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Abstract

A 3-Step Hybrid Block Method (S3HBM) with three mid-step grid points based on Linear
Multistep Method is presented in this work for direct approximation of solution of third-order
Initial and Boundary Value Problems (IVPs and BVPs). Multiple Finite Difference formulas
are derived using the collocation technique. These formulas are unified in a block formulation to
form a numerical integrator that solves general third-order ordinary differential equations. Basic
properties of the derived method are discussed. The superiority of this method over existing
methods is established numerically on different test problems, to show its better performance
in terms od accuracy.
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1 Introduction

In this work, third-order problems of the type:

y" = f(z,y,9,y"), a<z<b (1.1)
with initial conditions

y(a) = ao,y'(a) = a1,y (a) = a2 (1.2)
or boundary conditions

y(a) = ag,y'(a) = a1,y(b) = fo (1.3)

y(a) = ao,y'(a) = a1, y'(b) = A
are considered, where o; i = 0,1,2, By, 81, a,b are real constants. = € [a,b]. We assume that the
function f is continuous in [a,b] x R3. Thus we as well assume the existence and uniqueness of
the solution of (1.1) with (1.2) and (1.1) with any of (1.3) as discussed in [1,2]. It is also assumed
that (1.1) is well posed and the numerical solution is the interest. Accurate numerical methods for
solving third-order initial and boundary value problems are available in literature. To mention but
few are: Non-polynomial splines [3], Quartic Splines [4], Collocation method [5-7]. Block methods
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credited to [7] and many others. Emphasis is on collocation technique which is employed in this
work. This method is found to be flexible and more efficient in that; (i) it approximates the solu-
tion of (1.1) at several intra-points; (ii) its block formulations consists of several linear multistep
methods viz-a-viz the main and additional methods required for direct solution of (1.1), such that
it overcomes the overlapping of pieces of solutions; (iii) it does not require any starting value from
other methods i.e it is self starting.

In this work a three-step continuous hybrid block method (S3HBM) with three intra-step points is
developed via collocation approach, for the direct approximation of the solution of (1.1) with (1.2)
or any of the conditions in (1.3).

2 Derivation of the Methods

Here, the derivation of a continuous implicit three mid intra-step hybrid block method is described,
for the solution of (1.1) over the integration interval [a, b],

sn={a=x0<x1 < - <xny_1 <axy=D>}

with h the constant step-size, h =x; —x;_1,1=1,2,..., N.

Method similar to this work can be seen in [9], where the three off-step points in the interval
0 < Zptr < Tpys < Tpyt < 1 are given such that (r,s,t) = (%, %, %) Optimized two-step block

method with three hybrid points for solving third order initial value problems can be found in [8].
In [9], the off-step points 7, s, g are such that 0 < r,s,¢g < 2. In the case of this paper, the off-step
points are mid points in the interval 0 < s <1 < u < 2 < v < 3, where s = 2 2

i,u:%andvzi.
Consider the approximation p(x) of y(x) given by the polynomial

y(o) ~plx) =Y pja’. (2.1)
1=0

whose third derivatives yields

11
y"(x) = p"(x) = pid(G — 1) —2)a7? (2.2)
=3
and on differentiation further
11
y O (@) ~ p (@) =D pid(i— )G —2)(F — 3)a7 " (2.3)
j=4

where p; are real unknown coefficients to be determined. Interpolating (2.1) at the points 4,
i =0,1,2, collocating (2.2) at the points Tpps=,1=0,1,...,6 and finally collocating (2.3) at the
points &4, i = 0, 3, we obtain a system of 12 equations with 12 unknowns (the p;, i =0,1,...,11).
This system can be written in matrix form as

