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Abstract

In this paper, we implemented second derivative block backward differentiation formulae meth-
ods in solving first order delay differential equations without the application of interpolation
methods in investigating the delay argument. The delay argument was evaluated using a suit-
able idea of sequence which we incorporated into some first order delay differential equations
before its numerical evaluations. The construction of the continuous expressions of these of
block methods was executed through the use of second derivative backward differentiation for-
mulae method on the bases of linear multistep collocation approach using matrix inversion
method to derive the discrete schemes. After the numerical experiments, the new proposed
method was observed to be convergent, stable and less time consuming. From the numerical
solutions obtained, the scheme for step number k = 4 performed better in terms of accuracy
than that of the schemes for step numbers k = 3 and 2 when compared with other existing
methods.

Keywords: First order delay differential equations, Second derivative backward differentiation
formulae, Block method.
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1 Introduction
Research has revealed that most real life situations are more realistic when they are modeled using
delay differential equations (DDEs).This is because the unknown function of the delay differential
equations (DDEs) does not only depends on the current value but also depends on the past value
which is called a delay term. Delay differential equation (DDE) is one of the mathematical models
that commonly possess the result in differential equations with time delay. In literature, various
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types of numerical methods have been developed and implemented in treating the problems of the
delay differential equations (DDEs). Most scholars adopted the use of interpolation techniques
in the evaluation of the delay term of the delay differential equations in different field of life.
These interpolation techniques such as Hermite, Nordsieck, Newton divided difference and Neville’s
interpolation were applied by [1–15] in solving delay differential equations numerically have some
limitations which affected the accuracy of their method. One of the limitations encountered by these
researchers in the use of interpolation techniques to evaluate the delay term of DDEs was studied
by [16] that the computational method use in solving DDEs should be at least the same with the
order of the interpolating polynomials which is very hard to achieve; otherwise, the accuracy of the
method will not be preserved. Therefore, it is required that in the evaluation of the delay term,
using an accurate and efficient formula should be considered.
In order to overcome the limitation posed by using interpolation techniques in evaluating the delay
term, we applied the valid expression of the sequence formulated by [17] and incorporate it into
the first order delay differential equations before its numerical evaluations. This approach has been
successfully applied by [18–21] in finding the numerical solution of first order delay differential
equations without the application of the interpolation techniques in evaluating the delay term.
In this paper, we formulated and applied second derivative block backward differentiation formulae
method in solving some first order delay differential equations (DDEs) of this form
y′(t) = f(t, y(t), y(t− τ)), for t > t0, τ > 0

y(t) = e(t), for t ≤ t0 (1.1)

where e(t) is the initial function, τ is called the delay, (t − τ) is called the delay argument and
y(t−τ) is the solution of the delay term. The results obtained after the application of the proposed
method shall be compared to other existing methods studied by [17,21] to prove its advantage.

2 Construction Techniques

2.1 Construction of Second Derivative Backward Differentiation Formu-
lae Method

In [22] the k−step Backward Differentiation Formulae Methods was derived as

z∑
b=0

αb(x) ya+b = w βb(x)f(xb, y(xb)) (2.1)

And its second derivative [22] was expressed as

z∑
b=0

αb(x) ya+b = w βb(x)f(xb, y(xb) + w2 γb(x)g(xb, y(xb) (2.2)

where αb(x), βb(x) and γb(x) are continuous coefficients of the method defined as

αb(x) =

u+v−1∑
e=0

αb,e+1x
e for b = {0, 1, ..., u− 1} (2.3)

wβb(x) =

u+v−1∑
e=0

wβb,e+1x
e for b = {0, 1, ..., v − 1} (2.4)

w2 γb(x) =

z∑
e=1

w2 γb,e+1 x
e for b = {0, 1, ..., v − 1} (2.5)
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where x0, . . . , xv−1 are the v collocation points, xa+b , b = 0, 1, 2, ..., u − 1 are the u arbitrarily
chosen interpolation points and w is the constant step size.
To get αb(x), βb(x) and γb(x), [23] developed a matrix equation of the form

RQ = I (2.6)

where I represents the unit matrix of dimension (u+v)×(u+v) and R and Q are matrices presented
as

R =



α0,1 α1,1 . αu−1,1 w β0,1 . w βv−1,1 w2 γ0,1 . w2 γv−1,1

α0,2 α1,2 . αu−1,2 w β0,2 . w βv−1,2 w2 γ0,2 . w2 γv−1,2

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .
α0,b+v α1,b+v . αu−1,b+v w β0,b+v . w βv−1,b+v w2 γ0,b+v . w2 γv−1,b+v


(2.7)

Q =



1 xa x2
a x3

a x4
a . . xu+v−1

a

1 xa+1 x2
a+1 x3

a+1 x4
a+1 . . xu+v−1

a+1

. . . . . . . .

