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Abstract

This paper presents explicit closed-form formulae for the determinants of the Laplacians on
n-dimensional quaternionic projective spaces Pn(H) (n ≥ 1). The explicit calculation of this
spectral invariant associated with Pn(H) is novel in the context of spectral theory of the Lapla-
cian on Riemannian manifolds. Other spectral properties of the Laplacian on Pn(H) – the
Minakshisundaram-Pleijel coefficients and Minakshisundaram-Pleijel zeta functions are also
explicitly discussed.
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1 Introduction
Let M = G/K be a N -dimensional (N ≥ 1) compact rank one symmetric space, KN and ∆N the
associated heat kernel and Laplace-Beltrami operator (or simply Laplacian) respectively. Here the
Lie group G is compact and K is the isotropy group of a point in M. Using the addition formula for
the matrix coefficients (see, e.g., [1][Ch. IV]), it is not difficult to see that the heat kernel KN (t, x, y)
takes the form (see [2][Appendix A.1])

KN (t, ϑ) =
1

ωN

∞∑
k=0

ΛNk ΨN
k (ϑ)e−λ

N
k t. (1.0.1)

The numbers λNk (with k ≥ 0) are the numerically distinct eigenvalues of ∆N , ΛNk is the dimension of
the eigenspace associated with λNk (i.e., the multiplicity of the eigenvalue λNk ), ΨN

k (ϑ) is the spherical
function on M associated with the eigenvalue λNk , ϑ is the geodesic distance between the points
x, y ∈ M and ωN = Vol(M) is the volume of M. It is remarkable to know that the spherical functions
ΨN
k (ϑ) on M can be explicitly given in terms of the normalised Jacobi polynomials P

(α,β)
k (cosϑ) :=

http://ijmso.unilag.edu.ng/article/view/274
885

doi.org/10.6084/m9.figshare.13829129.
http://ijmso.unilag.edu.ng/article/view/274


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

Vol. 6, No. 2, pp. 885 - 900.
doi.org/10.6084/m9.figshare.13829129.

P
(α,β)
k (cosϑ)/P

(α,β)
k (1) (with k ≥ 0;α, β > −1). For thorough discussions on heat kernels in

Riemannian manifolds, see [3–11].
Examples of rank one compact symmetric spaces include the sphere Sn = SO(n+ 1)/SO(n), the

real projective space Pn(R) = SO(n + 1)/O(n), the complex projective space Pn(C) = SU(n +
1)/S(U(n) × U(1)) (of real dimension 2n), the quaternionic projective space Pn(H) = Sp(n +
1)/Sp(n) × Sp(1) (of real dimension 4n) and the Cayley projective plane P2(Cay) = F4/Spin(9)
(of real dimension 16). See the monographs [9,12,13,15,16] for related material on Lie groups and
symmetric spaces.

This paper specialises M to the real 4n-dimensional (n ≥ 1) quaternionic projective space Pn(H).
Recall that the symplectic group Sp(n) is the set of n× n matrices with entries in the quaternions
H, where H consists of element x + iy + jz + kw with x, y, z, w ∈ R; i.e., H ∼= R4. Projective
spaces are useful in: coding theory, number theory, design theory, physics, combinatorics, computer
vision modelling, computer graphics, and extremal combinatorial problems ( [17]). The quaternionic
projective space is a space in which the coordinates lie in the ring of quaternionsH. The quaternionic
projective line P1(H) is homeomorphic to the sphere S4. In a group theoretic description, Pn(H)
is the orbit space of Hn+1\ {(0, . . . , 0)} by the action of H×, where H× is the multiplicative group
of nonzero quaternions. If we first project onto the unit sphere inside Hn+1, then one may also
consider Pn(H) as the orbit space of S4n+3 by the action of Sp(1), the group of unit quaternions;
under this consideration, the sphere S4n+3 then becomes a principal Sp(1)-bundle over Pn(H) (called
a generalised Hopf fibration):

Sp(1)→ S4n+3 → Pn(H).

