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Abstract

In this paper, by using a-admissible mappings embedded in simulation functions, some fixed
point results are proved in the setting of a Hausdorff S-complete uniform space. The results
obtained generalizes and unifies some known results in the literature.
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1 Introduction

Many generalization of metric spaces abound in literature. The concept of uniform spaces was
introduced by Weil [1] while Bourbaki [2] provided the definition of a uniform structure in terms
of entourages. Aamri and El Moutawakil [3] provided the definition of A-distance and E-distance
and proved some results on common fixed point for some contractive and expansive maps in uni-
form spaces. Olisama et al. [4] introduced the concept of J4y-distance (an analogue of b-metric),
¢p-proximal contraction, and ¢,-proximal cyclic contraction for non-self-mappings in Hausdorft
uniform spaces and proved best proximity point results for these contractive mappings. Recently,
Umudu et al. [5] generalized the results of Olisama et al. [1] by introducing Geraghty p-proximal
cyclic quasi-contraction and investigated the existence and uniqueness of best proximity point for
the contractions in uniform spaces.

As a generalization of the well known Banach contraction mapping, Khojasteh et al. [6] introduced
the notion of Z-contraction which is defined by means of a family of functions called simulation
functions and proved the existence and uniqueness of fixed point for the class of Z-contraction
mappings. Several results have been proved in this direction, see ( [6—8]).
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2 Preliminaries

The following definitions are fundamental to our work.

Definition 2.1 [2]. A uniform space (X,T’) is a nonempty set X equipped with a uniform structure
which is a family I" of subsets of Cartesian product X x X which satisfy the following conditions:

(i
(ii

) f U €T, then U contains the diagonal A = {(z,z) : © € X }.
)
(iii) f U,V e, then UNV €T
)
)

IfU €T, then U=t = {(y,) : (z,y) € U} is also in T.
(iv) f U € T"and V C X x X, which contains U, then V € T.

(v

If U €T, then there exists V' € T" such that whenever (z,y) and (y, 2) are in V, then (z, 2) is
in U.

I is called the uniform structure or uniformity of U and its elements are called entourages.

Definition 2.2 [9]. Let (X,T) be a uniform space. A function p : X x X — RT is said to
be an

(a) A - distance if, for any V' € T, there exists § > 0 such that if p(z,2) < § and p(z,y) < ¢ for
some z € X, then (z,y) € V;

(b) E - distance if p is an A - distance and p(z, z) < p(z,y) + p(y, 2),Vz,y,2 € X.
Definition 2.3 [4]. Let (X,T) be a uniform space. A function p: X x X — R* is said to be a
(¢) Jay-distance if p is an A - distance and p(z, 2) < s[p(z,y) + p(y, 2)],Vz,y,2 € X, s > 1.

Note that the function p reduces to an E-distance if the constant s is taken as 1.

Example in [4] shows that a uniform space equipped with J4y distance function is a generalisation
of a uniform space equipped with an F-distance function.

Definition 2.4 [9]. Let (X,T") be a uniform space and p an A-distance on X.

(a) TV eT,(x,y) € V, and (y,z) € V, x and y are said to be V-close. A sequence (x,) is a
Cauchy sequence for T if, for any V' € I, there exists NV > 1 such that x,, and x,, are V-close
for n,m > N. The sequence (x,) € X is a p-Cauchy sequence if for every € > 0 there exists
ng € N such that p(z,,z,,) < € for all n,m > N.

(b) X is said to be S-complete if for any p-Cauchy sequence {z,}, there exists € X such that
lim p(x,,z) =0.

n—oo
(¢) f:X — X is p-continuous if le p(zn,x) =0 implies li_>m p(f(zn), f(z)) = 0.
(d) X is said to be p-bounded if §,(X) = sup{p(z,y) : z,y € X} < 0.

To guarantee the uniqueness of the limit of the Cauchy sequence for I', the uniform space (X,T)
needs to be Hausdorff.

Definition 2.5 [2]. A uniform space (X,T") is said to be Hausdorff if and only if the intersec-
tion of all the V' € T reduces to the diagonal A of X, A = {(z,z),z € X}. In other words,
(x,y) € V for all V € T implies z = y.

The concept of a-admissible mappings have been used in many works. Popescu [10] defined the
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concept of triangular a-orbital admissible mapping as an improvement of triangular a-admissible
mapping ( [11,12]).

Definition 2.6 [10]. Let T: X — X and a: X x X — R™ be a function.
(a) T is called a-orbital admissible if a(x, Tx) > 1 implies a(T'z, T?z) > 1.

(b) T is called triangular a-orbital admissible if T" is a-orbital admissible and a(z,y) > 1 and
ay,Ty) > 1 imply a(z,Ty) > 1.

The class of simulation function was introduced by Khojasteh et al. [6] as follows.