. . . . . . . .

. . . . . . . .
1 xa+u−1 x2

a+u−1 x3
a+u−1 x4

a+u−1 . . xu+v−1
a+u−1

0 1 2xa 3x2
a 4x3

a . . (u+ v − 1)x
u+v−2
a

0 1 2xa+1 3x2
a+1 4x3

a+1 . . (u+ v − 1)x
u+v−2
a+1

. . . . . . . .

0 1 2xa+u−1 3x2
a+u−1 4x3

a+u−1 . . (u+ v − 1)x
u+v−2
a+u−1

0 0 2 6xa 12x2
a . . (u+ v − 1)(u+ v − 2)x

u+v−3
a

0 0 2 6xa+1 12x2
a+1 . . (u+ v − 1)(u+ v − 2)x

u+v−3
a+1

. . . . . . . .

0 0 2 6xa+u−1 12x2
a+u−1 . . (u+ v − 1)(u+ v − 2)x

u+v−3
a+u−1


(2.8)

From (2.6) the columns of R = Q−1 give the continuous coefficients of the continuous scheme (2.2).

2.2 Construction of Second Derivative Block Backward Differentiation
Formulae Method for k=2

Here, the number of interpolation points, u = 2 and the number of collocation points v = 2.
Therefore, (2.2) becomes

y(x) = α0(x) ya +α1(x) ya+1 +α2(x) ya+2 +α3(x) ya+3 +wβ3(x) fa+3 +w2 γ3(x) ga+3 (2.9)

The matrix Q in (2.6) becomes

Q =


1 xa x2

a x3
a

1 xa +w (xa +w)
2

(xa +w)
3

0 1 2xa+4w 3 (xa +2w)
2

0 0 2 6xa +12w

 (2.10)

The inverse of the matrix R = Q−1 is computed using Maple 18 to obtain the continuous scheme
is obtained using (2.6) and evaluating it at x = xa+2 and its derivative at x = xa+1, the following
discrete schemes are obtained
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ya+1 =
5

6
w2 ga+2 +

7

3
w fa+1−

4

3
w fa+2 + ya

ya+2 = −1

7
ya +

8

7
ya+1 +

6

7
w fa+2−

2

7
w2 gn+2 (2.11)

2.3 Construction of Second Derivative Block Backward Differentiation
Formulae Method for k=3

Here, also the number of interpolation points, u = 3 and the number of collocation points, v = 2.
Therefore, (2.2) becomes

y(x) = α0(x) ya +α1(x) ya+1 +α2(x) ya+2 +w β3(x) fa+3 +w2 γ3(x) ga+3 (2.12)

The matrix Q in (2.6) becomes

Q =


1 xa x2

a x3
a x4

a

1 xa+w (xa+w)
2

(xa+w)
3

(xa+w)
4

1 xa+2w (xa+2w)
2

(xa+2w)
3

(xa+2w)
4

0 1 2xa+6w 3 (xa+3w)
2

4 (xa+3w)
3

0 0 2 6xa+18w 12 (xa+3w)
2

 (2.13)

The inverse of the matrix R = Q−1 is computed using Maple 18 to obtain the continuous scheme
is obtained using (2.6) and evaluating it at x = xa+3 and its derivative at x = xa+1 and x = xa+2,
the following discrete schemes are obtained

ya+1 =
7

32
w2 ga+3−

85

64
w fa+1−

23

64
w fa+3−

11

32
ya +

43

32
ya+2

ya+2 =
2

7
w2 ga+3 +

10

7
w fa+2−

4

7
w fa+3−

1

7
ya +

8

7
ya+1

ya+3 =
4

85
ya−

27

85
ya+1 +

108

85
ya+2 +

66

85
wfa+3−

18

85
w2 ga+3 (2.14)