1 Tn x2 x2 2 x2 x8 xll %o
1 xp41 mzl_H xZL_H zZL_H le_H IZH_I e z’ﬁ‘"l Po "
1 Tn+42 In+2 xn+2 In+2 xn+2 xn+2 e xn+2 P Y2
0 0 0 6 24y, 60;% 120;;1 e 990;2 Zi 3o
0 0 0 6 241‘n+% 60xn+% 1201‘n+% s 9901‘n+% 4 th%
0 0 0 6 24zpy1 60w, 12003, .- 990z8 05 | »n
0 0 0 6 24z, .3 60a? ; 12027 5 - 99020 4 06 = | Rr3fs
2 2 2 2 2
0 0 0 6 2dxnip 6022, 12023, - 99028, p7 h33 f2
0 0 0 6 24z, 5 6022 12023 o ... 9902% P8 h°fs
: 5 2 52 52 Po 13 fs
0 o0 0 6 24xnyy 6022 5 12023 5 oo 990z8 4 10 a
0 0 0 0 24 120z, 36022 .- 7920z o1t g0
0 0 0 0 24 120043 36022, - 792027 h%gs


doi.org/10.6084/m9.figshare.14679912.

INTERNATIONAL JOURNAL OF MATHEMATICAL ANALYSIS AND

OPTIMIZATION: THEORY AND APPLICATIONS

VoL. 7, No. 1, pp. 32 - 42
DOI.ORG/10.6084/M9.FIGSHARE.14679912.

IIMACO

@) G ~ / " o S (@ntiynti Yo Ynyi)
where /) ~ YD (2n14), frri = F(@ntis Yntir Yo Yiri)> and g ~ T .

Solving the above system using a computer algebraic system (cas) in Mathematica we obtain
the values of the coefficients p;, i = 0,1,...,11, (not included here). Substituting these values of
pi’s into the polynomial (2.1), the formula is obtained as:

Zaz Z/BZ fz"‘ZBz

where the «, 3, 3 and ~ are continuous coefficients (which are large expressions and are not included
here, but can be easily obtained with the help of a cas).

Evaluating p(x) in (2.4) at the points # = x,, 1,2, 3,2, 5 and Zp43 and after some simplifi-
cations, we obtain the following methods:

T)Ynti + h? f21—1 +h! (vo(x)go + v3(x)g3) (2.4)

89281 1963
L= Bum 3Ynt1  Uni2 L p3 (1313811, f”n,+% n 29047 fr, 41 n fn+% I 3491 f,, 42
Yntl B 1 s 580608000 2032000 860160 362880 2580480
261f | 5
Fatd | 35137n4s _pd (Ban_ y 899nis
448000 193536000 102400 ' 2764800
) ) 9367 401 .
s= —lny 3yn+1 4 Buns2 g3 536243fn fn+% 4 9169fnis fn+% _ 563fni2
Ynt3 8 1741824000 1344000 286720 17010 860160
617
i Foy 235507 fn43 \ pa (2579 + 1939543
1344000 1741824000 8294400 ' 8294400 (2.5)
2049 1097 : ’
s Buw _ Svusr | 5uase s ( 7sisg, Tniy | amsorfupy Mg 1035774,
Ynts B 1 3 23224320 89600 516096 8064 172032
23
i fn+% n 338710043 | _ pa gn__ | 299043
161280 116121600 110592 1 552960
52f |1 . 3208f 3 X 52f 5
o _ 3 [ 4699fn ntg 421fn41 nts 421 ny2 nts
Yn+3 = n = 3Yn+1 +3Yni2 +h (3402000 +—%5 t 160 T 05t 1680 T &7
L 4699nts Y | pa ht (-4 In3 )
3402000 16200 — 16200

Then, evaluating p/(z) in
formulas for approximating the first derivatives:

