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Abstract

In this paper, the explicit solutions of the optimal investment plans of an investor with ex-
ponential utility function exhibiting constant absolute risk aversion (CARA) under constant
elasticity of variance (CEV) and stochastic interest rate is studied. A portfolio comprising of
a risk-free asset modelled by the Cox-Ingersoll-Ross (CIR) process and two risky assets mod-
elled by the CEV process is considered, where the instantaneous volatilities of the two risky
assets form a 2 x 2 matrix n = {ny 4},,, such that nn® is positive definite. Using the power
transformation and change of variable approach with asymptotic expansion technique, explicit
solutions of the optimal investment plans are found. Moreover, numerical simulations are used
to study the effects of the interest rate, elasticity parameter, correlation coefficient and the risk
averse coefficient on the optimal investment plans.

Keywords: Asymptotic technique, CEV process, Cox-Ingersoll-Ross process, Exponential utility,
Optimal investment plan, Power transformation.
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1 Introduction

The optimal investment plan of utility maximization is a basic problem in the study of mathematical
finance and has attracted attentions from a good number of authors which has led to numerous
researches in this area. [1] used the optimal control method to study the optimal investment plan
for the first time. [2] - [4] studied the problem of utility maximization using stochastic optimal
control theory. Other authors such as [5] - [7], used the Martingale method to solve optimization
problems related to optimal investment plan. [3,8] studied the problem of utility maximization for
an incomplete market. The optimal investment plan with stochastic interest rate under geometric
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Brownian motion (GBM) has been studied by some authors; these include [9], who studied the
investment plan under stochastic interest rate for a case of protected defined contribution (DC)
fund. [10] - [11] modelled the risk free interest rate using CIR process to obtain optimal investment
plan for a DC plan. In [12]- [13], the risk free interest rate followed the Vasicek model. [14] - [16]
studied the optimal investment plan when the interest rate is of affine type. However, all the
authors above used the GBM to model the risky assets but [17] showed that the GBM process is
not practical in real life since the volatilities of the stock market prices is assumed to be constant

The importance of stochastic volatilities cannot be undermined as it plays a crucial role in the
behaviour of the market prices of the risky assets due to its fluctuating nature resulting from various
information available in the market especially now that financial institutions in most countries and
even the financial markets are currently in serious crisis due to the disgusting effect of the novel
corona virus (Covid-19) pandemic. To make a relatively near right decision during investment in
assets such as stock, the stochastic volatility models become necessary to understand the fluctuating
nature of the stock market price. In this research, the optimal investment plan is investigated for
a case where the risky assets follow the CEV model and the risk free asset follows the CIR process.
The CEV model is one of the stochastic volatility models used to describe the stock market price
behaviours. It was first used in [18] and has the ability to capture the implied volatility skew.

A good number of researches have been done on optimal investment plan under the CEV model. [19]
studied the optimal investment plan with dividend, taxes and transaction cost under the CEV model
with different utility functions. [20] studied the optimal investment plan and reinsurance problem
under the CEV process. [21] - [22] solved the optimal investment problem for a defined contribution
(DC) pension plan with return of premiums clauses under different assumptions and assumed that
the stock market price follows the CEV process. In all the literature above under CEV processes,
the interest rates were assumed to be constant but however, there are some works under the CEV
process that their interest rate are stochastic.

In [23], an investor’s exponential utility was maximized for a case where the interest rate and
stock market price was modelled by CIR and CEV process respectively. They used the Legendre
transformation and asymptotic expansion method to determine an explicit solution of the optimal
investment plan. They outlined the complexity involved in solving optimization problems that
combined both CEV process and stochastic interest rate. Also, they pointed out that in real life
applications, interest rates are usually not constant but fluctuating in nature and the volatility of
the interest rate generate some market risks; that is to say, when these risks are not considered,
we are under estimating the effect of this risk emanating from this interest rate which is critical
in influencing the prices of different assets available in financial market. [24] studied the optimal
investment plan with stochastic interest rate under the CEV model using logarithm utility; they
considered investment in one risk free asset and a risky asset and assumed that the interest rate
follows the Cox- Ingersoll-Ross (CIR) process. The power transformation, change of variable and
asymptotic approach was used to determine the asymptotic solution of the optimal investment
plan. [25] modelled the risky asset with modified CEV process and the interest rate with O-U
process and determined the optimal investment plan for an investor with exponential utility. Also,
an investor’s investment plan with stochastic interest rate under the CEV model and the O-U
Process was studied by [26]. In their work, they used two risky assets modelled by the CEV model
and a risk free asset modelled by O-U process and observed that the optimal investment plans
exhibit a fluctuating effect.

In this paper, the expected exponential utility of an investor’s terminal wealth is being maximized
by studying the optimal investment plans of an investor exhibiting the CARA. Here, the two risky
assets follow the CEV process while risk free interest rate follows the CIR process. More so, we
use the power transformation, variable change and asymptotic method to determine asymptotic
solutions of the optimal investment plan. The main difference between our work and that of [23]
is that we consider investment in two risky assets modelled by the CEV where the instantaneous
volatilities of the two risky assets form a 2 x 2 matrix n = {np4},,, such that nn® is positive
definite instead of one risky asset. We used the power transformation, variable change instead of
Legendre transformation method and dual theory.
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2 Materials and Method
2.1 Financial Market Model

Consider a portfolio comprising of one risk free asset and two risky assets in a financial market
which is open continuously for an interval ¢ € [0, T], T the expiration date of the investment. Let
{Z0(t), Z1(t), 22 (t) : t > 0} be standard Brownian motion defined on a complete probability
space (2, F, P) where  is a real space and P is a probability measure and F is the filtration which
represents the information generated by the three Brownian motions.

