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Abstract

Peristalstic motion research is gaining popularity in the industrial, biological, medical, physio-
logical, and engineering fields. The influence of slips on the flow of peristaltic and heat transfer
of micropolar fluids in an asymmetric channel is studied analytically in this work. The model
governing the equations are studied under the long wave and low Reynolds number approxi-
mations. Using similarity transformation, the generated nonlinear coupled partial differential
equations are turned into nonlinear ordinary differential equations, along side the boundary
conditions. Solutions are sought analytically by means of differential transformation method
for the cases when the thermal and variable viscosity parameters are present. According to
the findings, viscosity and thermal slips improve the flow of the bolus as it travels through the
digestive tract. The impact of microrotation also aids in lowering the flow’s pressure gradient..
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1 Introduction
Peristalsis is a sequence of wave-like muscular contractions that convey fluid-like substances along
the digestive tract to separate processing stations. It is derived from the Greek word peristellein,
which means "to wrap around." It was invented in New Latin. When a bolus of food is ingested, the
process of peristalsis begins in the oesophagus. The smooth muscle in the oesophagus makes strong
wave-like motions that transport food to the stomach, where it is churned into a liquid combination
known as "chyme." Smooth muscle tissue contracts in sequence in much of a digestive tract, such as
the human gastrointestinal tract, to produce a peristaltic wave, which propels a ball of food (called
a bolus while in the oesophagus and upper gastrointestinal tract and chyme after being churned
in the stomach) along the tract [1]. Circular smooth muscle relaxation is followed by contraction
behind the chewed material to keep it from travelling backward, and then longitudinal contraction
to propel it forward. Peristalsis continues in the small intestine, where it mixes and pushes the
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chyme back and forth, allowing nutrients to be absorbed into the bloodstream through the millions
of villi and micro-villi that line the walls of the small intestine. Peristalsis comes to a halt in the
large intestine, where the water from the undigested meal is absorbed into the bloodstream. Finally,
the body’s leftover waste materials are expelled through the rectum via anus. Because the human
lymphatic system lacks a central pump, peristalsis is responsible for the circulation of lymph and
the valves in capillaries. Peristalsis is the natural flow of sperm from the testicles to the urethra.
The earthworm is a limbless annelid worm with a peristalsis-driven hydrostatic skeleton. It has a
fluid-filled body cavity surrounded by extendable body walls in its hydrostatic skeleton. The worm
travels by radially contracting the anterior section of its body, causing hydrostatic pressure to cause
an increase in length. The worm’s body is restricted in this area, which propagates posterior. As
a result, each segment extends forward, relaxes, and re-contacts the substrate, with a hair-like set
that prevents retrograde sliding.
A peristaltic pump is a positive-displacement pump that works by pinching advancing parts of a
flexible tube to move fluid through it. The pump separates the fluid from the machinery, which is
critical if the fluid is abrasive or needs to be kept sterile. Peristalsis has been used by robots to
achieve locomotion in the same way that it is used by earthworms. Peristaltic pumps are utilized
in a wide range of applications. They’re utilized in printing inks and dyes, mining slurring, waste
water slurring, bleach, sodium bromide, and lime slurry pumping, among other things. Suction
lift applications are also a good fit for peristaltic pumps. They evolve and improve in the same
way that all other technologies do. Shoe design restrictions and inadequate rubber technologies
hampered early designs.

The necessity to model the flow of fluids containing rotating micro-constituents led to the devel-
opment of micropolar fluid theory. A micropolar fluid is one with internal structures that takes
into account the interaction between the spin of each particle and the macroscopic velocity field.
It is a hydrodynamical framework designed for granular systems with macroscopic-sized particles.
Eringen [2] was the first to put the theory of micropolar fluids into words. Many researchers [3–12]
have worked on micropolar fluids, including applications of microrotation fluid, slip effect, magneto-
Micropolar fluid, and many more.