2.4 Construction of Second Derivative Block Backward Differentiation
Formulae Method for k=4

Here, also the number of interpolation points, u = 4 and the number of collocation points, v = 2.
Therefore, (2.2) becomes

y(x) = α0(x) ya +α1(x) ya+1 +α2(x) ya+2 +α3(x) ya+3 +wβ4(x) fa+4 +w2 γ4(x) ga+4 (2.15)

Also the matrix Q in (2.6) becomes

Q =



1 xa x2
a x3

a x4
a x5

a

1 xa +w (xa +w)
2

(xa +w)
3

(xa +w)
4

(xa +w)
5

1 xa +2w (xa +2w)
2

(xa +2w)
3

(xa +2w)
4

(xa +2w)
5

1 xa +3w (xa +3w)
2

(xa +3w)
3

(xa +3w)
4

(xa +3w)
5

0 1 2xa +8w 3 (xa +4w)
2

4 (xa +4w)
3

5 (xa +4w)
4

0 0 2 6xa +24w 12 (xa +4w)
2

20 (xa +4w)
3


(2.16)

The inverse of the matrix R = Q−1 is computed using Maple 18 to obtain the continuous scheme
is also obtained using (2.6) and evaluating it at x = xa+4 and its derivative at x = xa+1, x = xa+2

and x = xa+3, the following discrete schemes are obtained
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ya+1 = − 29

297
w2 ga+4−

830

891
wfa+1 +

155

891
w fa+4−

37

198
ya +

119

66
ya+2−

61

99
ya+3

ya+2 =
62

229
w2 ga+4−

830

229
wfa+2−

120

229
w fa+4 +

127

687
ya−

424

229
ya+1 +

8

3
ya+3

ya+3 =
333

2249
w2 ga+4 +

2490

2249
wfa+3−

765

2249
wfa+4−

187

4498
ya−

711

2249
ya+1 +

441

346
ya+2

ya+4 = − 9

415
ya +

64

415
ya+1−

216

415
ya+2 +

576

415
ya+3 +

60

83
wfa+4−

72

415
w2 ga+4 (2.17)

3 Convergence Analysis
Here, the investigations of order, error constant, consistency, zero stability and region of the absolute
stability of (2.11), (2.14) and (2.17) will be carried out.

3.1 Order and Error Constant
The SDBBDFM (2.2) is said to be of order Ω if C0 = C1 = ... CΩ = 0 and the first non-zero
coefficient CΩ+1 6= 0 is the error constant as developed by [25]. The order and error constant for
(2.11) are obtained as follows
C0 = C1 =

(
0 0

)T but C2 =
(

5
6 − 2

7

)T . Therefore, (2.11) has order Ω = 1 and error
constants,

C2 =
(

5
6 − 2

7

)T
.

Following the same approach, (2.14) can be presented as
C0 = C1 =

(
0 0 0

)T but C2 =
(

7
32

2
7 − 18

85

)T . Therefore, (2.14) has order Ω = 1 and
error constants, C2 =

(
7
32

2
7 − 18

85

)T .
Applying the same approach, (2.17) can be obtained as
C0 = C1 =

(
0 0 0 0

)T but C2 =
(
− 29

297
62
229

333
2249 − 72

415

)T . Therefore, (2.17) has order
Ω = 1 and error constants, C2 =

(
− 29

297
62
229

333
2249 − 72

415

)T .
3.2 Consistency
Since Ω = 1 in (2.11), (2.14) and (2.17) satisfying the condition for consistency of order Ω ≥ 1 as
stated by [25], then the discrete schemes are said to be consistent.

3.3 Zero Stability
The discrete schemes (2.11), (2.14) and (2.17) are said to be zero stable if the no root of the first
characteristic polynomial is greater than 1.
The zero stability for (2.11) is examined as follows

(
1 0
− 8

7 1

)(
ya+1

ya+2

)
=

(
0 −1
0 1

7

)(
ya−1

ya

)
+ w

(
7
3 − 4

3
0 6

7

)(
fa+1

fa+2

)
+w

(
0 0
0 0

)(
fa−1

fa

)
+ w2

(
0 5

6
0 − 2

7

)(
ga+1

ga+2

)
+ w2

(
0 0
0 0

)(
ga−1

ga

)
where

L
(1)
2 =

(
1 0
− 8

7 1

)
, L

(1)
1 =

(
0 −1
0 1

7

)
,M

(1)
2 =

(
7
3 − 4

3
0 6

7

)
and N (1)