Let S; (t) denote the price of the risk free asset at time ¢ and the model is given as follows

S = R (D) dt (2.1)
Sop(0)=s0>0

where R(t) is the interest rate which follows the CIR process and is given by the stochastic
differential equation below

{ dR (t) = (a — bR (t)) dt — /R (t)d 2, (1) (2.2)

R(0) = Rg >0 ’

where a, b, and § are positive real numbers such that the following condition holds §2 < 2a called
the Feller’s condition [23].
Let S; (t) and Sy (t) denote the prices of two different stocks which are described by the CEV model
and the dynamics of the stock market prices are described by the stochastic differential equations
at t > 0 as follows

dsi (t)
50 = mydt + n1SY (1) dZ, (t) +n12S8Y (£)dZ,(t) (2.3)
dSs (t) = madt + 12,8y (t)dZ, (t) + n2aS) (£)dZ,(t) (2.4)

Sz (t)
where m; and mo are appreciation rate of the two risky assets, ni1,n12,n921, 192 are instanta-
neous volatilities and form a 2 x 2 matrix n = {n,4},,, such that nn” is positive definite and

B < 0 represent elasticity parameter, see [26] for details. Note that if 8 = 0, the stock market price
is modelled by GBM.

3 Optimization Problem

Let ¢ be the optimal investment plan and we define the utility K attained by the investor from a
given state z at time ¢ as

Ny (6, R, 81, s2,h) =E, K(H(T)) | R(t) =R, S1(t) = s1, Sa(t) =s2, H(t)=h], (3.1)
where ¢ is the time, R is the risk free interest rate and h is the wealth. The objective here is to
determine the optimal portfolio strategy and the optimal value function of the investor given as
©* and N (t,R,s1, s2,h) =supN, (t,R,s1, S2,h) (3.2)
o]
Respectively such that
NLP* (taRasla 527h):N(t7R7517 SQah) (33)

Let # (t) be the insurer’s wealth at time ¢ and then the differential form associated with the
fund size is given as:

dS (t) dSi (t) dS; (t) > (3.4)

dH () = 1) (@o So (1) e S1(t) T Sa (1)
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substituting (2.1), (2.3) and (2.4) into (3.4), we have

(g1 (m1 —R) + @2 (ma — R) + R) dt

+ 901”1181'6 (t) + @2”21325 (t))dz,
AH (1) = H. (1) p y (3.5)
+ @1"1281 (t) + 4,02712282 (t) dZQ

7 (0) = ho

Where g, ¢1 and @5 are the optimal investment plans for the risk-free asset and the two risky
assets respectively, such that g =1 — 1 — @a.
Applying the Ito’s lemma and maximum principle in [25], the Hamilton Jacobi Bellman (HJB) equa-
tion which is a nonlinear PDE associated with (3.5) is obtained by maximizing N~ (¢, R, s1, s2,h)
subject to the insurer’s wealth as follows

M + mlsl'/\/sl + mQSQNSQ + P 8§5+2Ns151 + P 825+2N3252
+P Sﬁ*‘rl ,6+1N5152 + RhNh + (a _ bR) N'R, + 1R62NRR
+PsopVRsy TN +7>55pf +1N52R
(1P190131 + P5<P1<P281 82 + P2<p252/3) h2N L
((m1 —R) @1+ (mg — R) p2) hN
+SUP,,, + (79450\/7»2%5{3 + 7355,0\/7»3@235) EN b
(Plsfﬁﬂsﬁl + 7339025?+1 ﬂ) hN s,

(P5g028ﬂ+ s + P2<,0282’8+ ) hNh52

0 (3.6)

where

_ 2 2 _ .2 2 _
P1 =ni; +niy, P2 =n3; +nijy, P3 = niing1 + nianag,
Py = n11 +n12, Ps = no1 + nao

Differentiating (3.6) with respect to ¢1 and @2, we obtain the first order maximizing condition
for equation (3.6) as

[Pyst (ms — R) — Pasf (ma ~R)] o Mo (PaPy = PiPs) VRIp Niw

! h (P1Py — 732)8?‘355 Nin hNhh h (P Py — Pg)sf Nun
{"P s5 (my —R) — Pyish (my — ’R)}
of = 3°2 1\ No Nh52 _ (P1Ps — PsPs) VRIp Niur (3.8)
2 h (PyPy — P3) 3?535 Nun hNhh h(PyPy — P2) sg Nun
Substituting (3.7) and (3.8) into (3.6), we have
N+ mlslNSl + m232N52 + RhN}, + IP S 5+2N5131 IP S ﬁ+2stsz
+Pssy ST Ny, + (a —bR)Nr + 1R62NRR T PidpVRs A
NiNns
PR W+ (B~ B B) R Ry
g =
m m Nlb
— (mg — R) SQN’LNMZ 1) \/7(P9 1=R) + Plo(s[f R)) Nﬁ/{:n o 17)1 26542 /\;hhl
N7 .
—1ppsdfte e %7311/)25273% — Pys s T M
(3.9)

where
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_ .2 2 _ .2 2 _
P =ni +niy, P2 =n3 + N3y, P3 = n11n21 + ni2naa,
p— _ _ 2733 ml—R mz—R
Py =nq11 +ni12, Ps = na1 +naa, Ps = ( X )

(P1P2—P2)
P R)? P R)? PoPu—P3Ps )
Pr= (7:(72773)7’8 %’7’9 W (3.10)
Do = (PiPs=PyPy) o (PaPEAPAPE—2PsPuPs)
10 — (7’17’2—7’§) s 711 — (7’1732—77§)

From [27], we assumed that the optimal investment plan for risky assets’ prices are known based
on the assumption that
mip] +mapy = o (3.11)

where « is a constant
Substituting (3.7) and (3.8) into (3.11), we derive an expression for ﬁ as
1°2

Q Pami(mi—R) Nhsl (P2P1—P3Ps)mi1iVRSp Npr
r PPy — P3 ahZEr + (P1P2—P2)s2? st - (P1P2—P2)s? Nu
BB T Pa(2mime — mi R — moR Pymay(ma—R) Nhsz (P1Ps—PsPa)maVRp Nir
5152 3(2mam ' 2R) +(7317>2 —P3)s3” +masy + (P1P2—P3)s5 N
(3.12)

Substituting (3.12) into (3.9), we have

Ni +misiNg, + masoN, + (R +w1) hNj + P15%6+2N3151 * P2 2ﬁ+2N82é2
+Ps3 SB'H 6+1N5162 + (a—bR)Nr + 1R52NRR + P459f 'HNis
2

—28
N T Y A S W Y (o
+Ps p\/752 53R + 2 +w3852ﬁ Nhn + (w4 (ml )Sl) Nun =0 (3.13)