The influence of magnetic fields on peristaltic mechanisms is significant in the context of particular
issues involving the flow of conductive physiological fluids, such as blood pumping equipment.
The effects of a magnetic field on peristaltic flow have been discussed by a number of researchers
[6–8,10,12–14], and many more. There are few attempts in which the effects of variable viscosity in
the peristaltic mechanisms are considered. Mention may be made of the interesting works of Shit
and Roy [8] and Ali et al. [3]. The variable viscosity is considered to be a function of space (height).
In a typical situation most of the fluids have temperature dependent viscosity and this property
varies significantly when large temperature difference manifests. Khan et al. [15] considered variable
viscosity of a Jeffrey fluid through a porous medium in an asymmetric channel while Rao and
Mishra [16] discuss the viscous flow in an asymmetric channel. Massoudi and Christie [17] studied
the effects of variable viscosity for a simple pipe flow of a third grade fluid. Later Pakdemirli and
Yilbas [18] and Pandey and Chaube [14] examined the temperature dependent viscosity. The goal
of this study is to see how slip affects Micropolar fluid peristaltic flow and heat transfer in an
asymmetric channel with varying viscosity and thermal conductivity. Under the premise of a long
wave-length and low Reynolds number, the similarity transformation was employed to convert the
governing nonlinear partial differential equations to nonlinear ordinary differential equations. Axial
velocity, microrotation component, wall shear stresses, stream function, and pressure gradient were
all solved using the Differential Transformation Method. The problem’s consequences of various
physical characteristics are visually presented.
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2 Mathematical Formulation
Consider the flow of a non-uniform porous channel of uniform thickness of length 2a through an
unstable, incompressible, viscous, and electrically conducting micropolar fluid under the influence
of an external magnetic field as seen in Figure 1. Temperature distributions on the upper and lower
walls ensure that convective conditions are met. Let Y = h(X, t) denote the distance between the
upper and lower walls of the channel, which is thought to be produced by a sinusoidal wave train
propagating along the length of the channel wall at a wave speed of c, such that

Figure 1: A physical representation of the model

[]

h(X, t) = a+ (X − ct) tanϑ+ b sin

(
2π

λ
(X − ct)

)
(2.1)

where a is the channel’s half width at the entrance, λ is the wave length, b is the amplitude of
the wave, ϑ is the angle between the channel’s axis and the walls, and X and Y are rectangular
co-ordinates, with X being the channel’s axis and Y being the traverse axis perpendicular to X
whereas t signifies the time. Because the system is strained by an external transverse magnetic
field of intensity, the total magnetic field induction vector is B(0, B0, 0), with the induced magnetic
field ignored due to the assumption of low electrical conductivity. By ignoring the body couplings,
the equations of motion for unsteady flow through porous medium of an incompressible magneto-
micropolar fluid with externally imposed magnetic field are as seen in [6]:

∇ ·V = 0 (2.2)

ρ

(
∂V
∂t̄

+ V · ∇ V
)

=−∇p̄+ (µ+ κ)∇2V + κ (∇∧Ω) +

J ∧B− (µ+ κ)

Kp
V

(2.3)

ρj̄

(
∂Ω

∂t̄
+ V · ∇ Ω

)
=− 2κΩ + κ∇∧V + (µ+ κ)∇2V ∧V− γ (∇∧∇ ∧Ω)

+ (α+ β + γ)∇(∇ ·Ω)

(2.4)

and the energy equation is

ρCp

(
∂

t̄
+ V · ∇

)
T̄ = κ∇2T̄ +Q0(T̄ − T0)r (2.5)

as well as the generalized ohm’s law J = σ(E + V ∧B). where V = (ū, v̄, 0) is the velocity vector,
Ω = (0, 0, N̄(x̄, ȳ)) the microrotation vector, p̄ is the total fluid pressure, µ is the kinematic viscosity
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of the fluid,
∂

∂t̄
is the local material time derivative, t is the time, ρ the fluid density, j the micro

gyration parameter, J current density vector, σ electrical conductivity of the fluid and E is the
electric field vector. Also, κ, α, β and γ are the material constants (viscosity coefficients of the
micropolar fluid)

The following relationships can be used to translate the current phenomenon from the laboratory
to the wave frame.

x̄ = X̄ − ct̄, ȳ = Ȳ , ū = Ū − c, v̄ = V̄ , w̄ = N̄ , p̄(x̄, ȳ) = p(X̄, Ȳ , t̄)

where c is the wave’s propagation speed.
We have the following formulas using the provided values of the velocity field:

∂ū

∂x̄
+
∂v̄

∂ȳ
= 0 (2.6)

ρ

(
∂

∂t̄
+ (ū+ c)

∂

∂x̄
+ v̄

∂

∂ȳ

)
(ū+ c) = −∂p̄

∂x̄
+ (µ̄+ κ)

(
∂2

∂x̄2
+

∂2

∂ȳ2

)
(ū+ c)

+

(
∂µ̄

∂x̄

∂

∂x̄
+
∂µ̄

∂ȳ

∂

∂ȳ

)
(ū+ c) + κ

∂w̄

∂ȳ
− σB2

0 (ū+ c)− (µ̄+ κ)

kp
(ū+ c)

(2.7)

ρ

(
∂

∂t̄
+ (ū+ c)

∂

∂x̄
+ v̄

∂

∂ȳ

)
v = −∂p̄

∂ȳ
+ (µ̄+ κ)

(
∂2

∂(̄x)2
+

∂2

∂ȳ2

)
v̄

+

(
∂µ̄

∂x̄

∂

∂x̄
+
∂µ̄

∂ȳ

∂

∂ȳ

)
v̄ − κ∂w̄

∂x̄
− (µ̄+ κ)