For further discussion on the geometry of quaternionic manifolds, see [18].
In this special case of M = Pn(H), the Laplacian ∆N on Pn(H) has eigenvalues given explicitly

by 1 λnk = (k(k + 2n+ 1) : k ≥ 0) each of which with multiplicity

Λnk =
(2k + 2n+ 1)Γ(k + 2n)Γ(k + 2n+ 1)

Γ(2n+ 2)Γ(2n)Γ(k + 1)Γ(k + 2)
, k ≥ 0. (1.0.2)

Corresponding to the eigenvalue λnk are the (normalised) eigenfunctions (called spherical functions)
Ψn
k given explicitly by the normalised Jacobi polynomials

Ψn
k (ϑ) := P

(2n−1,1)
k (cosϑ) =

P
(2n−1,1)
k (cosϑ)

P
(2n−1,1)
k (1)

, (1.0.3)

where P (α,β)
k = P

(α,β)
k (t) (with integer k ≥ 0 and real α, β > −1) is the Jacobi polynomial with

P
(α,β)
k (1) =

Γ(α+ k + 1)

Γ(α+ 1)Γ(k + 1)
. (1.0.4)

For further treatment of Jacobi polynomials, the interested reader is referred to [19–23].
It is now straight forward to see that the heat kernel on Pn(H) admits the spectral series

representation

KN (t, ϑ) =
1

ωn

∞∑
k=0

ΛnkΨn
ke
−λn

k t

=

∞∑
k=0

(2k + 2n+ 1)Γ(k + 2n)Γ(k + 2n+ 1)

ωnΓ(2n)Γ(2n+ 2)Γ(k + 1)Γ(k + 2)
P
(2n−1,1)
k (cosϑ)e−k(k+2n+1)t, (1.0.5)

1Note that Pn(H) as a real manifold has dimension 4n. For the sake of convenience of notation here and in future we
slightly abuse notation and denote its associated spectral and geometric data by ∆n, λnk ,Λ

n
k , ωn, ank ,Ψ

n
k ,Zn,Kn, ζn,

instead of ∆4n, λ4nk ,Λ4n
k , ω4n, a4nk ,Ψ4n

k ,Z4n,K4n, ζ4n, respectively.
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where ωn = Vol(Pn(H)) = (4π)2n/Γ(2n+ 2).
The heat trace Zn(t) associated with Pn(H) takes the form ( [24])

Zn(t) =

∞∑
k=0

(2k + 2n+ 1)Γ(k + 2n)Γ(k + 2n+ 1)

Γ(2n)Γ(2n+ 2)Γ(k + 1)Γ(k + 2)
e−k(k+2n+1)t. (1.0.6)

It is well-known ( [3], [24]) that the heat trace Zn(t) satisfies the asymptotic expansion

Zn(t) ∼ ωne
(2n+1)2

4 t

(4πt)2n

[
1 +

∞∑
k=1

unk t
k

]
, t↘ 0

∼ 1

(4πt)2n

∞∑
k=0

ank t
k, t↘ 0, (1.0.7)

where

ank = ωn

k∑
j=0

[
(2n+ 1)2/4

]k−j
(k − j)!

unj , (1.0.8)

for some coefficients unk (k ≥ 0).
As a result the Minakshisundaram-Pleijel zeta function ζn(s) has the formulation ( [3])

ζn(s) =

∞∑
k=1

Λnk
[λnk ]s

=

∞∑
k=1

(2k + 2n+ 1)Γ(k + 2n)Γ(k + 2n+ 1)

Γ(2n+ 2)Γ(2n)Γ(k + 1)Γ(k + 2)[k(k + 2n+ 1)]s
. Re s > 2n. (1.0.9)

It follows immediately that ζn can be analytically continued to a meromorphic function on C with
simple poles located at the points s = 2n, 2n− 1, . . . , 2. The residues of ζn at these poles and their
relation to the heat coefficients ank will be discussed in Section 3.

The Minakshisundaram-Pleijel zeta functions are useful tools in the computation of the de-
terminants of the Laplacians on Riemannian manifolds. For the applications of the spectral zeta
functions in this regard, see, e.g., [25–44]. Other important applications of spectral zeta functions
are in analytic number theory, harmonic analysis on symmetric spaces and quantum field theory
( [45–50]).

The set of all surfaces, with associated varying metrics, and with determinants of associated
Laplacians are useful tools in the study of modern quantum geometry of strings. The determinant
can therefore be considered as a function of the metric on surfaces and its extreme values can as
well be estimated. For the unification of this problem by the determinant of the Laplacian, see [39].
For the determinants of Laplacians on spheres, see [30,31,36,38,43,51]. See [52] for a recent survey
on the explicit description of spectral invariants of Laplacians on spheres. The spectral invariants of
the Laplacians on the complex projective spaces and Cayley projective plane are considered in [53]
and [54] respectively. In [2] and [24], we introduced and studied a new class of heat coefficients,
namely, the Maclaurin heat coefficients (i.e., the coefficients appearing in the Maclaurin expansion
of the heat kernel) in terms of the classical and generalised Minakshisundaram-Pleijel coefficients,
when M = Pn(C) and M = Pn(H) (n ≥ 1) respectively. Remarkable asymptotic expansions for
the Maclaurin spectral functions were established. We also introduced and constructed new zeta
functions associated with these Maclaurin heat coefficients (generalised Minakshisundaram-Pleijel
zeta functions), and it was interesting that these generalised zeta functions could be explicitly
understood in terms of the classical (Minakshisundaram-Pleijel) zeta functions. To the best of our
knowledge, the determinant of the Laplacian on the quaternionic projective space Pn(H) has not
appeared in the literature. It is the purpose of this paper to determine explicitly the determinants
of the Laplacians on the quaternionic projective spaces Pn(H) (n ≥ 1):