2 =

(
0 5

6
0 − 2

7

)
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µ(δ) = det(δL
(1)
2 −L

(1)
1 )

=
∣∣∣δ L(1)

2 −L
(1)
1

∣∣∣ = 0
(3.1)

Now we have,

µ (δ) =

∣∣∣∣δ( 1 0
− 8

7 1

)
−
(

0 −1
0 1

7

)∣∣∣∣ =

(
δ 0
− 8

7δ δ

)
−
(

0 −1
0 1

7

)

⇒ µ (δ) =

(
δ 1
− 8

7δ δ − 1
7

)
Using Maple (2.17) software, we obtain

µ(δ) = δ
2 +δ

⇒ δ
2 +δ = 0

⇒ δ1 = −1, δ2 = 0. Since |δi| < 1, i = 1, 2, the discrete schemes in (2.11) is zero stable.
Applying the same technique for (2.14) and presented as follows 1 − 43

32 0
− 8

7 1 0
27
85 − 108

85 1

 ya+1

ya+2

ya+3

 =

 0 0 11
32

0 0 1
7

0 0 − 4
85

 ya−2

ya−1

ya

+ w

 − 85
64 0 − 23

64
0 10

7 − 4
7

0 0 66
85

 fa+1

fa+2

fa+3


+w

 0 0 0
0 0 0
0 0 0

 fa−2

fa−1

fa

+ w2

 0 0 7
32

0 0 2
7

0 0 − 18
85

 ga+1

ga+2

ga+3


+w2

 0 0 0
0 0 0
0 0 0

 ga−2

ga−1

ga


where

L
(2)
2 =

 1 − 43
32 0

− 8
7 1 0

27
85 − 108

85 1

 , L
(2)
1 =

 0 0 11
32

0 0 1
7

0 0 − 4
85

 ,M
(2)
2 =

 − 85
64 0 − 23

64
0 10

7 − 4
7

0 0 66
85

 and

N
(2)
2 =

 0 0 7
32

0 0 2
7

0 0 − 18
85


µ(δ) = det

(
δL

(2)
2 −L

(2)
1

)
=
∣∣∣δ L(2)

2 −L
(2)
1

∣∣∣ = 0.
(3.2)

Now we have,

µ (δ) =

∣∣∣∣∣∣δ
 1 − 43

32 0
− 8

7 1 0
27
85 − 108

85 1

−
 0 0 11

32
0 0 1

7
0 0 − 4

85

∣∣∣∣∣∣ =

∣∣∣∣∣∣
 δ − 43

32δ 0
− 8

7δ δ 0
27
85δ − 108

85 δ δ

−
 0 0 11

32
0 0 1

7
0 0 − 4

85

∣∣∣∣∣∣
⇒ µ (δ) =

 δ − 43
32δ − 11

32
− 8

7δ δ − 1
7

27
85δ − 108

85 δ δ + 4
85


The following are obtained using Maple (2.17) software,

µ(δ) = −15

28
δ

3−15

28
δ

2
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⇒ −15

28
δ

3−15

28
δ

2 = 0

⇒ δ1 = −1, δ2 = 0, δ3 = 0. Since |δi| < 1, i = 1, 2, 3, the discrete schemes in (2.14) is zero stable.
By the same technique (2.17) can be presented as follows