-8
NiNns WeS1 NN 26+2Nhs
+ (w5 o (m2 o R) 52) Nun =+ ( ) -’/\/;L:ZR - P mel

+w7s;ﬁ
2ﬂ+2Nh52 1 22 B+1 B+1Nns; Nas,
P2 Nun Pllp 0 RN}; —Pssi s Nun
where,
_ Pe((P1P2—P3 ) Pngml(mlfR)(’Pleng) D
w1 = 2P3(2mimo—miR— ng)’ P3(2mima—miR—maR) - T
_ P1P6m2(mz R)(Plpz P3) P _ 7767TL1S1(TTL27R)(7317327'P§)
w3 = P3(2mima—miR—maR) — 8 W4 = 2P3(2mima—miR—m2R)

736m252(m2772)(73173277932) _ (P2Ps—P35Ps)PsmidpVR N .
2P3(2mima—miR—maR) y W6 = 2P3(2mima—miR—maR) P95'0 R(ml —R)

P1Ps—P3Pa)PsmidpVR
wr = 573;(217117;2 4)mf77zn1 ’IZQR) P1odpVR (ma — R)

Wy =

Where, N (t,R, s1, s2,h) = K(h) and K(h) is the marginal utility of the investor. Next, we
proceed to solve (3.13) for N using exponential utility, after which we substitute the solution
into (3.7) and (3.8) for the optimal investment plan using power transformation, variable change
proposed by [28] and asymptotic expansion method in [23].

4 Results & Conclusion

4.1 Optimal Investment Plan for an Investor with CARA Utility

Consider an investor with exponential utility function which exhibit constant absolute risk aversion
(CARA).Here, we choose the exponential utility function similar to the one in [21,27].
Assume the investor takes an exponential utility given as
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K (h) = L -on (4.1)

where 6 > 0 is the risk aversion coeflicient.
From equation (4.1), we construct a solution to (3.13) similar to the one in [21,27] as follows:

N(t, R, S1, So, h) _ _%67(011(&72,81)+9w(t,R,52)+0hg(t))
v(T,R,s1) = w(T,R,s2)=0,9(T)=1

-/\/t = _QN(Ut + w; + hgt>7 Nh = _HNg ) Nhh = 92/\/927 Nhsl = 92N9U81
Nis, = *Ngws,, Npr = 0*°Ng (vg +wr),Ns, = —0Nvs, , Ny, = —0Nw,,
Nops, =N (0202 = Ouvg,s,) s Nogs, = N (0202, — Owyys, ) , Noys, = 02N gog, wy, (4.3)
Nr = —0N (UR + wR) Nrr =N (92(1}71 + wR)Q —0 (URR + wRR))
Nrsy =N (0% (vrvs, + wrVs,) — OVRs, ) s NRsy =N (0% (Vrws, + wRws,) — Owrs,)

Substituting (4.3) into (3.13), we have

hlg: + (R +w1) gl
v +wi + (R + wyq) $10s, + (R + ws) Saws,
7%95272 (1 — PllPQ) (v + wR)Q + %527?, (vrrR + WRR)
+ +%81_2B + %32_26 + (vr +wr) |a — bR — wesy” — wrsy” =0 (4.4)
+%P18$B+QU8151 + ,P4§p\/7728?+1 (URSI -0 (URUSI + WRUs, ))
+%P2S§B+2w5252 + P55P\/ﬁs§+1 (wRS2 -0 (vaS2 + waSQ))

Splitting (4.4) we have

{ g ¥ (97(2;) il)lg =0 (4.5)

v +wi + (R + wyq) S10s, + (R + ws) Saws,
2
—10°R (1 - P2) (vr +wr)’ + "R (vrr + wrR)

Faps s o (om +w) [a— bR —wosy —wrsy ] | =0

(4.6)
+%P1335+2vslsl + 774\/77?,sf+1 (vrs, — 0 (VRUs, + WRYVS,))
Jr%PgsgﬁJrzstsQ + P5\/7€8§+1 (wrs, — 0 (VRWs, + WRWS,))
v(T,R,s1) = w(T,R,s2) =0
Solving equation (4.5) for g, we obtain
g(t) = eRHen)T=0 (4.7)
o _ Pe((P1P2—P3) .
Substituting for wy = TPy s R (4.7), we have
Ps((P1P2 — P2

g(t) = Exp |R + o((P1P2 — 4) (T —t) (4.8)

27)3 (2m1m2 — mlR — ng)
Lemma 4.1. The solution of equation (4.6) is given as

v(t,R,s1) +w(t,R,s2) = f (6, Ry, 2) = [ (R, y,2) + /I (6, Ry, 2) + £ (1R, y, 2)
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IIMACO

where

'P1(2ﬁ+l)w2
40(R+w4)

9((2511353] (T =) ~ 2Bo(Rrws)? [1-¢?
- Pl((2ﬁ+1)u;22 [1 _ 62B(R+w4)(t7T)]
1B80(R+w
4 [1 - 625(R+11;4)(t—T)] y
1— e26(72+w5)(t7T)] 5
P1(28+1)w 2
Botr g 1€
2B(R+w4)(t—T)]

P26+ 1wy

|

+ 3 B(R+wa)(t=T)]

fl (thay,Z): (R
T e
+ R e |

2(28+1)w
9(R+ws)$] (T—1t) -
[1 —e

_ P28+ Dws
4B0(R+wa4)
2P45\/ﬁftT A%RBB(R+w4)(T77)dT
—weg ftT A%Reﬁ(RvLum)(TfT)dT
332P,; ftT B2ef(Retwa)(T=7) g
2P5AVR [ Al eP(Rtws)(T=7) gy
—oJ7 fT Al eﬁ(R"rwo)(T T)dT
—56°P, [, 3265 (Retws)(T=7) g
+% [1 _ e2B(R+wa)(t— T)} + m [1 _ 2B(R4ws) t—T)}
+yBweedf(Rwa)(t=T) [T gL 38(Rws)(T—1) g
+ 2803 (RHwn)(1=T) [T AL 3B(Rotws)(T—7) g

Pl(2ﬁ+1)w2
40(R+w4)

+ 3 ﬁ(R+11)4)(t—T)]

|

_|_yé eB(R+ws)(t=T)

f2 (t,R,y,z) =
+23 B(R+ws)(t=T)