Definition 2.7 [6]. Let ¢ : [0,00) X [0,00) — R be a mapping, then ¢ is called a simulation
function if it satisfies the following conditions:

(s1) <(0,0) = 0;
(s2) s(t,s) < s—tforall s > 0.

(¢3) If {tn}, {sn} are sequences in (0, 00) such that lim ¢, = lim s, > 0 then limsup¢(ty, sn) <

n— oo n—oo n—o00

The set of all simulation functions are denoted by Z.

Definition 2.8 [6] Let (X, d) be a metric space, T : X — X be a mapping and ¢ € Z. Then T is
called a Z-contraction with respect to ¢ if the following is satisfied:

s(d(Tz,Ty),d(xz,y)) >0 for all z,y € X.

Examples of the simulation function and Z-contraction are also provided in [6].

In this paper, we consider some fixed point results in uniform spaces for the class of Z-contraction
via admissible mappings embedded in simulation function as a generalization of some fixed point
results obtained in a metric space.

3 Main Results

We begin with the following definitions.

Definition 3.1. Let (X,T') be a uniform space such that p is an E-distance. Let T : X — X
be a self mapping, a: X x X — Rt and ¢ € Z. Then T is called an a-Z-contraction with respect
to ¢ if

S (afz,y)p(Tz, Ty),p(x,y)) >0 for all z,y € X. (3.1)
Remark 3.2.

1. Suppose the uniform space is reduced to a metric space i.e I' = {(x,y) € X? : d(x,y) < €}
then the self mapping T is a a-Z contraction with respect to ¢ [3]

2. Suppose the uniform space is reduced to a metric space i.e I' = {(z,y) € X? : d(z,y) < €}
and «a(z,y) = 1, then the self mapping T is a Z contraction with respect to ¢ [6].

Definition 3.3. Let (X,I") be a uniform space such that p is an E-distance. Let T': X — X be
a self mapping, a: X x X — R" and ¢ € Z. Then T is called a generalized a-Z-contraction with
respect to ¢ if for all z,y € X.

s(a(z,y)p(Tx, Ty), M(x,y)) > 0 (3.2)
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where M (z,y) = max {p(m, y),p(z, Tx), p(y, Ty), p(z, Ty) ;—p(y, Tx) }

The following is the first main result.

Theorem 3.4. Let X be a S-complete Hausdorff uniform space such that p is an F-distance,
T : X — X a generalized a-Z-contraction with respect to ¢ and the following conditions are
satisfied:

(i) T is a triangular a-orbital admissible mapping.
(ii) There exists xg € X such that a(xg, Txo) > 1.
(iii) T is continuous.

Then T has a fixed point z* € X.

Proof: By hypothesis (ii), there exists 2o € X such that a(xg, Txo) > 1. Let 29 € X such that
a(xg, Txo) > 1. Define a sequence {x,} € X by letting @, 41 = Tz, for all n > 0. If z, = 541,
then T has a fixed point. Consequently, henceforth, we shall assume that x,, # x,1 for all n. And
$0 p(Zp+t1,T,) > 0 for all n € N. Since T is a-orbital admissible, then

a(zo, 1) = a(zg, Txo) > 1 = a(Tzo,Tr1) = a(x1,22) > 1.
Recursively, we have
o(zn,tpe1) > 1 for all neNUO. (3.3)
Using (3.2) and (3.3), for all n € N

0 < C(a(xnaxnfl)p(TxnaTxnfl)vM(xnvxnfl))
s (a(zn, n—1)p(@nt1,Tn), M(2n, Trn-1))
< M(zp,Tp—1) — &(Tn, Tn—1)P(Tnit1, Tn)

where
L ne1, T,
M(xn’xn_l) = max {p<xn’ $n—1),p(l‘n,Txn),p(l‘n_1,Txn_1), p(aj Jj 1) ;p(x 1 r ) }
= p(xn717xn+1>
= max p(x”’xn*1)7p(xn>xn+1)>f
< max {p(;gn, Tr1), P(Tns Tng1), P(Tp_1,Tn) ‘;P(xm Tyt1) }

= maX{p(zn,In_l),p(In,In+1)},
If M(2p,xn-1)=p(Tn,xnt1) for all n € N, then
0 << (a(@n, Tn-1)P(ZTnt1,n), P(Tn, Tny1))

< p(xnvxn-ﬁ-l) - O‘(xmmn—l)p(l‘na $n+1) <0

which is a contradiction. Therefore, M (z,, z,—1) = p(@y, n—1) for all n € N and
0 S g(a(xnvxnfl)p(anrl»xn)ap(xnuxnfl)) (34)