− log det∆n =
d

ds
ζn(s)

∣∣∣∣
s=0

= lim
s↘0

ζn(s)− ζn(0)

s
. (1.0.10)
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2 The Heat Coefficients ank Associated with Pn(H)

In this section, we present results on the heat coefficients ank associated with Pn(H) as calculated
explicitly in [24] following Cahn and Wolf ( [55]). The idea is to first express the heat trace Zn(t)
associated with Pn(H) purely in terms of a Jacobi theta function and its higher order derivatives,
and then employ the asymptotics of the Jacobi theta function (as t↘ 0) in the spirit of [56]. Here,
for completeness, we present the proof as given in [24].

Theorem 2.1 ( [24]) The heat trace Zn(t) associated with Pn(H) (given by (1.0.6)) admits the
Minakshisundaram-Pleijel asymptotic expansion

Zn(t) ∼ 1

(4πt)2n

∞∑
k=0

ank t
k (as t↘ 0), (2.0.1)

where the heat coefficients ank are given by

ank = ωn

k∑
j=0

(2n+ 1)2k−2junj
4k−j(k − j)!

, unk = A n
2n−1−k

(2n− k − 1)!

(2n− 1)!
, 0 ≤ k ≤ 2n− 1;

ank = ωn

k∑
j=0

(2n+ 1)2k−2junj
4k−j(k − j)!

, unk =

2n−1∑
`=0

(−1)`A n
`

(k − 2n)!

Bk+`−2n
(2n− 1)!

, k ≥ 2n;

(2.0.2)

with un0 = 1 and an0 = ωn. Here the coefficient A n
m is defined by[

η2 −
(

2n− 1

2

)2
] 2n−3

2∏
j=1/2

[
η2 − j2

]2
=

2n−1∑
m=0

A n
mη

2m (2.0.3)

and

Bm =
(−1)m

(
1− 2−2m−1

)
(m+ 1)

B2m+2, (2.0.4)

where Bm is the well-known mth Bernoulli number.

Proof 2.1 Writing the multiplicity Λnk in a polynomial form we have

Λnk =
(2k + 2n+ 1)Γ(k + 2n)Γ(k + 2n+ 1)

Γ(2n+ 2)Γ(2n)Γ(k + 1)Γ(k + 2)
=

(k + 2n)(2k + 2n+ 1)

2n(2n+ 1)(k + 1)

2n−1∏
j=1

(
k + j

j

)2

=
2
(
k + 2n+1

2

) [(
k + 2n+1

2

)2 − ( 2n−12

)2]
(2n+ 1)!(2n− 1)!

2n−3
2∏

j=1/2

[(
k +

2n+ 1

2

)2

− j2
]2

=
2

(2n+ 1)!(2n− 1)!

2n−1∑
m=0

A n
m

(
k +

2n+ 1

2

)2m+1

. (2.0.5)

Using the multiplicity (2.0.5) in the trace formula (1.0.6) we have

Zn(t) =
2e

(2n+1)2

4 t

(2n+ 1)!(2n− 1)!

∞∑
k=0

2n−1∑
m=0

A n
m

(
k +

2n+ 1

2

)2m+1

e−(k+ 2n+1
2 )

2
t

=
e

(2n+1)2

4 t

(2n+ 1)!(2n− 1)!

2n−1∑
m=0

A n
m2

∞∑
s=(2n+1)/2

s2m+1e−s
2t. (2.0.6)
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It is interesting to see that (for n ≥ 1),

2n−1∑
m=0

A n
m2

∞∑
s=(2n+1)/2

s2m+1e−s
2t =

2n−1∑
m=0

A n
m2

∞∑
s=1/2

s2m+1e−s
2t

=

2n−1∑
m=0

(−1)mA n
mθ

(m)(t), (2.0.7)

where the Jacobi theta function θ is given by

θ(t) =

∞∑
j=0

(2j + 1)e−(j+ 1
2 )

2
t w

1

t
+

∞∑
j=0

Bjt
j , (see, e.g., [56]), (2.0.8)

with Bj = Bj/j!. We see, for example (n = 1), that

Z1(t) =
e

9
4 t

6

−1

4
2

∞∑
s=3/2

se−s
2t + 2

∞∑
s=3/2

s3e−s
2t


=
e

9
4 t

6

−1

4
2

∞∑
s=1/2

se−s
2t + 2

∞∑
s=1/2

s3e−s
2t


=
e

9
4 t

6

[
−θ′(t)− 1

4
θ(t)

]
. (2.0.9)

(The higher cases n ≥ 2 follow similarly.) Thus

Zn(t) =
e

(2n+1)2

4 t

(2n+ 1)!(2n− 1)!