500°R (1= Pup?) [ (Alg)’dr +2PudpsVR [ Bipdrr
+2Ps0pSVR [ Bind ~ P15 (26 +1) J;” Chdr
P2 (28 +1) J," CRd7 — (a = bR) |, Algdr = 30°R [ Alrrdr
2P40pBVR ft B3gef(Rtw)(T=)qr
"H’JGft Bi, e/B(R+UJ4)(T ) dr
'P ft 0365(R+w4)(T T)d,r
27956p6f R [T B2efRtwn)(T=1) g7 ]
+wr ft 32 65(R+w0)(T ‘r)dT
3ﬂ27) ft OZEB R+ws)(T— T)dT
37346,06\/7‘[ B2 e28 (R4wa)(T— T)dT
w; ! 25(R+w4) (T— T)dT — (CL — bR f Al 25 (R+wa)(T— T)dT
+w6ft B§R€2’8(R+W4XT T dT— %52th A%R'R 2B8(R+wa)(T—1 dT
—2P1 (282 + B (28 +1 fT C3e2B(R+wa)(T=7) g
+052R (1 — P11p2) #TA Al 2,3 (R4wa)(T— T)dT
3P55pﬂ\/ﬁft Bie 2ﬂ(R+w>)(T dr
—wa [T 2BRYw)TT) g7 — (0 — bR) [ Alge2BRHws)(T=7)qr
“+wr ft BQ 25(R+w5)(T T dT 152721; Al gﬁ (R4ws)(T— T)dT
—2772(262 +3(26+1) ft Cde 2ﬁ(R+wo)(T ) dr

f3(t7Ray7Z) =

+y% eB(R+wa)(t—T)

423 eB(R+ws)(t=T)

+y625(R+w4)(t—T)

4 2e2B(R4ws)(t=T)

+05°R

(1 - Pllpz) ftT AlgAre

28(R-+05) (T—7) I

+y%w663ﬁ(R+UJ4)(t7T) LT BiRe
+23wre3f(RAwn)(t=T) [T BL ¢
1052R (1 — PuT,o?) ST (Alg

+W6ft BgRe

(1=Pup?) J (A3

+wr ftT B?Re

+y2 2B(R+wa)(t—=T)

—|—22625(R+w5)(t7T) %9527?/

93

86(R+wa)(T=7) 7
8B(R-+ws)(T—7) g

)2 B (RFw)(T=7) g
2B8(R+wa)(T—=7) g
)%ﬁ(nw@(ﬁr)dr
28(R+wa)(T—7) 41
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Proof. Assume

U(t,R,81)+TU(t,R,82):f(t,R,y,Z), (49)
y:5;2ﬁ7 Z:S;2ﬁa f(T,R,y,Z):O .
Then
v + Wy = ftv Vs, = _2ﬂ8172[371fy ; Usisy = 25 (2B + 1) 8172672.](74 + 4ﬁ28174572fyy7
vR +wr = fr, VRR +WRR = fRR, URs = 2057 'fry (4.10)
Wsy, = _265272671(]z y Wsysy = 25 (Zﬂ + ]-) 5272B72fz + 4ﬂ25274672fzz, '
wrs, = —2B55 " fr.
Substituting (4.10) into (4.6), we have
Jt =28y (R +wa) fyy — 282 (R +ws) f.
—106°R (1 — Puip?) f3 + 18°Rfrr
+42y+ B2+ fr[a— DR — we /Y — wry/z] =0 (4.11)
+P13 (25 + 1) fy + 2P152yfyy - 27’45/05 VR \/y(f”lly - ngfy)
+Paf (26 +1) fo 4 2P2%2f.. — 2Ps0pBVR Vz (frz — O0fr f2)
f(T7R7y7Z) = O
We can rewrite (4.11) as
1
(E+F+G)f - 595272(1 —Pup®) fR=0 (4.12)
Where )
E=(a—-0bR) fr+ 552Rf7z72 (4.13)
+B8(P2(28+1) =22 (R +ws)) fo + 28°P1yfyy + 28°P2zfz.

o { 2Pi0pBVR (0Irfy — Fry) i+ 2Ps3pBVR (Ofr f. — fr) V7 } (4.15)
— (we /¥ +wivz) fr '
Next we follow the approach in [11] by applying the asymptotic expansion method to solve the
problem in (4.12).
Assume that the volatility follows a slow fluctuating process, we attempt to find an asymptotic
solution of (4.12) by a following slow-fluctuating process r,, to replace (2.2), in which 0 < e <« 1 is
a small positive parameter:

dR. (t) = (a—bR.(t))dt — 6\/Ro(t) d2o(t), (4.16)

Substituting (4.16) into (4.12) and also replacing a — bR(t) by e(a — bR(t)) and VR by \/evVR, we
will have

(eE+F+eG) f-=0 (4.17)
Next, we conjecture a solution for (4.17) as follows
fE' (t7 R’ y7 Z) = fl (t7 R’ y’ Z) + \/gf2 (t’ R7 y’ Z) +€f3 (t7 R’ y’ Z) (4'18)

Substituting (4.18) into (4.14) and simplifying it, we have

Fft(t,R,y,z)+ [Ff2(t,R,y,2) + Gf' (t,R,y,2)| Ve
( +{ Eft(t,R,y,2) + Ff*(t,R,y,2) ]E ) =0 (4.19)
+Gf2 (R, Y, 2) — 062R (1 — Pi1p?) (fh)°
This implies that
{ Ff'(t,R,y,2) = F (p' (t, R,y) + ¢' (£, R,2)) =0 (4.20)
fl(T7R7y7’z>:O .
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{ Ffy(t,R,y, J:rGfl (t,R,y,2) =0 (4.21)

z)
fl(T,R,y,Z) f2(T7R,y7Z):O

fl (T7R7y72) :f2 (T7R7y7z) :fB(T7R7y7'Z) :0

From (4.13), (4.14) and (4.15), equation (4.20), (4.21) and (4.22) can be expressed as

{ { (ftl+5(P1(2ﬁ+1)_2y(R+W4))fy1+‘§§y+L;gz =0
+8

(4.22)

Py (28+1) =22 (R+ws)) f1+2B*Pify,y+26°Paflz
YT, R,y,2) =0

(4.23)