< p(x’ru xnfl) - Oé(l‘n, l’n—l)p@m anrl)-

Consequently,

P(Tn, Tny1) < @, Tno1)P(Tns Tng1) < P(Tny Tno1) (3.5)
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for all n € N. Thus, the sequence {p(z,,zn+1)} is a decreasing sequence of positive real numbers
and so, there exists a non negative number r such that

lim p(x,,Tpe1) =1 (3.6)

n—oo
To prove that lim p(z,,z,+1) = 0, suppose on the contrary that » > 0. Now considering equations
n—oo
(3.4), (3.5) and condition (3), we have

0 <limsupg (a(fn,il?7z—1)p($n+17xn)7 M(Invxn—l)) <0

n—roo

which is a contradiction. Therefore, » = 0. To show that the sequence {z,} is p-Cauchy. Assume
for contradiction that {z,} is not Cauchy. Then there exists ¢ > 0 such that, for all k¥ > 0, we can
find n,m € N with m(k) > n(k) > k with p(2, k), Tmr)) > €. Let m(k) be the smallest number
satisfying the condition above. Thus, p(2y k), Tmk)—1) < €.

Therefore, using triangle inequality, we have

€ p(xn(k)a x’rn(k))
P(Tn(k)s Tm(k)—1) + P(Tm(k)—1> Tm(k))

€ 4+ D(T (k) =15 T (k) )-

VAN VANVAN

Letting kK — oo in the above inequality, we have

li —e .
I p(@n ), Tmr)) = € (3.7)

Since |p($n(k),$m(k)f1) —p(xn(k),ﬂcm(k)ﬂ < p(l“m(k:),l“m(k)q), we have

klirrgop(wn(k)vfm(k)—l) =€ (3-8)
Likewise,
klgngop(xm(k)—1, Tp(k)—1) = kliﬂgop(zm(k), Tp(k)—1) = € (3.9)

By condition (¢), T is triangular orbital admissible and we have
a(Tr(k)y—1, Tmr)—1) > 1, for all k> 1. (3.10)
T is also a generalized a-Z-contraction with respect to ¢ and using (3.10) gives
0 < <(a@n@)—1> Tmr)-1)P(TTn—1) TTmk)—1)s M(Tnk)—1, Tm(k)—1))
= (T =15 Tmk)—1)P(@nk) Tmk))s M (Tnk)—1, Tm(k)—1))
< M(ZTpk)—1, Tmk)-1) = UTnk) =15 Tm(k)—1)P(Tn(k)s Tm(k))

where

M (2 (1) =15 Tn(r)—1) = MAX{D(T(k)—15 Tn(k)—1) P(Tmk) =1, TTm(k)=1), P(Tn(k)—1, TTr(k)-1);

P(@m)—1: Ty —1) + P(Tnk)—15 TTm(r)—1) )
2

Using (3.2),(3.7),(3.8) and (3.9)
Jm M (2 (k) =1, Tm(k)—1) = klingop(xn(k)7$m(k)) =c

Clearly, we deduce that

0< p(xn(k)v xm(k)) < CV("En(k)—lv xm(k)—l)p(xn(k)a xm(k)) < M(xn(k)—lv mm(k)—1)7
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and considering (c3),

0 < limsup< (a(@p)—15 Tmk) - 1)PETn(k)s Tmk) )s M (Tngk) -1, Tmey—1)) <0

k—o0

is a contradiction. Therefore, {z,} is a Cauchy sequence. Since the uniform space, (X,I), is
complete, there exists w € X such that

lim p(z,,w) =0 (3.11)

n—oo

Using (3.11) and the hypothesis that 7" is continuous, we have

lim p(Tw,xpy1) = p(Tw, Tx,) = 0. (3.12)

n—oo

By the uniqueness of the limit in a Hausdorff uniform space and using (3.12) we obtain that the
fixed point of T is w.

The continuity of T' can be replaced by another condition.

Theorem 3.5. Let (X,I") be a S-complete Hausdorff uniform space such that p is an E-distance
and let T : X — X be a generalized a-Z-contraction with respect to ¢. Suppose the following
conditions are satisfied:

(i) T is a triangular a-orbital admissible mapping;
(ii) there exists zg € X such that a(zo, Txo) > 1;

(iii) If {z,} is a sequence in X such that a2, z,41) > 1foralln € Nand 2, — € X asn — oo,
then there exists a subsequence {z,,)} of {z,} such that a(z,y),r) > 1 for all k € N.

Then T has a unique fixed point z* € X.