 1 − 119
66

61
99

0
− 424

229
1 − 8

3
0

711
2249

− 441
346

1 0
− 64

415
216
415

− 576
415

1




ya+1

ya+2

ya+3

ya+4

 =


0 0 0 37

198
0 0 0 − 127

687
0 0 0 − 187

4498
0 0 0 9

415




ya−3

ya−2

ya−1

ya



+w


− 830

891 0 0 155
891

0 − 830
229 0 − 120

229
0 0 2490

2249 − 765
2249

0 0 0 60
83




fa+1

fa+2

fa+3

fa+4



+w


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




fa−3

fa−2

fa−1

fa

+ w2


0 0 0 − 29

297
0 0 0 62

229
0 0 0 333

2249
0 0 2 − 72

415




ga+1

ga+2

ga+3

ga+4



+w2


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




ga−3

ga−2

ga−1

ga


where

L
(3)
2 =


1 − 119

66
61
99 0

− 424
229 1 − 8

3 0
711
2249 − 441

346 1 0
− 64

415
216
415 − 576

415 1

 , L
(3)
1 =


0 0 0 37

198
0 0 0 − 127

687
0 0 0 − 187

4498
0 0 0 9

415

 ,M
(3)
2 =


− 830

891 0 0 155
891

0 − 830
229 0 − 120

229
0 0 2490

2249 − 765
2249

0 0 0 60
83


and

N
(3)
2 =


0 0 0 − 29

297
0 0 0 62

229
0 0 0 333

2249
0 0 2 − 72

415


µ(δ) = det

(
δL

(3)
2 −L

(3)
1

)
=
∣∣∣δ L(3)

2 −L
(3)
1

∣∣∣ = 0
(3.3)

Now we have,

µ (δ) =

∣∣∣∣∣∣∣∣δ


1 − 119
66

61
99 0

− 424
229 1 − 8

3 0
711
2249 − 441

346 1 0
− 64

415
216
415 − 576

415 1

−


0 0 0 37
198

0 0 0 − 127
687

0 0 0 − 187
4498

0 0 0 9
415


∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣


δ − 119
66 δ

61
99δ 0

− 424
229δ δ − 8

3δ 0
711
2249δ − 441

346δ δ 0
− 64

415δ
216
415δ − 576

415δ δ

−


0 0 0 37
198

0 0 0 − 127
687

0 0 0 − 187
4498

0 0 0 9
415


∣∣∣∣∣∣∣∣

⇒ µ (δ) =


δ − 119

66 δ
61
99δ − 37

198
− 424

229δ δ − 8
3δ

127
687

711
2249δ − 441

346δ δ 187
4498

− 64
415δ

216
415δ − 576

415δ δ − 9
415


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The following are obtained using Maple (2.16) software,

µ(δ) =
13778000

16995693
δ

4 +
13778000

16995693
δ

3

⇒ 13778000

16995693
δ

4 +
13778000

16995693
δ

3 = 0

⇒ δ1 = −1, δ2 = 0, δ3 = 0, δ4 = 0. Since |δi| < 1, i = 1, 2, 3, 4, the discrete schemes in (2.17) is zero
stable.

3.4 Convergence
Since (2.11), (2.14) and (2.17) are both consistent and zero stable, therefore they are convergent.

3.5 Region of Absolute Stability
The regions of absolute stability of the numerical methods for DDEs are considered. We considered
finding the C− and D−stability by applying (2.11), (2.14) and (2.17) to the DDEs of this form:

y
′
(t) = φy(t) + ωy(t− τ),

y(t) = ϕ(t),

t ≥ t0
t ≤ t0

(3.4)

where ϕ(t) is the initial function, φ, ω are complex coefficients, τ = mw,m ∈ Z+, w is the step size
and w = τ

m ,m is a positive integer. Let R1 = wφ and R2 = wω, then from (2.11), then the C−
and D− stability of (2.11), (2.14) and (2.17) are investigated, plotted and presented in figure 1 to
6 below with use of Maple 18 and MATLAB.

Figure 1: Region of C−stability (SDBBDFM)in (2.11)
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Figure 2: Region of C−stability (SDBBDFM)in (2.14)

Figure 3: Region of C−stability (SDBBDFM)in (2.17)
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Figure 4: Region of D−stability (SDBBDFM)in (2.11)
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Figure 5: Region of D−stability (SDBBDFM) in (2.14)

Figure 6: Region of D−stability (SDBBDFM) in (2.17)

The C−stability regions in Figs 1 to 3 lie inside the open-ended region while the D− stability
regions in Figs 3 to 6 lie inside the enclosed region.

4 Numerical Computations
In this section, some first-order delay differential equations shall be solved using (2.11), (2.14) and
(2.17) of the discrete schemes been established. The delay argument shall be implemented using
the idea of sequence derived by [17].