2n−1∑
m=0

(−1)mA n
mθ

(m)(t). (2.0.10)

In general, we have

θ(p)(t) w
(−1)pp!

tp+1
+

∞∑
j=p

B
p
j t
j−p, p ≥ 1, (2.0.11)

where B
p
j = Bj/(j − p)!. Substituting the generalised Jacobi theta function (2.0.11) in the trace

formula (2.0.10), we have

Zn(t) w
e

(2n+1)2

4 t

(2n+ 1)!(2n− 1)!

 (2n− 1)!

t2n
+

2n−2∑
`=0

A n
` `!

t`+1
+

2n−1∑
`=0

Ã n
`

∞∑
j=`

B`jt
j−`

 (2.0.12)

(where Ã n
` = (−1)`A n

` ), which after further simplification gives

Zn(t) w
ωne

(2n+1)2

4 t

(4πt)2n

1 +

2n−2∑
`=0

An` t
2n−`−1 +

2n−1∑
`=0

Ãn`

∞∑
j=`

B`jt
2n+j−`


=

1

(4πt)2n

∞∑
k=0

ank t
k, (2.0.13)

where An` = A n
` `!/(2n− 1)!, Ãn` = Ã n

` /(2n− 1)!. Consequently, we obtain the heat coefficients ank
given in (2.0.2) as required.
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The first few coefficients (A n
m : 0 ≤ m ≤ n− 1) are illustrated in Table 1.

Table 1: The coefficients (A n
m : 0 ≤ m ≤ 2n− 1).

A 1
0 A 1

1 A 2
0 A 2

1 A 2
2 A 2

3 A 3
0 A 3

1 A 3
2 A 3

3 A 3
4 A 3

5

− 1
4 1 − 9

64
19
16 − 11

4 1 − 2025
1024

4581
256 − 1665

32
313
8 − 45

4 1

Example 2.2 We give explicit computations of the heat coefficients ank for the special cases n =
1, 2, 3.

• (n = 1) Clearly, P1(H) is the sphere S4. It is easily seen in this case that

Z1(t) =
e

9
4 t

6

[
−θ′(t)− 1

4
θ(t)

]
. (2.0.14)

Upon substituting the theta function (2.0.11) we have

Z1(t) w
ω1e

9
4 t

(4πt)2

1− t

4
+

∞∑
j=2

u1j t
j

 , (2.0.15)

where
u10 = 1, u11 = −1

4
, u1k = −

(
B1k−1 +

1

4
B0k−2

)
, k ≥ 2. (2.0.16)

Thus the Minakshisundaram-Pleijel heat coefficients a1k given by

a1k = ω1

k∑
j=0

(
9
4

)k−j
(k − j)!

u1j , k ≥ 0, (2.0.17)

follow immediately.

• (n = 2) It is clear that

Z2(t) =
e

25
4 t

5!3!

[
−θ′′′(t)− 11

4
θ′′(t)− 19

16
θ′(t)− 9

64
θ(t)

]
, (2.0.18)

and consequently, we have

Z2(t) w
ω2e

25
4 t

(4πt)4

1− 11t

12
+

19t2

96
− 3t3

128
+

∞∑
j=4

u2j t
j

 , (2.0.19)

where

u20 = 1, u21 = −11

12
, u22 =

19

96
, u23 = − 3

128
,

u2k = −1

6

(
B3k−1 +

11

4
B2k−2 +

19

16
B1k−3 +

9

64
B0k−4

)
k ≥ 4.

(2.0.20)

Hence, we obtain the heat coefficients a2k given by

a2k = ω2

k∑
j=0

(25/4)k−ju2j
(k − j)!

, k ≥ 0. (2.0.21)
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• (n = 3) Indeed we have

Z3(t) =
e

49
4 t

7!5!

