder cancer patients

The second data set represents a random sample of 128 bladder cancer patients with their remission
times reported in months [10]. Recent analysis of the data set have been considered by [11]. Table
5 presents values for the parameter estimates and other discrecancy criteria for the competing
distributions for data set 2. Also, descriptive statistics for the data sets are presented in the Table
6.

0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26,
3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70,
5.17, 7.28, 9.74, 14.76, 6.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39,
10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75,
16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05,
1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26,
11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36,
6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69.

827


doi.org/10.6084/m9.figshare.13359584.

8T8

Table 5: Parameter

estimates, loglikelihood, informati
«

on criteria and goodness-of-fit values of compared distributions for second data set
A

7 7 : § KS
Model (std. error) (std. error) (std. error) (std. error) (std. error) ~2loglik AIC CAIC w* A* (p-value)
0.0706 3.2082 0.5850 0.1893 49315 23560 - ,  0.0301
ELW (0.0986) (2.5767) (3.2316) (0.4987) (22.4444) 813.5626  823.5626  824.05 0.0153  0.099 (0.9998)
LW 00235 32651 0.0278 L1716 — 8222730  830.2731  830.5983  0.1010  0.6620 0.0841
W (0.0263) (4.6489) (0.0394) (0.1968) ' : : : ' (0.3260)
0.1066 1.2375 0.0626 - 1.5625 ] Ls1ss \ . 0.0492
ELE (0.0839) (11012) (0.0404) (0.3080) 8165136 824.5135  824.8387  0.0505  0.3330 (0.9156)
- 0.0450 4.3350 - - 1.6386 o15.0204 s 12151 0.0408
(0.0269) (1.8328) (0.2816) ' 821.0203  821.2139 0. (0.9835)
, 0.0947 1.0513 0.0720
Weibull — — (0.0191) (0.0675) — 8237850  827.7849  827.8809  0.1383  0.8444 (0.5200)
0.0125 9.6614 - - - viise s2maL - ’ » 0.1043
Lomax (0.0067) (4.7930) 823.4134  827.4135 8274135  0.07 0.4483 (0.1237)
W 4.3603 4.1407 0.4818 0.1085 3.5453 Clos0r  S64803  S26.9791  odos 08317 0.0454
WwW (22.4011) (12.4123) (0.9370) (0.3231) (2.5429) ' : : : : (0.9546)
4.4423 3.2084 0.4072 0.4333 1.3663 A ) ) \ 0.0446
EEEW (14 6099) (6.7209) (0.7651) (1.9585) (0.4667) 816.1418  826.1417  826.6335  0.0460  0.3069 (0.9613)
EGWG 02632 0.5869 1-5572 00556 28803 8164612  826.4612  826.9530  0.0496  0.3302 0.0454
Wi (5.3650 (1.3597) (36.0455) (1.1467) (1.4461) ' - : ~ ~ (0.9544)
W 0.7623 0.5483 0.9397 0.0177 14.3402 ) \ ) » 0.0376
EAW (0.5018) (0.1405) (1.7240) (0.1500) (29.2956) 814.7862  824.7862  825.2780  0.0278 0.8 (0.9936)
L 16.7811 L7275 0.0439 — 06160 825.1196  833.1195 8334447  0.1457  0.8868 0.0743
W (14.7253) (1.2112) (0.0926) (0.4311) ~ : : : ' (0.4804)
0.0193 1.0534 0.1986 - 0.9700 29 507 - 150 a1 - 0.0733
GFr (0.0207) (0.4528) (0.1580) (0.4435) 822.8076  830.80 831.1329  0.1310 0.815 (0.4970)
21.5206 4.1645 7.1872 - 0.3742 " » 227161 - - 0.0356
WIL (14.3133) (3.6316) (3.6600) (0.3381) 814.3008  822.3909  822.716 0.023 0.1620 (0.9969)
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Table 6: Summary of the remission times of bladder cancer patients
Statistics Minimum Maximum Mean Qo.25 Qo.50 Qo.75 Kurtosis ~ Skewness

2nd
data

0.0800 79.0500 9.2090 3.3480 6.2800 11.6780 19.3942 3.3987

Estimated pdfs ecdf(dataset2)

012
|
I

0.08 0.10
I I
'

Density
006
L
Fn(y)

ELW cdf

0.04
I

0.02
I

0.00
L

Figure 5: Histogram and estimated pdfs for Figure 6: Ecdf vs ELW cdf for remission times
remission times of bladder cancer patients of bladder cancer patients

The approximate 95% confidence intervals for v, 3,«,0 and A are given by 0.0706 + 0.1932,
3.2982 £ 5.0503, 0.5850 &+ 6.3339, 0.1893 £ 0.9774 and 4.9315 + 43.9910.

4 Discussion of Results

From Tables 5 and 8, it is evident that the ELW distribution is a model that better fits the
lIfetime data sets used in the application than the other compared distributions. The preference
of the proposed distribution over other compared distributions is presented in Figures 3 and 5.
These figures show the histograms representing the data sets and fitted densities of the compared
distributions obtained from their estimated parameter values. The ELW distribution exhibits the
lowest value for three goodness-of fit tests ( W*, A* and KS) amongst the compared distributions
for the two data sets. The same finding can be presented from the p-values of the KS test. The p-
value of the KS test of the ELW distribution is the highest among the p-values presented in the two
tables, indicating that the ELW distribution better fits the two data sets than remaining competing
models. Hence, its superiority over the remaining competing dstributions and applicability of the
proposed distribution in lifetime analysis are presented.
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5 Conclusion

The paper introduces a new flexible five-parameter distribution called the exponentiated Lomax-
Weibull (ELW) distribution using combination of two construction methods of generating lifetime
distributions in literature. We generated some new and existing distributions as submodels. Explicit
mathematical expressions are derived for several properties of the ELW distribution which include
the moments, quantile function, mean deviations, residual and reversed residual liifetimes, order
statistics and entropy measures. Estimates for the proposed distribution could be obtained with
maximum likelihood estimation approach which is presented in the study. Applications of the ELW
distribution to flood peaks and bladder cancer data sets to illustrate its flexiblity and usefulness
are considered. The results of the analysis show the superiority of the ELW distribution over
some compared distributions, since it provides better fits for the two lifetime datasets than the
distributions used in the paper. The 95% confidence intervals for point estimates of the v, 3, «, 0
and A\ are presented for the data sets employed. It is desired that the proposed five-parameter
distribution will attract wider applications in scientific areas of research with lifetime analysis.
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Appendix

If K; = (1++y;), then the second partial derivatives of ¢, = In(l,) with respects to the parameters
of interest are given as the elements of the approximation of the total Fisher information matrix,
J,(). The mathematical expressions for the elements of 7, () are given as
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