JE+BPL2B+1) =2y (R+ws)) fi+ Sy + %52
+8(P2 (28 +1) = 22(R +ws)) f2 +26°P1f,y + 28°Paf2.2
+2P10pBVR (0fkfL — fir) Vi — (we/y + wiv/z) [k
+2Ps0pBVR (0fkfL— fh.) VZ

fl (TaRay)Z) = f2 (T,R,y,Z) = 0
fEHBPL2B+1) —2y(R+wi)) fo + RBy+ 532
+8(P2(28+1) — 22 (R+ws)) f3 + 2B82P1f3y + 26°Paf2.2

+2P40pBVR (0f%fy — yQR) VI = (we /¥ +wrv/z) f& =0 (4.25)
+2Ps0pBVR (0f3 12 — f.) VZ — 506°R (1 — P11p?) (f}z)z .
(a —bR) fr + 36°Rfgr
fl (T7R»y72’) = f2 (T,R7y,z) = f3 (T7R7y72> =0

Next, we move on to solve equation (4.23), (4.24) and (4.25) for f1, f? and f>
From (4.23), we conjecture a solution of the form

=0 (4.24)

{ Lt Ry, 2) = AL (1, R) + yAj (£, R) + zA (1, R)

AL (T, R) = A} (T, R) = A} (T,R) = 0 (4.26)

and
ftl = A%t +yA%t +ZA;,t7 fyl = A%afyly = Oa le = Aé ’ zlz = O } (427)

Substituting (4.27) in (4.23), we have

{ AL +PiB(28+1) AL +PoB(28+1) AL =0

AL(T,R) = A} (T,R) = AL (T, R) =0 (4.28)

{ A%t —2p (R + LLJ4) A% + ;% = (4.29>

AL(T,R) =0 ’

{ AL, —28(R4ws) A3+ 43 =0

AL R) =0 (4.30)

Solving (4.28), (4.29) and (4.30), we have

P1(284+1)w Pa(28+1)w P1(28+ 1w wa) (t—
{ 410(72+w4)2 + 420(R+w5)3 (T —t) — 4[316'(724»0.)4)22 [1 — 2B(R+wa)(t T)}
_ Pi(2B+1)wo [1 _ 62,8(R+W4)(t—T)]

460(R+wy)?

Al (t,R) = (4.31)

1 _ w2 __2B(RA4ws)(t—T)
AR = o [1 e } (4.32)

Al :L 1 — 2B8(RA4ws)(t=T) 4.
3(R) = 150 (R + o) - } (4.33)
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Hence from (4.26)

P1(2B+1)w: P2(28+1)w P (2841)w R (1
|: 419(72-!—0.14)2 + 420(R+w5)3 ( - t) - W [1 — 825( Hwyq)(t )]
_M _ L 2B(R+wa)(t—T
LRy, 2) = s [1 — e2B(Rwa)t-T)]
[1 _ eQﬂ(R+w4)(t—T)} y

+ A

4 w.

+m [1 _ 62ﬂ(R+w5)(t*T)] ~
459(R+W4)

Next, we proceed to solve (4.24), by assuming a solution of the form

B} (t,R) +y2 B2 (t,R) + 22 B3 (t,R) + yB? (t,R)

2 _ +2B2 (t,R) + y2 B2 (t,R) + 22 B2 (t,R)
PRy =\ g2 (0 Ry < B3 (1 R) = B3 (T, R) = B (T, R) (435)
= B2(T,R) = B2(T,R) = B2(T,R) =0
and
ft2 = B%t =+ y%B%t + Z%Bz’%t + C‘/BZt + ngt + y%Bgt + Z%B$t7
fP=1Lty B3+ B+ 3y:B2 f2, = -1y iB3+ 3y :B2, (4.36)
f2=123B2+ B2+ 32382 f2 =1 iB3 + 3212

Substituting (4.36) into (4.24), we have

B} (T,R) = B (T\R) = Bf (I.\R) =0 '
B3, — B(R + ws) B3 + 332°P1BE — 2P10pBVR Abg — weAlg =0 (4.38)
B2(T,R) =0 ‘
B}, — B(R +ws) B + 382PoB2 — 2P50pBVR Alg —wrdAlp =0 (4.39)
B2(T,R) =0 '
B}, —28(R+ws)Bi+% =0
B2, —28(R+ws)BE+43 =0
{ R &
Bgt - 36 (R+W4) Bg—kwﬁA%R =0 (4 42)
B2(T,R)=0 ’ '
B2, — 3B (R + ws) B2 + wr AL, =0 (4.43)
B2(T,R) =0 '
Solving equation (4.37) - (4.43), we have
P1(28+D)w P2(284+1)w P1(28+41)wo 2B(R4wa)(t—T
B2 (t 'R) — [ 40(R+w4)2 + 49(7?,+w5)3:| (T - t) - 480(R+w4)? [1 —e A( 4)( )]
1\" _Pi2BE0)ws [ _ ,2B(R+wa)(t—T)
4B0(R+ws)? [1-e ] -
2P,6pBVR [ AL, ef(Rtwa)(T=) gy
B% (t, R) = 65(R+W4)(t_T) —wg ftT AiRe/g(R“FWAL)(T—T)dT
—352P; ftT B2efRHw)(T=7) 47
2P50pBVR [, Algef(Rtes)(T=) 4y (4.44)
B3 (t,R) = ef(Rtws)(t=T) —wr ftT Al eB(R+ws)(T=7) g
I _% 2732 ftT B?eﬂ(R+WS)(T_T)dT |
Bz (t,R) = garrtran (1~ ezz EZW“;Y?;]
B (1, R) = pgrdto |1 — e?P(Rtws)t=
2 § 35(giiR;tf)T)[ T 41 _38(R+w )(;1—7)
B2 (t,R) = wge 4 J. Ajge 4 dr
B2 (1,R) = wredf(Rtws)(t=T) [T AL c8B(R4ws)(T=7) g
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Substituting (4.44) into (4.35), we have

P1(28+1)w Po(284+1)w P1(28+1)w w _
[ Torran + T | (T — 1) — o [1 - 20 (Rren(=T)]
P1(26+1)wa [1_ 2ﬁ(R+w4)(t7T)]
4ﬁ9(72+w4)2 )
2Pa0pBVR [, Agppe? R T g
+y%eﬁ(R+W4)(t7T) WGL Al eB(R+W4)(T—T)dT
ﬂQrP f BZe,(i(R+UJ4)(T ) dr
2 —
2Ry, 2) = 2p55p5\ﬁft AL B(Ret)(T=7) g ]
423 BRAws)(t=T) *w7ft Al 66(R+w5)(T dr
P j‘ BQ€B(’R+w5)(T dr