[
−θ(5)(t)− 45

4
θ(4)(t)− 313

8
θ′′′(t)− 1665

32
θ′′(t)− 4581

256
θ′(t)− 2025

1024
θ(t)

]
,

(2.0.22)

from which we obtain the asymptotic formula

Z3(t) w
ω3e

49
4 t

(4πt)6

1− 9t

4
+

313t2

160
− 111t3

128
+

4581t4

30720
− 135t5

8192
+

∞∑
j=6

u3j t
j

 , (2.0.23)

where

u30 = 1, u31 = −9

4
, u32 =

313

160
, u33 = −111

128
, u34 =

4581

30720
, u35 = − 135

8192
,

u3k = − 1

120

(
B5k−1 +

45

4
B4k−2 +

313

8
B3k−3 +

1665

32
B2k−4 +

4581

256
B1k−5 +

2025

1024
B0k−6

)
k ≥ 6.

(2.0.24)

As a result, we obtain the Minakshisundaram-Pleijel heat coefficients a3k given by

a3k = ω3

k∑
j=0

(49/4)k−ju3j
(k − j)!

, k ≥ 0. (2.0.25)

3 Description of Heat Coefficients ank By Residues of Zeta
Functions ζn

In this section, we relate the heat coefficients ank to the residues of the zeta functions ζn. That is,
we show that the Minakshisundaram-Pleijel formula [24][(1.8)] also holds for the special case of the
quaternionic projective space Pn(H). This is done by first expressing the Minakshisundaram-Pleijel
zeta function ζn in terms of the Hurwitz zeta function ζ(z, ·) (z ∈ C) of number theory.

By definition, the Hurwitz zeta function ζ(z, a) is defined, for a > 0, by (see [51][Sec. 2.2], [57])

ζ(z, a) =

∞∑
j=0

1

(j + a)z
, Re z > 1. (3.0.1)

The Hurwitz zeta function ζ(z, ·) can be analytically continued to a meromorphic function on all
of C with its only (simple) pole located at z = 1 and the residue at this pole is one.

The following theorem is given in [24] without a proof. Here we present a proof of the result.

Theorem 3.1 ( [24]) The Minakshisundaram-Pleijel zeta function ζn can be written in terms of
the Hurwitz zeta function as

ζn(s) =
2

(2n+ 1)!(2n− 1)!

∞∑
m=0

Γ(s+m)

m!Γ(s)

(
2n+ 1

2

)2m 2n−1∑
`=0

A n
` ζ

(
2(s− `+m)− 1,

2n+ 3

2

)
.

(3.0.2)

Moreover, ζn(s) (Re s > 2n) has a meromorphic continuation on the whole complex plane with at
most simple poles at s = 2n− k (0 ≤ k ≤ 2n− 1) with residues given by

Res ζn(s)

∣∣∣∣
s=2n−k

=
1

(2n+ 1)!(2n− 1)!

k∑
`=0

A n
`+2n−k−1

Γ (2n− k + `)

`!Γ (2n− k)

(
2n+ 1

2

)2`

. (3.0.3)
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Proof 3.1 We have

ζn(s) =

∞∑
k=1

Λnk
[k(k + 2n+ 1)]

s

=

∞∑
k=1

4sΛnk[
(2k + 2n+ 1)

2 − (2n+ 1)
2
]s

=

∞∑
k=1

4sΛnk
(2k + 2n+ 1)

2s

[
1−

(
2n+ 1

2k + 2n+ 1

)2
]−s

. (3.0.4)

Upon applying the generalised binomial expansion and interchanging the summation, we get

ζn(s) =

∞∑
m=0

[( ∞∑
k=1

4sΛnk
(2k + 2n+ 1)

2s+2m

)(
s+m− 1

m

)
(2n+ 1)

2m

]
. (3.0.5)

Substituting the multiplicity (2.0.5) into (3.0.5) and using the identity ( [51][eq. 2.2(26)])

ζ(s, a+ 1) = ζ(s, a)− a−s, (3.0.6)

we have

ζn(s) =
2

(2n+ 1)!(2n− 1)!

∞∑
m=0

(
s+m− 1

m

)(
2n+ 1

2

)2m 2n−1∑
`=0

A n
` ζ

(
2(s− `+m)− 1,

2n+ 3

2

)
.

(3.0.7)

Noting that the residue of the Hurwitz zeta function in (3.0.7) is 1/2, and that ζn(s) has simple
poles at s = 2n− k, we obtain the residue formula (3.0.3) as required.

A different method of finding the residues of ζn(s) is considered in [58].

Corollary 3.2 The following relation holds:

ank =
ωn

Γ (2n)

k∑
`=0

A n
`+2n−1−k
`!

Γ (2n− k + `)

(
2n+ 1

2

)2`

. (3.0.8)

4 Determinants of Laplacians on Pn (H)

This section presents the main results of this paper, namely, explicit closed-form formulae for the
determinants of the Laplacians on Pn(H) (n ≥ 1). The approach involves the explicit evaluation of
the zeta functions ζn(s) using a generalised binomial expansion.