(2.4), at the points z = ri,i=12,...,

6, we obtain the following

1883 8378
! — _Bun 4o _ Yntz | 3 (2215334, Tntd | 1399741 i Invg 4 3fni2
Yn = 2 Ynt1 2 8981280 12375 110880 280665 12320
+fn+2 _ 3611fn43 Lopa(431an 23gn43
3465 32076000 213840 ' 1069200
2359649 2869
W=yt g3 (485271, Fotd | 1257010 Tnid | 493fu4s
Yyl = TYn T Untl 14784000 66528000 394240 11975040 " 5322240
2147
N Tnvd | 89239f,05 ) 1813, | 9nis
22176000 ' 2395008000 5702400 ' 140800
2791 2986
h / — _yJ + M _ h3 6389 fr, + fn+% 212fn+1 + f"+% 4 5fn+2
Yny1 = 37422000 86625 2079 93555 11088
315,
_ +35 + 29fn+3 4Rt ( + Int3
259875 519750 9800 1 89100
2819 1298369
! _ " _ 3 (1o7oseis, fn+% i 21779 fr 41 ‘fn+% n 21779 fp 42
Yts = Yn+1 T Ynt2 14370048000 7392000 7096320 35925120 7096320
2819
Tn+§ | 1079861fuss\ _ pa (779 T99nis
7392000 14370048000 68428800 68428800
7753 698
Ry . — ¥n _ o 4 BUnt2 | 3 ( 475184, Fatl | 138438, n Fny3 4 7759 nta
Yny2 = 2 Yn+1 2 74844000 259875 110880 1455 332640
31f 5
Fats  389118,.5 4 hd (Tgn _ 290nis
12375 74844000 356400 356400
' . = . Lo s (2208891, 187963541 | 1006037041 , P19T3300i3 | 2026131540
Ynies = Yn 7 oUntl T SYni2 159667200 3168000 760320 11975040 1182720
318803 f
N Tnis 2276639045 oy (15Tgn  48Tonss
13305600 1197504000 2280960 1 1900800
7747 23882
ha' _ 5Yyn+2 + K3 109981 f, + fn+% + 331f + fn+% 13919fp 42
Yni3 = 2 56133000 86625 880/ nt+1 40095 27720
20903
n fn+% 3001763 f,, 43 Lpd(9n 1127g,13
86625 112266000 267300 534600

34

(2.6)
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Similarly, evaluating p”’(z) in (2.4), at the points z = Ti, 1=1,2,...,6, we obtain the formulas
for approximating the second derivatives:

11429 118
B2/ — 9 n _ p3 ( 15478934, fn+% 6229 f,41 n f"+% _ 137fn40
Yn = Yn = 2Yn+1 T Yn+2 6804000 23625 30240 1215 6048
289
Tots  8959fu13) 4 (169gm 4 230043
23625 2268000 10800 32400
82841 398
B2 = g 9 n g 4 S (20872057 2y e2aa7afyy P nid 160097,
yn+% = Yn = 2Yn+1 T Yni2 1306368000 504000 1935360 25515 645120
18187f 5
n fn,+§ _ 701179fn 43 + hé 178439y + 41479543
1512000 186624000 6220800 6220800
409 2038
- — 2yni1+ g (20m01f, ek spen Tnt3  T10fn4n
Yny1 =  YUn Yn+1 T Yn+2 4082400 4725 288 25515 30240
17f s
N fn+§ _ 18229045 ) _ pa (1994 n 11g,43
1575 1082400 19440 19440
71173 1604
R24" . = 9 n 1 p3 (208627110 Ftl 4 557063fp 41 Fny3  72071fp40
yn+% = Yn = 2Yn+1 T Yni2 435456000 1512000 1935360 8505 1935360
2669f | 5
N fn+§ _ 494933fnys ) | pa (4439, | 12019nis
216000 145152000 691200 2073600
79 12562
h2qy . — _9 + _p3( 3795Lfn _ fn+% _6859fny1 fn+% _2351fn40
Yni2 = YUn Yn+1 T Yn+2 20412000 1125 30240 25515 10080
641
N fn+% _ 180199fn15 | _ ;4 49g,, h2 N 1019, 4502
23625 20412000 97200 97200
71669 10022
W2 o+ L ps ((B7126695, Tnid | 178STSfL Fntd | 81699fn40
Ynys = Yn 7 “Untl T Uni2 1306368000 1512000 645120 25515 55296
112793
i fn+% 25067741 f,43 + nd 45319y, + 174599543
504000 1306368000 6220800 6220800
1693 o 4034 ) .
h2y! . — _9 + _p3 (249760 _ fn+% _ 6893fni1 fn+% _ 13807fnq2
Ynt3 =  Yn = 2YUntl T Yni2 972000 23625 30240 8505 30240
12833f | 5
Fnts  519097fn43 \ _ 4 ( Tgn _ 5099n43
23625 2268000 70800 32400

(2.7)
It is noteworthy that methods in (2.5)-(2.7) form the required unique block method applied sequen-
tially for solving (1.1)-(1.2)) and simultaneously (for solving (1.1)-(1.3).