4.1 Applications of SDBBDFM to Solve Some First Order DDEs
Problem 1

y
′
(t) = −1000y(t) + y(t− (ln(1000− 1))), 0 ≤ t ≤ 3

y(t) = e−t, t ≤ 0
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Exact solution y(t) = e−t

Problem 2
y

′
(t) = −1000y(t) + 997e−3y(t− 1) + (1000− 997e−3), 0 ≤ t ≤ 3

y(t) = 1 + e−3t, t ≤ 0

Exact solution y(t) = 1 + e−3t

These problems were solved using the discrete schemes in (12), (15) and (18) and the numerical
solutions are presented below

t Exact Solution k = 2 k = 3 k = 4
Numerical Solution Numerical Solution Numerical Solution

0.1 0.990049834 0.990046071 0.990045639 0.990004001

0.2 0.980198673 0.980204092 0.980204329 0.980162693

0.3 0.970445534 0.970442037 0.97026926 0.970419306

0.4 0.960789439 0.960794693 0.960784392 0.959542

0.5 0.951229425 0.951225995 0.951233939 0.951219778

0.6 0.941764534 0.941769684 0.941534196 0.941764353

0.7 0.93239382 0.932390458 0.932388597 0.932403009

0.8 0.923116346 0.923121395 0.923120399 0.92323405

0.9 0.913931185 0.913927889 0.913687709 0.913885631

1.0 0.904837418 0.904842366 0.904832237 0.904800959

1.1 0.895834135 0.895830906 0.895837958 0.895806679

1.2 0.886920437 0.886925287 0.886677455 0.88564472

1.3 0.878095431 0.878092265 0.878090366 0.878089949

1.4 0.869358235 0.86936299 0.869361908 0.869361492

1.5 0.860707976 0.860704873 0.860469921 0.860719883

1.6 0.852143789 0.852148449 0.852138862 0.85238348

1.7 0.843664817 0.843661775 0.843668368 0.843619153

1.8 0.835270211 0.835274779 0.835038436 0.835232943

1.9 0.826959134 0.826956152 0.826954348 0.826930176

2.0 0.818730753 0.81873523 0.818734195 0.81741484

2.1 0.810584246 0.810581323 0.810359058 0.810582997

2.2 0.802518798 0.802523187 0.802514152 0.802525615

2.3 0.794533603 0.794530738 0.794536942 0.794548405

2.4 0.786627861 0.786632163 0.786409241 0.78699501

2.5 0.778800783 0.778797975 0.778796274 0.778754609

2.6 0.771051586 0.771055802 0.771054826 0.771013161

2.7 0.763379494 0.763376742 0.763167305 0.763348742
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2.8 0.755783741 0.755787874 0.755779366 0.75441508

2.9 0.748263568 0.748260869 0.748266712 0.748266658

3.0 0.740818221 0.740822272 0.740612304 0.740828758

Numerical Solutions of Problem 1 for SDBBDFM k = 2, 3 and 4
t Exact Solution k = 2 k = 3 k = 4

Numerical Solution Numerical Solution Numerical Solution

0.1 1.970445534 1.970423847 1.970402449 1.970013705

0.2 1.941764534 1.941795768 1.941807493 1.941418749

0.3 1.913931185 1.913911862 1.913164307 1.9136689

0.4 1.886920437 1.886949516 1.886876817 1.87607662

0.5 1.860707976 1.860689767 1.860742997 1.860623911

0.6 1.835270211 1.835297601 1.834311469 1.83526246

0.7 1.810584246 1.810567098 1.810542954 1.810650552

0.8 1.786627861 1.786653657 1.786658441 1.78845191

0.9 1.763379494 1.763363344 1.762416543 1.762989522

1.0 1.740818221 1.740842513 1.740780001 1.740495934

1.1 1.718923733 1.718908523 1.718951201 1.718667129

1.2 1.697676326 1.697699203 1.696767095 1.68722167

1.3 1.677056874 1.67704255 1.677021786 1.677043804

1.4 1.65704682 1.657068365 1.657071763 1.65709378

1.5 1.637628152 1.637614662 1.636787358 1.637733367

1.6 1.618783392 1.618803683 1.618751268 1.622249

1.7 1.600495579 1.600482875 1.600518321 1.600132834

1.8 1.582748252 1.582767362 1.581976539 1.58243875

1.9 1.565525439 1.565513474 1.565496062 1.565267604

2.0 1.548811636 1.548829633 1.548832403 1.53844499

2.1 1.532591801 1.532580532 1.531885394 1.532640588

2.2 1.516851334 1.516868282 1.516824479 1.516947343

2.3 1.501576069 1.501565457 1.501595042 1.501717903

2.4 1.486752256 1.486768217 1.486106283 1.49173923

2.5 1.472366553 1.472356559 1.472342006 1.472018882

2.6 1.458406011 1.458421043 1.45842335 1.458100223

2.7 1.444858066 1.444848655 1.444267583 1.444592922

2.8 1.431710523 1.431724681 1.431688091 1.42117034
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2.9 1.418951549 1.418942685 1.418967394 1.419055689