We proceed by first considering the spectral zeta function ζ̃n(s) associated with the shifted
Laplacian ∆̃n = ∆n+ (2n+ 1)2/4 having eigenvalues λ̃nk = k(k+ 2n+ 1) + (2n+ 1)2/4 = (k+ (2n+
1)/2)2 and the usual multiplicity Λnk . In this regard, we have the following theorem.

Theorem 4.1 The following formula holds for the determinant of the Laplacian ∆̃n:

log det
(

∆̃n

)
=

2n−1∑
j=0

Ã n
j

[(
2−2j−1 log 2

)
Bj −

(
2−2j−1 − 1

)
ζ ′(−2j − 1)

]
,

where Bj = B2j+2/(2j + 2) and Ã n
j =

4A n
j

(2n+1)!(2n−1) .
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Proof 4.1 The spectral zeta function ζ̃n is defined, in a similar way, by the Dirichlet-type series

ζ̃n(s) =

∞∑
k=0

4sΛnk
(2k + 2n+ 1)

2s , Re s > 2n. (4.0.1)

Upon inserting the multiplicity (2.0.5) in (4.0.1) we obtain

ζ̃n(s) =

2n−1∑
j=0

2A n
j

(2n+ 1)!(2n− 1)!
ζ

(
2s− 2j − 1,

2n+ 1

2

)

=

2n−1∑
j=0

2A n
j

(2n+ 1)!(2n− 1)!
ζ

(
2s− 2j − 1,

1

2

)

=

2n−1∑
j=0

2A n
j

(2n+ 1)!(2n− 1)!

(
22s−2j−1 − 1

)
ζR(2s− 2j − 1), (4.0.2)

where ζR(z) is the well-known Riemann zeta function defined by (see [51][Sec. 2.3])

ζR(z) =

∞∑
j=1

1

jz
, Re z > 1. (4.0.3)

In arriving at the last equation in (4.0.2) we have used the functional relation

ζ

(
z,

1

2

)
= (2z − 1) ζR(z). (4.0.4)

In particular, ζ(z, 1) = ζR(z). Differentiating ζ̃n(s) (given in (4.0.2)) at s = 0 and using the
relation

ζR(−j) =

{
− 1

2 , j = 0,

−B j−1
2
, j = 1, 2, · · ·,

(4.0.5)

we have

ζ̃ ′n(0) =

2n−1∑
j=0

4A n
j

(2n+ 1)!(2n− 1)!

[(
2−2j−1 − 1

)
ζ ′R(−2j − 1)−

(
2−2j−1 log 2

)
Bj

]
.

A generalisation of (4.0.5) is ( [57])

ζ(−j, x) = −B j−1
2

(x) = −Bj+1(x)

j + 1
, (4.0.6)

where the Bernoulli polynomial Bj(x) is given by

zexz

ez−1
=

∞∑
j=0

Bj(x)
zj

j!
, |z| < 2π.

Hence we obtain the formula

det
(

∆̃n

)
= exp

− 2n−1∑
j=0

4A n
j

(2n+ 1)!(2n− 1)

[(
2−2j−1 − 1

)
ζ ′(−2j − 1)−

(
2−2j−1 log 2

)
Bj

] .
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We are now set to compute the more complicated det∆n, and this is given in the following
theorem.

Theorem 4.2 The determinant of the Laplacian ∆n admits the following formula:

log det (∆n) =

2n−1∑
m=0

2A n
m

(2n+ 1)!(2n− 1)!

[ (
2−2m log 2

)
Bm −

(
2−2m − 2

)
ζ ′(−2m− 1)

−FP

( ∞∑
`=1

(
2n+1

2

)2`
`

ζ

(
2`− 2m− 1,

2n+ 3

2

))]
− 2 log

(
2n+ 1

2

)
,

(4.0.7)

where FP(f) denotes the finite part of the meromorphic function f .

Proof 4.2 Upon inserting the multiplicity (2.0.5) and applying the generalised binomial expansion
to the eigenvalue λnk , one gets

Λnk

[(
k +

2n+ 1

2

)2

−
(

2n+ 1

2

)2
]−s

=
2

(2n+ 1)!(2n− 1)!

∞∑
`=0

(−1)`
(
−s
`

)

×
2n−1∑
m=0

A n
m

(
k +

2n+ 1

2

)2m−2`−2s+1(
2n+ 1

2

)2`

.