+Wﬁw4) [1 _ 62B(R+w4)(t T)] + m [1 _ eQﬁ(R+w5)(t T)]

+ij663B(R+w4)(t—T) ft; AL, €38 (Rtwa)(T=7) g
423wy eBBRAws)(t=T) [T AL (38(Rtws)(T—7) g7

i (4.45)
Next, we attempt to solve (4.25), by assuming a solution of the form

Clg(th)+y%C§(taR)+z%C33(t7R) 4:13( ) )+ZO5 (t R)
PRy, 2) = +yiC3 (t,R) +25C3 (t,R)+y2C3( R)+z C3(t,R)
’ C3(T,R)=C3(T,R) =C3(T,R) = g R) = m@m
=C3(T,R)=C(T,R) = C{ (T,R) = C§ (T, R) =

(4.46)

and

fP=Ch+ Z‘/QC Z%C:?t +yCfy + cht + y%Cé)’t + Z%C%& +y°C, + 2°C3,,
)= 3203+ O SyACY 4 O ——iy—%C%%y—%cgwog,
3 = amcg +C5 + 32702 + 2209 = —1m308 4+ 327308 4+ 203
fr=Alx A yA2R + fA372> frr = Algr + Z/Aéggn + ZA%;%R
fR_BfR y§B2R—|—Z§B3R+yB4R—|—zB5R+y§B6R+z§B7R,
R =3y *B3p + Big + 2?/236727 R= 527 *Bip + B2 RT3 323B2,

(4.47)

Substituting (4.47) into (4.25), we have

{ C3,+P1B(2B+1)C3+P2B(28+1)C3+ (a—bR) Al + 30°RAIz% _0

—105°R (1 = Pr1p?) (Alg)? — 2P40pBVR Big — 2P50pBVR Big
C3(T,R) =0

(4.48)

{ C3, — B(R +wa) C3 + 38%P1C§ — 2P46pBVR Bl — weBig =0 (4.49)

C3(T,R) =0

C3, — B(R +ws) C3 + 352PyB2 — 2P56pBVR B2 — wiBig =0
C3(T,R) =0

C3 —28(R+wa) CF +2P1 (282 + B(2B+ 1) CE + (a — bR) Abp + 26*R A5
—%95273 (1 - P11p2) A%RA%R - 3P45P5\/R Bg’R - WGB%}Q + % = (451)
C3(T,R)=0
C3, —2B(R+ws)C3 +2P2(28% 4+ B(28+ 1) C3 + (a — bR) Alp + 152RA3RR
—106°R (1 — P11p?) Al AL — 3P50pBVR B2 — wiBip + % =0 (4.52)
C2(T,R)=0

Cgt — 3ﬁ (R + OJ4) Cg’ + wngR =0
C(T,R)=0 ’

(4.50)

(4.53)
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C% = 38(R+ws) C3 +wrBip =0 (4.54)
Cz (T,R) =0 '
4, — 28 (R +wi) CF = $00°R (1= Pr1p?) (Ahg)” —woBir = (4.55)
C3(T,R)=0 ’
C% — 28 (R +ws) CF — 306°R (1 — P11p?) (A:%)R)Q —wrBfr =0 (4.56)
C2(T,R)=0

Solving (4.48) - (4.56), we obtain

108°R (1~ Pup?) [ (Alg)’dr + 2P16pBVR [ Birdrr

C3(t,R) = +2P30pBVR [ Bigd — P18 (26 + 1) [ Cidr
~P2B (28 +1) [ C3dr — (a—bR) {f Algdr — L0°R [ Alppdr
2P1pBVR [ BipefRten(T=m) 4y
023 (t,R) = eﬁ(R+w4)(t_T) +W6 j‘tT B%Reﬁ(R‘Hﬂ‘l)(TiT)dT

L _%ﬂZPl ftTTCg’QB(RerD(TfT)dT |

2P56pBVR [, BpefRtws)(T=m)qr
Cg (t,R) = eB(R-{-ws)(t—T) T ftT B%Reﬁ(’R—H%)(T_T)dT
_ L _%ﬁQPQ _];TTcgeﬁ(R‘f‘ws)(T—‘r)dT |

37)45@8\/77]; BgReQB(R+w4)(T_T)dT
—wz fT e2BRAw)(T=7)dr — (a — bR) fT Al 2BRetw)(T=7) g
C3 (t,R) = e2B(RHwa)(t=T) twg [ BB R gr _ 1R [T AL 28(R40)(T—7) g
_2731(262 + B (Qﬁ +T1) ftT CgeQB(R-HJM)(T_T)dT
+9(52R (1 — P11p2) {_t A%RA%Rezﬁ(R—H%)(T_T)dT
3P56pﬁﬁft B%Re2ﬁ(n+w5)(T_T)dT

_% fT e2B8(R+ws)(T—7) g7 — (a—bR) fT A%,Rew(R*“’“)(T‘T)dr
C3 (t,R) = e2BR+ws)(t=T) | | ffB?,Rew(Rws)(T—r)dT _ %5273 ft AiliRRe2B(R+w5)(T_T)dT

_2772(252 +8(28+1) ftT CgeQﬁ(R+w5)(T_T)dT
+06%R (1 — P11p?) ftT ALy AL 2B(Rebws)(T=7) g
Cg (t7R) = w6635(R+w4)(t7T) ftT BiRegﬁ(Rﬂ%)(TiT)dT
C? (tfR) = w7e35(R+w5)(t7T) ftT BéR63B(R+W5)(T,T)dT
300°R (1 — P11p?) ftT (A%R)26B(R+W4)(T77)d7_

+we j;fT BgReQﬁ(R‘HM)(TfT)dT

%9527% (1 — Pl%PQ) j;T (A%,R)QeB(R'*'W‘l)(T—T)dT
+W7L B$R€2B(R+W4)(T_T)d7

C3 (1, R) = 28 (Retwn) (t=T)

CS (t,R) = e2B(R+ws)(t—T)