3.0 1.40656966 1.406582991 1.406029946 1.406710946

Numerical Solutions of Problem 2 for SDBBDFM k = 2, 3 and 4

5 Analysis and Discussion of Results
Here, the performances of the schemes derived in (2.11), (2.14) and (2.17), shall be implemented
in solving the two problems above by computing their absolute errors. The analysis of results is
obtained by evaluating absolute difference of exact solutions and numerical solutions. The results
are summarized in the tables 5 to 5,

t k = 2 Error k = 3 Error k = 4 Error

0.1 3.76245E-04 4.19475E-06 4.58323E-08

0.2 5.41909E-04 5.65589E-06 3.59802E-08

0.3 3.49705E-05 1.76274E-06 2.62275E-08

0.4 5.25355E-05 5.04695E-06 1.247439E-09

0.5 3.4298E-05 4.514E-06 9.647E-09

0.6 5.15002E-05 2.30338E-06 1.80484E-09

0.7 3.36171E-05 5.22331E-06 9.18939E-09

0.8 5.04821E-05 4.05271E-06 1.7704E-09

0.9 3.29587E-05 2.43476E-06 4.55541E-09

1.0 4.94806E-05 5.18114E-06 3.64592E-09

1.1 3.2297E-05 3.8225E-07 2.74561E-09

1.2 4.85018E-05 2.42982E-07 1.275717E-10

1.3 3.16632E-05 5.06482E-07 5.48162E-10

1.4 4.7541E-05 3.6725E-07 3.2567E-10

1.5 3.10313E-05 2.38055E-07 1.19066E-10

1.6 4.66003E-05 4.92727E-07 2.39691E-10

1.7 3.0417E-05 3.5515E-07 4.56641E-10

1.8 4.56779E-05 2.31775E-07 3.72685E-10

1.9 2.98164E-05 4.78614E-07 2.89577E-10

2.0 4.47732E-05 3.44232E-07 1.315913E-10

2.1 2.92257E-05 2.25188E-07 1.24887E-11

2.2 4.38854E-05 4.64636E-07 6.81744E-11

2.3 2.8647E-05 3.3392E-07 1.48025E-11

2.4 4.30163E-05 2.1862E-07 3.67149E-11
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2.5 2.80787E-05 4.50897E-07 4.61744E-11

2.6 4.2165E-05 3.24E-07 3.84248E-11

2.7 2.75234E-05 2.12189E-08 3.07526E-12

2.8 4.13294E-05 4.37576E-08 1.368661E-12

2.9 2.69818E-05 3.14402E-08 3.09082E-12

3.0 4.05122E-05 2.05917E-08 1.05372E-12

Absolute Errors for SDBBDFM k = 2, 3 and 4 using problem 1
t k = 2 Error k = 3 Error k = 4 Error