K̄p
v̄

(2.8)

ρj̄

(
∂

∂t̄
+ (ū+ c)

∂

∂x̄
+ v̄

∂

∂ȳ

)
w̄ = γ

∂2w̄

∂ȳ2
− κ

(
2w̄ +

∂ū

∂ȳ

)
(2.9)

The energy equation is

ρCp

(
∂

∂t̄
+ (ū+ c)

∂

∂x̄
+ v̄

∂

∂ȳ

)
T̄ =

∂

∂x̄

(
k̄
∂T̄

∂x̄

)
+

∂

∂ȳ

(
k̄
∂T̄

∂ȳ

)
+Q0(T̄ − T0)

r

(2.10)

where Cp the specific heat, T̄ temperature, µ
(
T̄
)
changeable viscosity, k variable thermal conduc-

tivity, Q0 constant heat addition/absorption, and T0 temperature at the lower and upper walls are
all taken into account.
Introducing the following dimensionless variables as stated by Shit and Roy [6],

x =
x̄

λ
, y =

ȳ

a
, u =

ū

c
, v =

v̄

cδ
, t =

ct̄

λ
, j =

j̄

a2
, δ =

a

λ
, p =

a2p

µ0cλ
, h =

h̄

a
, φ =

b

a

w =
aw

c
, kp =

k̄p
a2
, k =

k̄

µ0
, µ(θ) =

µ(T̄ )

µ0
, k(θ) =

k(T̄ )

k0
, θ =

T̄ − T0
T1 − T0

(2.11)

Substituting equation (2.11) into equations (2.6) – (2.10) to obtain

∂u

∂x
+
∂v

∂y
= 0 (2.12)

Reδ

(
∂

∂t
+ (u+ 1)

∂

∂x
+ v

∂

∂y

)
(u+ 1) = −∂p

∂x
+ (µ (θ) + k)

(
δ2
∂2u

∂x2
+
∂2u

∂y2

)
+(

δ2
∂µ (θ)

∂x

∂u

∂x
+
∂µ (θ)

∂y

∂u

∂y

)
+ k

∂w

∂y
−Ha2 (u+ 1)− (µ (θ) + k)

kp
(u+ 1) +Grθ

(2.13)
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Reδ3
(
∂

∂t
+ (u+ 1)

∂

∂x
+ v

∂

∂y

)
v = −∂p

∂y
+ δ2 (µ (θ) + k)

(
δ2
∂2v

∂x2
+
∂2v

∂y2

)
+ δ2

(
δ2
∂µ (θ)

∂x

∂v

∂x
+
∂µ (θ)

∂y

∂v

∂y

)
− δ2 ∂w

∂x
− δ2 (µ (θ) + k)

kp
v

(2.14)

Reδ

(
∂

∂t
+ (u+ 1)

∂

∂x
+ v

∂

∂y

)
θ =

δ2

Pr

∂

∂x

(
k (θ)

∂θ

∂x

)
+

1

Pr

∂

∂y

(
k (θ)

∂θ

∂y

)
+ βrθ

r (2.15)

Reδ

(
∂

∂t
+ (u+ 1)

∂

∂x
+ v

∂

∂y

)
w = M

∂2w

∂y2
−K

(
2w +

∂u

∂y

)
(2.16)

Where

Re =
ρca

µ0
, H2

a =
σa2B2

0

µ0
, βr =

Q0a
2

µ0Cp(T1 − T0)1−r
, Gr =

ραga2(T1 − T0)

µ0c
,

pr =
µ0cp
k0

,M =
γ

µ0a2

(2.17)

Re is Reynold’s number, Ha magnetic parameter (Hartman number), Gr Grashof number, Pr

Prandtl number, M micropolar parameter, and βr heat generation/absorption rate of order r.
In the wave frame, the non-dimensional boundary conditions for the dimensionless velocity u,
microrotation component, and stream function ψ(x, y) are as follows:

u± ζ ∂u
∂y

= −1 at y = ±h(x),

w = 0 at y = ±h(x), ψ = 0 at y = 0

and θ′(0) = 0, θ(h) = 1

(2.18)

Assuming a long wavelength and low Reynolds number in equations (2.13) – (2.17) above and
neglecting high powers of δ, we obtain;

∂p

∂x
= (µ (θ) +K)

∂2u

∂y2
+
∂µ (θ)

∂y

∂u

∂y
+K

∂w

∂y
−
(
Ha2 +

µ (θ) +K

kp

)
(u+ 1) +Grθ (2.19)

∂p

∂y
= 0 (2.20)

1

Pr

∂

∂y

(
k (θ)

∂θ

∂y

)
+ βθr = 0 (2.21)

M
∂2w

∂y2
−K

(
2w +

∂u

∂y

)
= 0 (2.22)

equation (2.20) shows that the pressure only depends on x.