3 Analysis of the Method

3.1 Local truncation error and order

Counsider the linear difference operators associated with the formulas in (2.5), which could be written
as

2 3 3
L[z(x); h) Eh-jzfﬁi — E O Znik + B E Brzny + E Bkz;':rm
2 2
k=0 k=1

k=0 (3.1)

+nt (7027(14) + 7327(:23) ]
for i =0(1)6, j =0,1,2.

The local truncation error of each of the formulas in (2.5)-(2.7) is the amount by which the
exact solution of the ODE fails to satisfy the corresponding difference operator. Consider the exact
solution y(z) in (3.1), expanding in Taylor series around x the following is arrived at

Lly(z); h] = Coy(z) + Crhy' (x) + Coh?y" (x) + - - - + Cyh%y D (z) + O(hl1HY) . (3.2)
where the C; are constants. Suppose the first p + 2 constants are such that

00201202:---: p+2:0
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and Cpy3 # 0, then
Lly(z); h] = Cprsh? 3y @+ (z) + O(WPH) (3:3)

Here, p is called the order of the method and Cj3 is the principal error constant. As such, the
method is said to be consistent of order p (see [13]).
Setting x = x,, the local truncation errors for formulas in (2.5) are given by

[

o
[N

Cor 140911512 (2,)R12 13,
n)i h] = ——7rigmasteos — + O™

207y (12) (5, Yh12
[y(zn); B] = — 1%680&430 + ('3

274375y (12) (z,,)n12 13.
| = —~fros7rrases — T (W)

<
—~
8

(3.4)

[
<
~

8

3
N

=

ot

274(12) )12
Lsly(zn); h] = — 2T @nh = 4 (p)13

For the formulas in (2.6)-(2.7) the local truncation errors may be obtained similarly. From the
(3.3), the order of the block method is p = 9.

3.2 Zero-stability and convergence

A numerical method is zero-stable if the solutions remain bounded as h — 0. Following the

procedure in [12], to show the zero-stability the block method (2.5)-(2.7) may be rewritten in a
form such that yfﬁ:l, for each k = 0,1,2, j = 1(1)6 are on the left hand side. Thus, as h — 0 the
method in matrix form becomes
A()Y;L = Alyu—l (35)
where . .
_ (v0 y1 y2 _ (y0 1 2
YM - (YwaYu) ’ Yufl = (Y#—le,khYuq)
}/;? = (y%aylay%ay27y%7y3)
Y= (hul vy us, v, u5)
Y;Ao—l = (y%—lay(%y%—l;yhy%—by?)

1 1 "

Yi—l = (ylé,pygay%,pyl7yg,1ay2 )

Ay is the identity matrix of order 18, Ag = I15, and A; is a 18 x 18 matrix given by

Aqy
Az
As3z
with the Aj1, Aos and Asz being 6 x 6 matrices respectively, given by
0o 1 0 0 0 O
0O 1 0 0 0 O
0O 1 0 0 0 O .
Ai=1091 00 00 |»i=L23
0o 1 0 0 0 O
0O 1 0 0 0 O

The characteristic polynomial of each of the matrix A1, Age and Az is given as |Am —Alg| = 0,
for m = 1,2, 3, that is, A3(A—1) = 0. The roots of the characteristic polynomial are A\, = 0, for 7 =
1,...,5 and A\¢ = 1. Consequently, the method is zero-stable, since the roots of the characteristic
polynomial are all zero except one, whose modulus is one (see [13,15]). For convergence, we state
the following theorem.
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Theorem 3.1. Henrici [?]. A linear multistep method is said to be convergent if it is consistent
(with order p > 1) and it is zero-stable.

By the above analysis, the method has order p = 9, and is zero-stable. Then, by Theorem 3.1,
the method is convergent.