(4.0.8)

As a result we have

ζn(s) =

∞∑
k=1

Λnk
[k (k + 2n+ 1)]

s

=
2

(2n+ 1)!(2n− 1)!

∞∑
`=0

Γ(s+ `)

`!Γ(s)

2n−1∑
m=0

A n
mζ

(
2s− 2m+ 2`− 1,

2n+ 3

2

)(
2n+ 1

2

)2`

,

(4.0.9)

where we have used the identity ( [51][2.2(26)])

ζ(s, a+ 1) = ζ(s, a)− a−s (4.0.10)

and the fact that (
−s
`

)
= (−1)`

Γ(s+ `)

`!Γ(s)
, ` ≥ 0. (4.0.11)

It follows that

ζn(s) =

∞∑
`=0

Γ(s+ `)

`!Γ(s)

2n−1∑
m=0

2A n
m

(2n+ 1)!(2n− 1)!
ζ

(
2s− 2m+ 2`− 1,

2n+ 3

2

)(
2n+ 1

2

)2`

(4.0.12)

or

ζn(s) =

2n−1∑
m=0

2A n
m

(2n+ 1)!(2n− 1)!
ζ

(
2s− 2m− 1,

2n+ 3

2

)

+

∞∑
`=1

Γ(s+ `)

`!Γ(s)

2n−1∑
m=0

2A n
m

(2n+ 1)!(2n− 1)!
ζ

(
2s+ 2`− 2m− 1,

2n+ 3

2

)(
2n+ 1

2

)2`

,

(4.0.13)
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which upon using the relation (4.0.10) gives

ζn(s) =

2n−1∑
m=0

2A n
m

(2n+ 1)!(2n− 1)!
ζ

(
2s− 2m− 1,

2n+ 1

2

)
−

2n−1∑
m=0

2A n
m

(
2n+1

2

)2m−2s+1

(2n+ 1)!(2n− 1)!

+

∞∑
`=1

Γ(s+ `)

`!Γ(s)

2n−1∑
m=0

2A n
m

(
2n+1

2

)2`
(2n+ 1)!(2n− 1)!

ζ

(
2s+ 2`− 2m− 1,

2n+ 3

2

)

=ζ̃n(s)−
2n−1∑
m=0

2A 2
m

(
2n+1

2

)2m−2s+1

(2n+ 1)!(2n− 1)!

+

∞∑
`=1

Γ(s+ `)

`!Γ(s)

2n−1∑
m=0

2A n
m

(
2n+1

2

)2`
(2n+ 1)!(2n− 1)!

ζ

(
2s+ 2`− 2m− 1,

2n+ 3

2

)
. (4.0.14)

Upon differentiating (4.0.14) with respect to s and setting s = 0 in the resulting equation yields

ζ ′n(0) =ζ̃ ′n(0) + 2 log

(
2n+ 1

2

) 2n−1∑
m=0

2A n
m

(
2n+1

2

)2m+1

(2n+ 1)!(2n− 1)!

+

2n−1∑
m=0

2A n
m

(2n+ 1)!(2n− 1)!
FP

( ∞∑
`=1

(
2n+1

2

)2`
`

ζ

(
2`− 2m− 1,

2n+ 3

2

))
. (4.0.15)

It is interesting to see that
2n−1∑
m=0

2A n
m

(
2n+1

2

)2m+1

(2n+ 1)!(2n− 1)!
= 1, n ≥ 1, (4.0.16)

and consequently we obtain

ζ ′n(0) =ζ̃ ′n(0) + 2 log

(
2n+ 1

2

)
+

2n−1∑
m=0

2A n
m

(2n+ 1)!(2n− 1)!
×

×FP

( ∞∑
`=1

(
2n+1

2

)2`
`

ζ

(
2`− 2m− 1,

2n+ 3

2

))
.

Therefore, we obtain the following closed-form formula for the determinant of the Laplacian ∆n :

det (∆n) = exp

(
−ζ̃ ′n(0)− 2 log

(
2n+ 1

2

)
− 2Hn

(2n+ 1)!(2n− 1)!

)
, (4.0.17)

where

Hn = FP

( ∞∑
`=1

(
2n+1

2

)2`
`

2n−1∑
m=0

A n
mζ

(
2`− 2m− 1,

2n+ 3

2

))
. (4.0.18)

Remark 4.3 A way of regularising the Hurwitz zeta function ζ(z, ·) where it has a pole is to use
the limit formula ( [51][eq. 2.2(15)])

FP(ζ(1, a)) = lim
m↗1

(
ζ(m, a)− 1

m− 1

)
= −ψ(a), (4.0.19)

where ψ is the digamma function ( [20]) defined explicitly in terms of the gamma function by

ψ(z) =
d

dz
log Γ(z) =

Γ′(z)

Γ(z)
.
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Example 4.4 For the special case n = 1, we have

ζ̃ ′1(0) =
1

12
ζ ′R(−1)− 7

12
ζ ′R(−3) +

61

1440
log 2.