(4.57)
Substituting (4.57) into (4.46), we obtain
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196°R (1 — Pup?) [ (Alg) dr +2Ps6pBVR [ Bipdrr
PRy, 2) = F2Ps0pBVR [ Bipd ~P\8 (28 +1) [ Cldr
~P2B (28 +1) [ Cddr — (a —bR) [ Algdr — L6°R [ Alppdr
27345p5\ﬁft B2 eBR+w)(T—7) 41
+y%eB(R+W4)(t_T) +w6ft B2 eﬁ(R+w4)(T dr
'P f CBBﬁ(R+w4)(T T)dT
27>5<5p6f R [T BpeP(R+ws)(T=1)qr |
423 B(Rtws)(t=T) +W7ft BZ, eB(R+wO)(T dr
7)2f 0266(R+w0)(T ) dr
37’45,06\/ [ B2 e2d(Retwa)(T— ndr 1
—u fT 26(R+w1)(T=7) 7 — (q — bR) f R 2B (RFw)(T=7) g
Fye2B Rt (=) |4y 1T B2 28(Rbw)(T-7) gr — 152R 5" PRI g
—2P1(2ﬁ2 +ﬁ(26+ 1) f Ce 2B<R+w4><T dr
+06%R (1 — P11p? )f AL, AL 28R (T=7) g7
3P56Pﬂ /R f B2 25(R+w5)(T—T)dT
—ws qfiT e2P(RAws)(T=7)dr _ (g — bR) fT Al @28 (Rebws)(T=7) g
+ze2f(Rtws)t=T) | 4 (T B2 2B(REws)T-m)gr _ L52R [T AL - e2B(Rebws)(T=7) g
—2P,(2B% + B (28 + 1) ftT C3e2B(Rtws)(T—7) g
FO52R (1 — Prip?) [ Alg Al e28(Retews)(T=7) g
+y5 weedB(R+wa)(¢=T) ftT Bl e3(Rtw)(T=7) g
+Z%W7635(R+“’5)(t_T) j;T BéRe35(R+w5)(T—7)dT
T 2 w. —T
fy2e2B(R+wa)(t=T) %952R(17P11Tp2)ft (Alg) ef(Rwd(T=T)gr
+wg ft BgRe2B(R+w4)(TfT)d7_
T 2 w. —T
a2e28Rpun)a-1) | 200°R (1 =Pup?) [; (Abg) e FHe)T=Ndr
+w7 ftT B?Re2ﬂ(R+w4)(T—7)dT

(4.58)
Therefore, from (4.18), we have

f (6 Ry,z) = f1 (L, Ry, 2) +Vef> (t, Ry, 2) +ef* (£, R, y, 2)

where f1(t,R,y,2), f?(t,R,y,2) and f3(¢t,R,y, 2) are given in equation (4.34), (4.45) and (4.58)
respectively. O

Hence, lemma 4.1 is proved.

Lemma 4.2. The optimal value function is given as

1
N (LR, 51, 82, h) = —ge MU (tRa2Hha(t) (4.59)
where
fE (t7R7y7Z) = fl (t’R7y7z) + \/gf2 (t7R7y7z) +€f3 (t’R7y7z)
Ps((P1P2—P3) a

t)y=F R T—t

g( ) P * 2733 (2m1m2 — ml’R — ng) ( )
Proof. Substituting equation (4.8) and lemma 4.1 into (4.2), then lemma 4.2 is proved. O
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Lemma 4.3. The optimal investment plans are given as

[’Pgsf (mng)fpgsz (ml R)] r 2
L, 1 6(PiP2—P3)s2 5] 776((731772 — 7)3) o

h (PsPs—P 7194)2v R op Eep | R+ 2P3 (2mims — mR — maR)
+25 2[1 y T (7’17’22 ) Ir L 3 1752 1 2% |

[Pasf (m1—R)—Pis{ (ma—R)] - 2
1 0(7’1732*732) fﬁsg R + P6((P1P2 - P?)) -

- FExp
2T 428y 4 PP RPR g 2P (2mims — miR — maR) |
| s (P1P2—P3)sy

where

= AL+ VE (324 B3 4 B2+ 324 BY) 42 (157308 + CF + §24CF + 2:C8)
Alr + YA + 245, , ,

fr = —hf( %R—kyEB%R+ZEB§R+yB§R+ZB§R+y%B§R+z%B$R)
+ (Clp + 3 Clg + 24 Clg + yCllg + 2C2p +y3 i + 23 Cl + Y2 Clp + 2°Ci, )

fo=AV+E(Sy iB3 + B} + 3y2B2) + e (Ly 205+ C3 + 3y2 03 +2yC3
1
3%

_ .2 2 _ .2 2 _
P1 =ni; +niy, P2 =nj +n3y, Ps=niing + nisnaa,
p— _ _ 2733 mlfR msz
Py =n11+ n127735 = g1 + ngg, Pg = 2l X )

(P1P2—P2)
Pz(m1 ’P1(77L2 R) _ (772774 'Pg’Ps)
Pr = (P1P2 732)  Ps = (P1P2—P3)” »Po = (P1P2—P3)
P (PAPs—PsPy) p (P2Pi+P1PE—2PsPaPs)
10 = (73 P2— 732) = (7;'1732—733?)

Proof. Recall from equation (3.7) and (3.8), we have

|Past (ma2 = R) = Past (ma = R)| o Moy (PaPs— PsPs) VR bp Nim

e h(PyPy — P2)s37sh Nan " hNa, h(P\Py—P2)s;  Nin

B B
ot = [P3S2 (m1 —R) = Prsy (m2 — R)} Ny Nhsz _ (P1Ps = PsPs) VR 6p Nar
? h(PyPy — P2) s 53 N 2 N h(P\Py—P2)sh  Nin
From equation (4.3), (4.8) and (4.10), we have

% - _% = —gExp [R + 2733(72921(1(::7—32;;1773521272) (t=T)
N =t — 28877, Bap R+ gt (6 - ) i
J/\\/}mf = % = _2582_25_1f2Exp R+ 2733(7237671(1(2;773:177)@2271) (t-1) i
A/\[/Zf - W = frExp {R + 2P3(723:n(1(77rjl7—pinl7’13§2(:nQ72):| (t=T)

where
fy=Ab+VE(Sy 2B+ B} + 3y2B2) +e(Ly 3205 +C} + 3y2C3 + 24C3
fo=A 4 Ve (327 B3+ B3+ 323B2) + ¢ (3273C3 + CF + 22208 + 2203
A}R—&-yA r+ 2ALR
fr = +Ve (B%R +y%B3g + 22 B3 + yBig + 2Bz +y* Bl + Z%Bgn)