3.3 Computational procedure

3.3.1 For IVPs of the form (1.1)-(1.2)

The block method has been implemented using Mathematica, enhanced by the feature NSolvef]
for linear problems while nonlinear problems were solved by Newton’s method enhanced by the
feature FindRoot[], as summarized in the following code:

Algorithm

a,b (integration interval), N (number of steps), voo,¥y10,¥y20 (initial values), f,% sol, discrete
approximate solution of the IVP (1.1)-(1.2)) Let n = 0,h = b*T“ Let 2, = a,yn = Yoo,Yl, =
Y10, Y = Y20- Let sol={(zn, yn)}.

Solve (2.5)-(2.7) to get Ynii, Ypis> Ynasr @ = 1(1)3

Let sol = sol U {(Tn4i, Ynti) Fi=1(1)3-

Let @p = Zn + 3, Yn = Yn+3: Yn = Yni3:Yn = Yn+s

Let n=n+3
n =N gotol2 goto3
End

3.3.2 For BVPs of the form (1.1)-(1.3)
Assume the boundary conditions (1.3) are known:
y(a) = Qp, y(b) = ﬁOa y/(a) = Q1

the vector of unknowns y is given by

Y= (yla"' ayN—layia"' ay;Vvy/O/a""yXf)T
This makes a total of (N —1) 4+ (N)+ (N 4+ 1) = 3N unknowns. Consider the formulas in (2.5), for
n = 0(3), N — 3, there are 4N/3 formulas. Also, consider (2.6), for n = 0(3), N — 3, there are 7N/3
total formulas therein. Finally, consider (2.7), n = 0(3), N — 3, there are also 7N/3 total formulas
as well. In total for (2.5)-(2.7) there are a total of 4N/3 + 7N/3 + 7TN/3 = 3N. Hence we have a
system with 3N equations and 3N unknowns, whose solution provides a set of approximate values of
the BVP in (1.1)-(1.3). Now, the formulae (2.5)-(2.7) form a block and solved simultaneously using
codes written in Mathematica, enhanced by the feature NSolve[] for linear problems and the feature
FindRoot[| for nonlinear problems solved by Newton?s method. The following is the algorithm

Algorithm

ENTER PARTITION a,b, NUMBER OF STEPS N, BOUNDARY VALUES ya, 1/, v, f, L sol,
discrete approximate solution of the BVP (1.1)-(1.3)) Set n = 0,h = 2% Let sol={(zn,yn)}.
Generate block system Solve (2.5)-(2.7) to get unknown values

Let sol = sol U {(xn—i-h yn+i)}i:1(l)3~

Let n=n+3

End
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4 Numerical Examples

Numerical examples are presented to show the accuracy of the method proposed (S3HBM). We
state here that we have not been able to find any method as ours which of order 9 in literature.
As such, we have tried to make fair comparison with some of the methods in literature to show the
efficiency of our method in terms of errors and Maximum errors (ME) obtained where applicable.
We also need to reiterate that the number of sub-interval used in each problem is a multiple of 3 so
as to obtain results at the right hand boundary interval. Hence, we have extended the right hand
boundary of some of the problems during computation. In all, the problems considered are mainly
to show the efficiency in terms of the errors obtained using the S3HBM.

Problem 1. Consider the BVP discussed in [9]

y" —ay = (23 — 222 — bz — 3)e®, x €0,1]
y(0) =y (0) =1, y'(1) = —e

whose exact solution is y(z) = ze®(1 + x).

Table 1: Comparison of Maximum Errors (ME) for Problem 1
ME in [9] R~ MEin S3SHBM N ME in [5] N ME in S3HBM
13647 x 10°10 L 77229 x 10717 7 412x 1072 6 4.3392x 10710
4.2086 x 10712 -5 4.4805x 10722 14  1.56 x 10714 12 4.2653 x 1078
1.2939 x 10713 = 43765 x 1072° 28  6.08 x 10717 24  4.1719 x 1072}
56 2.37x 10719 48 4.0758 x 10724
112 9.27x 10722 96 3.9807 x 10727

25 =

Table 1 compares the SSHBM and those of [5] and [9]. This problem has a misprint in [9] but
the correct version is in [5]. The method in [5] is of order 8 and that of [9] has order 5. In both cases,
the SSHBM performs better for different step-sizes (k) and for different number of subintervals (),
which shows a better performance over both methods.