Proof. Following the lines in the proof of Theorem 3.4, the sequence {z,,} defined by x,,11 = T,
for all n > 1 converges to w € X. To show that w is a fixed point of X, suppose that x,, # w for all
positive integer n and p(Tw,w) > 0. By condition (iii), there exists a subsequence {z,, } of {x,}
such that a(z,,,w) > 1 for all k € N. By (3.2), we have

S(a(@n,, W)p(Txp k), Tw), M (2y, ,w)) = (U Zn, , W)P(Tn)+1, Tw), M (T, w)) >0

Ty k), L w)+p(w, Tz, k
where M (2,5, w) = max {p(xn(k), W), P(Tn (ks Tn(k)+1), P(w, Tw), P(@n) )QP(U ) } )

By (<),

S(a @y (ry, W)P(Tp ()41, TW), M (T (1), w))
M (), w) — (T (k) W)P(Tr(k)+1, Tw)

IAIA

This implies p(zy, k)41, Tw) < M (), w).
Taking limits as k tends to infinity,

lim (xn(k:)vw) = p(waTw)

k—o0

and
lim p(z, )41, Tw) = p(w, Tw).

k—o0

Therefore, using (s3) we obtain

0 <lim sup g(a(xnk ) w)p(xn(k)+17 T’U)), M(xn(k:)a UJ)) <0,

k—o0
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which is a contradiction. Therefore, p(Tw,w) = 0 and w is fixed point of X.
To prove uniqueness of a fixed point result, consider the hypothesis.

(J) : For any two fixed points, z,y € Fix(T), then a(z,y) = 1, where Fix(T) denotes the set
of fixed points of T'.

Theorem 3.6. Adding condition (J) to the hypothesis of Theorem 3.4 (resp. Theorem 3.5),
we obtain that z* is the unique fixed point of T'.
Proof. We assume by contradiction that there exists wi,ws € X such that wy = Tw; and

wy = T'we where wy # we. Then by hypothesis (J), (w1, w2) = 1. Using (3.2) and (s2), we have

0

IN

g(a(wl, wg)p(T’Ujl, ng), M(wh w2))

p(wy, Tw,) ;p(wz,Tun) })

= g <a(w1, wa)p(wy, we ), max {p(wl, wa), p(wy, Twy)p(ws, Twsy)
= c(a(wr, w2)p(wr, w2), p(w1,ws))
< plwy,ws) — a(wy, ws)p(wy, ws) =0

which is a contradiction. Hence, w; = ws.

Corollary 3.7. Let (X,T') be a S-complete Hausdorff uniform space such that p is an E-distance

and let T : X — X be an a-Z-contraction with respect to ¢. Suppose the following conditions are
satisfied:

(i) T is a triangular a-orbital admissible mapping;
(ii) there exists xg € X such that a(xg, Tzg) > 1;

(iii) T is continuous or if {z,} is a sequence in X such that a(x,,z,41) > 1 for all n € N
and x, — v € X as n — oo, then there exists a subsequence {z, )} of {z,} such that
a(yky,z) > 1 for all k € N.

Then T has a fixed point z* € X.

Proof. The proof follows from Theorem 3.4 and Theorem 3.5. if M (z,y) = p(x,y)

We give an example to illustrate Theorem 3.4.

Example 3.8. Let X = [0,00) equipped with the usual metric and p be a E-distance defined

by

x, if =z ,

Then p is a E distance and X is a complete uniform space. Let a mapping T : X — X be

defined by T'(z) = itz forall z € X, a: X x X — [0,00) by

(,y) = 1, if  [0,2],
o\ny) = 0, if  otherwise.

s
= —— — ¢ for all .
and ¢(t, s) por t for all ¢, s € [0, 00)
Then for all z,y € X, Condition (iii) of Theorem 3.4 is satisfied with z; = 1. Condition (iv)

of Theorem 3.4 is satisfied with x, = T"x; = 3% Obviously, condition (ii) is satisfied. Let z,y be
such that a(z,y) > 1. Then, z,y € [0,1], and so Tz, Ty € [0, 1]. Moreover, a(y,Ty) = a(x,Tz) =1
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and o(Tx,T?z) = 1. Thus, T is triangular a-orbital admissible and hence (ii) is satisfied. Finally,
we shall prove that (i) is satisfied. If 0 < z,y < 1, then a(z,y) = 1, and we have

s(p(Tx, Ty),p(x,y)) = %—p(Tw,Ty)

_ x ,(E,E)
Col+4z 3 3

_ T (r=y) o,
14+ 3 =

All conditions of Theorems 3.4 are satisfied, and hence T has a unique fixed point z* = 0.

Set I' = {(z,y) € X? : d(x,y) < €} in Corollary 3.7, then the following result in the literature
is obtained.

Corollary 3.9 [8]. Let (X,T') be a complete metric space and let T : X — X be an a-Z-
contraction with respect to ¢. Suppose the following conditions are satisfied:

(i) T is a triangular a-orbital admissible mapping;

(ii) there exists g € X such that a(xg, Tzg) > 1;

(iii) 7T is continuous.

Then there exists an element z* € X such that x* = Tx*.
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