0.1 2.16865E-05 4.30845E-06 4.31829E-07

0.2 3.12344E-05 4.29594E-06 3.45785E-07

0.3 1.93233E-05 7.66878E-06 2.62285E-08

0.4 2.90793E-05 4.36197E-06 1.0843817E-08

0.5 1.82094E-05 3.50206E-06 8.40654E-08

0.6 2.73896E-05 9.58742E-06 7.75141E-08

0.7 1.7148E-05 4.1292E-06 6.6306E-08

0.8 2.57959E-05 3.05799E-06 1.824049E-09

0.9 1.61503E-05 9.62951E-06 3.89972E-09

1.0 2.42923E-05 3.82197E-06 3.22287E-09

1.1 1.52104E-05 2.74676E-06 2.56604E-09

1.2 2.28769E-05 9.09231E-06 1.0454656E-09

1.3 1.43245E-05 3.50885E-06 1.30705E-09

1.4 2.15452E-05 2.49432E-06 4.69602E-09

1.5 1.34896E-05 8.40794E-06 1.05215E-09

1.6 2.02912E-05 3.21238E-06 3.465608E-09

1.7 1.27038E-05 2.27422E-06 3.62745E-09

1.8 1.91096E-05 7.71713E-06 3.09502E-09

1.9 1.19647E-05 2.93767E-07 2.57835E-10

2.0 1.79969E-05 2.07669E-07 1.0366646E-10

2.1 1.1269E-05 7.06407E-07 4.8787E-10

2.2 1.69475E-05 2.68555E-07 9.60085E-10

2.3 1.06121E-05 1.89729E-07 1.41834E-10

2.4 1.5961E-05 6.45973E-07 4.986974E-10

2.5 9.99374E-06 2.45467E-07 3.47671E-11
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2.6 1.50317E-05 1.73387E-07 3.05788E-11

2.7 9.41122E-06 5.90483E-08 2.65144E-12

2.8 1.41576E-05 2.24324E-08 1.0540183E-13

2.9 8.86425E-06 1.58448E-09 1.0414E-13

3.0 1.33313E-05 5.39714E-09 1.41286E-13

Absolute Errors of SDBBDFM k = 2, 3 and 4 using problem 2

5.1 Comparison of Results
The results obtained from tables 5 to 5 shall be compared to other existing methods studied
by [17,21] to prove its advantage. The notations used in the tables 1 to 2 below are stated as

SDBBDFM = Second Derivative Block Backward Differentiation Formulae Methods for step
numbers k = 2, 3 and 4.
CBBDFM = Conventional Block Backward Differentiation Formulae Method for step numbers
k = 2 and 3 in [17].
HEBBDFM = Hybrid Extended Block Backward Differentiation Formulae Methods for step num-
bers k = 3 and 4 in [21].
MAXE = Maximum Error.

Numerical Method Compared MAXEs with [17, 21]
SDBBDFM MAXE for k = 2 5.25E-05
SDBBDFM MAXE for k = 3 4.38E-08
SDBBDFM MAXE for k = 4 3.09E-12
CBBDFM MAXE for k = 2 1.66E-05
CBBDFM MAXE for k = 3 2.22E-07
HEBBDFM MAXE for k = 2 2.97E-06
HEBBDFM MAXE for k = 3 5.74E-08
HEBBDFM MAXE for k = 4 3.90E-09

Table 1: Comparison between the Maximum Absolute Errors of SDBBDFM k = 2, 3 and 4 with
[17,21] for constant step size w = 0.01 Using Problem 1.

CPU time of SDBBDFM for k = 2 is 0.395s, k = 3 is 0.244s and k = 4 is 0.1.98s

Numerical Method Compared MAXEs with [17, 21]
SDBBDFM MAXE for k = 2 9.99E-06
SDBBDFM MAXE for k = 3 5.40E-09
SDBBDFM MAXE for k = 4 1.41E-13
CBBDFM MAXE for k = 2 1.66E-05
CBBDFM MAXE for k = 3 2.22E-07
HEBBDFM MAXE for k = 2 3.33E-06
HEBBDFM MAXE for k = 3 9.85E-08
HEBBDFM MAXE for k = 4 8.32E-09

Table 2: Comparison between the Maximum Absolute Errors of SDBBDFM k = 2, 3 and 4 with
[17,21] for constant step size w = 0.01 Using Problem 2.

CPU time of SDBBDFM for k = 2 is 0.420s, k = 3 is 0.370s and k = 4 is 0.201s
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5.2 Conclusions
In this study, we have proved that second derivative block backward differentiation formulae meth-
ods (SDBBDFM) are suitable in solving first order delay differential equations without the appli-
cation of interpolation methods in investigating the delay argument. After the implementation, we
observed that proposed method satisfied the necessary and sufficient conditions of convergence and
stability. Also, we observed in tables 5 to 2 that the SDBBDFM for k = 4 scheme performed better
when compared with other existing methods than the SDBBDFM schemes for step numbers k = 3
and k = 2 respectively. Therefore, it is recommended that SDBBDFM schemes for step numbers
k = 2, 3, and 4 are suitable for solving DDEs. It is also recommended that the SDBBDFM schemes
of higher step numbers perform better than the SDBBDFM schemes of lower step numbers. Further
study should be carried out for step number k = 5, 6, 7... on the construction of discrete schemes of
SDBBDFM for solving DDEs without the application interpolation techniques in investigating the
delay term.
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