Problem 2. Consider the BVP discussed in [9].

y" +y=(r—4)sin(z) + (1 —x)cos(z), x € [0,1]
y(O) =0, yl(o) =-1, y/<1) = sin 1

whose exact solution is y(z) = (z — 1) sin(z).

(4.2)

Table 2: Comparison of maximum Errors (ME) for Problem 2
R ME in [0] 7 ME in S3ABM

= 103179 x 10°T L 1.0507 x 10718
o 3.24907 x 10713 o 9.1161 x 10719
& 1.02789 x 10714 oo 9.1145 x 10720

Table 2 shows the Maximum Error obtained using different step-sizes and compared with the
method in [J] having order 5 and the S3HBM in this work. It clearly shows that the method
presented is more superior to the cited literature.

Problem 3. Consider the nonlinear BVP discussed in [5].

y" +2e73 =4(1+2)73, x€]0,1]
y(0) =0, ¥'(0) =1, y'(1) =05
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whose exact solution is y(z) = In(1 + ).

Table 3: Comparison of maximum Errors (ME) for Problem 3
N ME in SSHBM N ME in [11]
6  9.046 x 1010 7 5.24 x 1077
12 2.374 x 10712 14 2.39x 10~ 11
24 3.189 x 10~15 28  9.50 x 1014
48 3.407 x 10~18 56  3.62 x 10716
96  3.406 x 10721 112 2.27 x 1017

From Table 3 different values of N has been used to obtain the maximum error for Problem 3.
There is a missprint in the boundary condition of this problem in [5] but has been corrected in this
work. As stated earlier, The N used in this work for comparison is a multiple of 3, hence a closer
value to the N used in [5] for this particular problem was used so as to make comparison. It should
also be stated here that the order for FDM in [5] is p = 8. A fair comparison in the use of N is
thus considered.

Problem 4. Consider the Sandwich problem discussed in [5] governed by a linear third order
differential equation with the boundary conditions at three different points.

y" — 1%y +a=0, z€[0,1]
y(0)=0, y'(1)=0, y(3) =05

z (I(2z — 1) — 2sinh(iz) + 2 cosh(lz) tanh ())

213 '
where y(z) is shear deformation of the Sandwich beams, [ and a are physical parameters depending
on the elasticity of the layers.

(4.4)

whose exact solution is y(x) =

Table 4: Comparison of maximum Errors (ME) for Problem 4
=5 =10
N ME in SSHBM N ME in [7] N ME in SSHBM N ME in [7]
12 8.008 x 10~ 14 14  5.78 x 10~ 2 12 7.068 x 10~ 12 14 2.26x 10~ 10
24 9.179 x 10~17 28  2.16 x 10~14 24 1.109 x 10— 14 28 7.91x10°13
48 9.346 x 10—20 56  4.94 x 10~16 48 1.251 x 10—17 56  2.96 x 10~1°
96 9.223 x 10723 112 1.07 x 1016 96 1.269 x 10~20 112  1.73 x 10~17

Table 4 shows the Maximum Error (ME) obtained by S3HBM compared to those obtained in [5]
for different values of the parameter I. The Number of steps employed is a multiple of 3 but still
less than that which was used in method or order 8 in [5]. The S3HBM performed better compare
to the Finite Difference Method (FDM) in [5].

Problem 5. Consider the IVP discussed in [8]

y"" = 3sin(z), x €]0,1] (4.5)
y(0) =1, y'(0) =0, y"(0) =2 '

whose exact solution is y(z) = 3 cos(z) + 12—2

The order of the method in [8] is 8. We solved Problem 5 for = € [0, 3]. This is because in other

to reach to the end of the integration interval (end point of integration), N has to be a multiple of 3.

In this case, N = 30,300 is used so as to have h = 0.1,0.01 respectively for the sake of comparison.