Hence, we obtain the explicit formula

det
(

∆̃1

)
= 2−

61
1440 exp

(
− 1

12
ζ ′R(−1) +

7

12
ζ ′R(−3)

)
.

It therefore follows that

det (∆1) = exp

(
−ζ̃ ′1(0)− log

9

4
− H1

3

)
, (4.0.20)

where

H1 =− 1

4
FP

( ∞∑
`=1

1

`
ζ

(
2`− 1,

5

2

)(
3

2

)2`
)

+ FP

( ∞∑
`=1

1

`
ζ

(
2`− 3,

5

2

)(
3

2

)2`
)
.

By using the limit formula (4.0.19) and the identity (4.0.6) with B2(x) = x2 − x+ 1/6 we obtain

H1 =− 141

32
− 63

32
ψ

(
5

2

)
− 1

4

∞∑
`=2

1

`
ζ

(
2`− 1,

5

2

)(
3

2

)2`

+

∞∑
`=3

1

`
ζ

(
2`− 3,

5

2

)(
3

2

)2`

. (4.0.21)

To evaluate the first series on the right-hand side of (4.0.21) we use the identity (see [59][eq. (4.11)])

∞∑
j=1

ζ(2j + 1, a)
z2j+2

j + 1
= [ψ(a)− 1] z2 + (a− 1)[log Γ(a+ z) + log Γ(a− z)]

− logG(a+ z)− logG(a− z) (4.0.22)
+ 2(1− a) log Γ(a) + 2 logG(a), |z| < |a|,

where G is the Barnes G-function ( [60]) defined in terms of the gamma function by

G(z + 1) = Γ(z)G(z), z ∈ C, G(1) = 1. (4.0.23)

Thus we obtain
∞∑
`=2

1

`
ζ

(
2`− 1,

5

2

)(
3

2

)2`

=
9

4
ψ

(
5

2

)
+

55

12
log 2− 3

2
log 3− 3 logA− 2

=
9

4
ψ

(
5

2

)
+

55

12
log 2− 3

2
log 3 + 3ζ ′R(−1)− 9

4
, (4.0.24)

where we have used the identity ( [51][eq. 1.4(8)])

G

(
1

2

)
= 2

1
24π−

1
4 e

1
8A−

3
2 . (4.0.25)

and the relation ( [30])

logA = −ζ ′R(−1) +
1

12
. (4.0.26)

Here A is the Glaisher-Kinkelin constant given by A u 1.282427130.

896

doi.org/10.6084/m9.figshare.13829129.


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

Vol. 6, No. 2, pp. 885 - 900.
doi.org/10.6084/m9.figshare.13829129.

For the explicit evaluation of the second series on the right-hand side of (4.0.21) we employ the
equality ( [51][eq. (3.2.67)], [57])

∞∑
j=1

ζ(2j + 1, a)

j + l + 1
z2j+2l+2

=

2l+1∑
j=0

Γ(2l + 2)

j!Γ(2l − j + 2)

[
ζ ′(−j, a− z)− (−1)jζ ′(−j, a+ z)

]
z2l−j+1

−
l∑

m=1

ζ(1− 2m, a)

l −m+ 1
z2l−2m+2 − z2l+2

l + 1
[ψ(2l + 2)− ψ(a) + C]

− 2ζ ′(−2l − 1, a), l ≥ 0, |z| < |a|,

with l = 1, a = 5/2 and z = 3/2 to see that

∞∑
`=3

1

`
ζ

(
2`− 3,

5

2

)(
3

2

)2`

=
27

2
ζ ′R(−1) + 2ζ ′R(−3)− 2ζ ′

(
−3,

5

2

)
+

1

8
log 2 +

27

8
log 3

− 15

64
+

81

32
ψ

(
5

2

)
.

Hence we have

H1 =
51

4
ζ ′R(−1) + 2ζ ′R(−3)− 2ζ ′

(
−3,

5

2

)
− 49

48
log 2 +

15

4
log 3− 441

64
.

It therefore follows that

det (∆1) =2
3309
1440 3−

13
4 exp

(
−13

3
ζ ′R(−1)− 1

12
ζ ′R(−3) +

2

3
ζ ′
(
−3,

5

2

)
+

147

64

)
.

We can evaluate the higher cases n ≥ 2 similarly. See [51, 57, 59, 61] for the evaluation of series
involving zeta functions.
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