+e (CfR +y2Cop + 2305, +yCin + 2025 +y2Clp + 23 Cop +12Cp + 2 CQR,)

M\»—‘ N[

Substituting (4.62) into (3.7) and (3.8), this completes the proof. O
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Remark 4.4. If the risk free interest rate R is not stochastic, i.e. € =0 and p =0, then

P3s? (ma—R)—Pasl (m1—R T -
1 Proitne ) Pl 4 28 4y Po((P1P2 — P3) a
(p* _ 9(731732 733)81 Sg S Exp R + 6 172 3 (t — T)
L= | _ (79223;77)7?379;23/7?@ (A%’R +yAly + ZA%,R) 2P3 (2mime — miR — maR)
L 1P2—=F3)sy | - -
(4.63)
355 (m1—R)—P1s] (m2—R) 2 ] -
Pssy : B 1
1 g s Ps((P1P2 — P2)
o == 0(P1P2—P2)s7 s} S2 Ezp |R + LA 3 t—T)
2 h _ (P1Z’;*PP3P;3\)/7§75P (A%R + yA%R 4 zA;)R) 2Ps3 (2m1m2 —mR — ng)
L 1P2—P3 )sy ] L i

(4.64)
where

P1(2B8+1)wa P2(28+1)ws _ 4 _ Pi(2B+1)wo _ 2B8(RA4ws)(t—T)
AL(t,R) = | Pt + (T'—1) [L-e D=D)]

49(R+u25)6 ) 180(R+wa1)?

P1(28+1)w 2B( Rt ) (T

Lttt (1 v

AL(tR) = w2 [1 _ 2ﬂ(R+W4)(t—T):|
HiR) = [

AL R) = — B [1 _ 25(R+w5>(t—T)}
3( ) ) 459 (R+0J4) €

5 Sensitivity Analysis
Here we present some numerical simulations to study the effects of some parameters on the optimal
investment plan under logarithm utility. To achieve this, the following data will be used unless

otherwise stated n1; =1, ni2 = 0.9, noy =085, ny1;1 =08, 8 =—-1,m; =04, my =03, h =
1, a=1,p=-05 R(0)= 0.05, S (0)=1.5,8(0)=12,T=3

Evolution of the optimal investment plan ¢, ¢7, and ¢3

101


https://doi.org/10.52968/28306828

INTERNATIONAL JOURNAL OF MATHEMATICAL ANALYSIS AND
OPTIMIZATION: THEORY AND APPLICATIONS

VoL. 7, No. 1, pp. 87 - 107

IJMAO HTTPS://D0OI.0RG/10.52968/28306828

The impact of the risk free interest r on ¢}

The impact of the risk free interest r on ¢

The impact of the correlation coefficient p on ¢

102


https://doi.org/10.52968/28306828

INTERNATIONAL JOURNAL OF MATHEMATICAL ANALYSIS AND
OPTIMIZATION: THEORY AND APPLICATIONS

VoL. 7, No. 1, pp. 87 - 107

IJMAO HTTPS://D0OI.0RG/10.52968/28306828

The impact of the correlation coefficient p on 3

The impact of the correlation coefficient p on 3

Evolution of ¢f with different elasticity parameter /3

103


https://doi.org/10.52968/28306828

INTERNATIONAL JOURNAL OF MATHEMATICAL ANALYSIS AND
OPTIMIZATION: THEORY AND APPLICATIONS

VoL. 7, No. 1, pp. 87 - 107

IJMAO HTTPS://D0OI.0RG/10.52968/28306828

Evolution of ¢} with different elasticity parameter 5

Evolution of ¢} with different elasticity parameter 5

6 Discussion

The impact of sensitive parameters on the optimal investment plan is analysed. In Figure 5, the
simulation of optimal investment plan of the three assets is given against time; the graph shows
that at the initial time, the investor will invest more in the risk free asset and less in the other two
risky assets and as expiration date draws closer the investor will begin to invest more in risky and
reduce investment in risk free asset. In figure 5 and 5, the investment plan for the risk free asset
increases with interest rate increases while that of the risky asset decreases with interest rate.This is
because the investors prefer investment in risk free asset than risky asset whenever the interest rate
appreciates since it is risk-less. Figure 5, 5, and 5 give the analysis of the impact of the correlation
coeflicient p on the optimal investment plans ¢f, ©7 and @3, it is observed that as p increases ¢
decreases, 7 increases significantly while ¢3 experience little or no increase. Also, we observed
also that as the investment time draws closer to it expiring date, the insurer will invest less in the
risky assets and more in the risk free asset. Figure 5, shows that as 5 reduces, ¢f increases which
implies that investors with high 6 may invest more in risk free asset to prevent more loss especially
when the market is very volatile. On the contrary, figures 5 and 5, show that as 8 reduces, the
optimal investment plan for the two risky assets decreases which implies that investors with high 6
may be more scared to invest in the risky assets when the market is highly volatile. Furthermore,
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at the initial stage of investment we observed a huge disparity between the investment plan when
B = —1 when compared to 5 = —1.5 and —2. This confirm that the choice of § = —1 could be
most suitable in choosing an investment plan.
From equation (4.60) and (4.61), the optimal investment plan decreases with an increase in the
initial wealth. Also, from remark 4.4, the optimal investment plan for the two risky assets reduce
to the result in [27] when R is not stochastic.

7 Conclusion

This paper investigated explicit solutions of the optimal investment plans of an investor with ex-
ponential utility function exhibiting CARA under CEV model and stochastic interest rate. We
considered a portfolio with risk-free asset modelled by Cox- Ingersoll-Ross (CIR) process and two
risky assets modelled by the CEV process.The power transformation and change of variable ap-
proach with asymptotic expansion technique was used to determine explicit solutions of the opti-
mal investment plans. Furthermore, we present some numerical simulations to study the effect of
the interest rate, elasticity parameter, correlation coefficient and the risk averse coefficient on the
optimal investment plans.Finally, when the interest rate is constant, our result is similar to the
result in [27].
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