Hence, we recorded the solution for = 0.1(0.1)1 only in Table 5. This shows the performance of
the SSHBM for this problem.
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Table 5: Comparison of errors for Problem 5
h=0.1 h=0.01

T Error in SSHBM  Error in [3] Error in SSHBM  Error in [3]

0.1 2.6030 x 10~ 19 4.1078 x 10~ 15 2.8491 x 10~29 4.4409 x 10~16
0.2 1.1080 x 1018 1.6875 x 10~ 1.1377 x 1028 1.2212 x 10~1%
0.3 2.5430 x 1018 5.0848 x 10~14  2.5508 x 10~28 2.4425 x 10~15
0.4 44779 x 10~18 1.1779 x 10~ 4.5109 x 10—28 3.7748 x 10~ 15
0.5 6.9530 x 1018 2.4081 x 10~13  7.0009 x 1028 5.5511 x 10~15
0.6 9.9679 x 1018 4.3709 x 10~13  9.9985 x 10—28 8.4377 x 10~15
0.7 1.3422 x 10717 7.3708 x 10~13  1.3476 x 10~27 1.1324 x 10~ 14
0.8 1.7326 x 10~ 17 1.1662 x 10~12  1.7404 x 1027 1.4544 x 10~14
0.9 2.1680 x 10~ 17 1.7587 x 10712 21746 x 1027 1.8985 x 10— 14
1.0  2.6379 x 10~17 2.5466 x 10712 2.6464 x 10~27 2.3870 x 10~14

Problem 6. Consider the IVP discussed in [11]

y' +4y =z, z€01]
y(0) =y'(0) =0, y"(0)=1

whose exact solution is y(x) = %(1 cos(2x)) + %2,

(4.6)

Table 6: Comparison of maximum errors for Problem 6

S3HBM Method in [11]

b TS ME b TS ME

5 30 214 x 10712 5 46 120 x 10~10
45  3.79 x 10714 56 3.69 x 10~11
60 1.32x10°1® 88 244 x 10712

10 60 4.81 x 10712 10 61  5.54 x 10799
75 524 x 10713 91  5.04 x 10~10
90 8.52x 10" 136 4.53 x 1011

15 75 4.69 x 1011 15 76 2.67 x 10708
90  7.70 x 1012 110  2.91 x 10799
105 1.66 x 1012 180 1.52 x 1010

20 90 1.75 x 10710 20 91 529 x 10708
105 3.88 x 10~ 1! 129  6.54 x 10799
120 1.03 x 10~11 204 4.19 x 10710

Table 6 shows the Maximum Error obtained for different values of N (Total nummber of sub
intervals TS) and the different end point of integration (b). Comparing with an order 5 method
in [11], the SSHBM demonstrates its efficiency by using less number of subinternals to achieve better
results.

Problem 7. Consider the IVP discussed in [11]

(4.7)
whose exact solution is y(z) = V1 + z.

Table 7 shows the error for Problem 7 using the SSHBM and compared with hybrid method
in [11]. Though results of the error in [11] was given for all values of the grid points x = 0.1(0.1)2,

but we have given the values of the errors for = 0.2(0.2)2. The errors obtained demonstrates the
efficiency in terms of accuracy of the solution obtained when compared to the exact solution
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Table 7: Comparison of errors for Problem 7

z  Error in SSHBM Error in [11]

0.2 843637 x 10~  2.181300 x 10— 11
0.4 2.81807 x 10~1%  7.069234 x 10—11
0.6  5.26285 x 10~14  1.348290 x 10—10
0.8 8.06737 x 10~*  2.105969 x 10~10
1.0 1.11941 x 10~ 2.964273 x 1010
1.2 1.46179 x 10~ 3.913760 x 1010
1.4 1.83172 x 10713 4.947245 x 1010
1.6 222711 x 10~ 6.058536 x 1010
1.8  2.64603 x 10~13  7.242000 x 10—10
2.0 3.08660 x 10~13 8492393 x 10~10

5 Conclusion

A block of 3 mid-point hybrid method based on a 3 step continuous linear multistep method
is proposed and applied to solve third-order linear and non linear IVPs and BVPs in ordinary
differential equations. The method has order 9 of accuracy and have been tested using some
problems in literature. The method has been shown to be less ambiguous and easy to derive. It has
been tested to solve diverse kinds of third-order ODEs as shown in the numerical examples. The
method show a very high accuracy when compared to the exact solution and hence with existing
methods in the literature cited.
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