Introducing the Reynold’s models along wi th linear variation of viscosity parameter and thermal
conductivity parameter as stated by Balachandra, et.al. (2021) [19] and Fatunmbi, et.al. (2021) [20]

µ (θ) = 1− ε1θ and k (θ) = 1 + ε2θ (2.23)

Substituting for µ (θ) and k (θ) in (2.19) and (2.21) to get;

∂p

∂x
=

∂

∂y

(
(1− ε1θ)

∂u

∂y

)
+K

∂2u

∂y2
+K

∂w

∂y
−
(
Ha2 +

(1− ε1θ) +K

kp

)
(u+ 1) +Grθ (2.24)

∂

∂y

(
(1 + ε2θ)

∂θ

∂y

)
+ βrPrθ

r = 0 (2.25)
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If variable and thermal viscosity parameters are absent (i.e ε1 = ε2 = 0) and Graphof number
Gr = 0, we arrived at the equations of Shit and Roy [6].
Since the aim of this work is to study the effect of variable and thermal viscosities, (ε1, ε2) 6=
0. Hence, equations (2.22), (2.24) together with equation (2.25) with the associated boundary
conditions equation (2.18) will be analysed using DTM.
It is noteworthy to state that the stress tensor in micropolar fluid is not symmetric. Therefore, the
dimensionless form of the shear pressure involved within the present problem is given as Shit and
Roy (2015) [6] below

τxy =
d u

d y
−Kω (2.26)

and

τyx = (1 +K)
d u

d y
+Kω (2.27)

The dimensionless volumetric rate of flow in the wave frame is given as;

q =

∫ h

−h
u(y)dy (2.28)

In order to obtain the pumping characteristics by means of pressure rise per wavelength, the axial
pressure gradient is determined from the Eq.(2.28) as

∂p

∂y
=
q + 2h

h
(2.29)

The non-dimensional expression of pressure rise ∆P is given by,

∆P =

∫ 1

0

∂p

∂x
dx (2.30)

3 Differential Transform Method (DTM)
The DTM was first introduced by Zhou in 1986 [21] in solving several issues in electric circuits, and
the results supplied exact values of the nth derivative of an analytic function at a place in terms of
both known and unknown boundary conditions in a quick way. In their 60-page publication "On
the Efficiency of Differential Transformation Method to the Solutions of Large Amplitude Nonlinear
Oscillation Systems," Sobamowo, et.al. [22] and Sobamowo et.al. [23]," Sobamowo, et.al. [22] and
Sobamowo et.al. cites. This technique creates a polynomial-based analytical answer.

Definition 3.1. A Taylor polynomial of degree n is defined as follows:

Pn(x) =

∞∑
n=0

1

k!
(fk(c))(x− c)k (3.1)

Theorem 3.2. Suppose that the function f has (n+ 1) derivatives on the interval for some r > 0,
and the for all x ∈ (c −m, c + m) where Rn(x) is the error between Pn(x) and the approximated
function f(x). Then, the Taylor series expansion about x = c converges to f(x).
That is:

Pn(x) =

∞∑
n=0

1

k!
(fk(c))(x− c)k, ∀x ∈ (c−m, c+m) (3.2)

Suppose that the function f(x) for the k − th derivative is defined as follows;
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Table 1: Basic Operation of Differential Transform Method (DTM)
f(x) F (k)

g(x)± h(x) G(k)±H(k)
αg(x) αG(k), α is a constant
d

dx
g(x) (k + 1)F (k + 1)

dn

dxn
g(x)

k!

(k + n)!
F (k + n)

g(x)h(x)
∑k

i=0G(i)H(k − i)

xa δ(k − a), where δ(k − a) =

{
1 k = a

0 k 6= 0

exp(ax)
ak

k!

(1 + x)a
a(a− 1) · · · (a− k + 1)

k!

sin(αx+ β)
αk

k!
sin

(
πk

k!
+ β

)
cos(αx+ β)

αk

k!
cos

(
πk

k!
+ β

)
sinh(ax)

1

2k!

(
ak − (−a)k

)
cosh(ax)

1

2k!

(
ak + (−a)k

)

F (k) =
1

k!

(
dkf(x)

dxk

)
x=x0

(3.3)

or
F (k) =

1

k!

(
fk(x)

)
x=x0

(3.4)

Where f(x) is the original function and F (k) is the transformed function.

Definition 3.3. The inverse differential transform F (k) is defined as;

f(x) =

∞∑
k=0

(x− x0)kF (k) (3.5)

Substituting equation (3.3) into equation (3.5) to obtain

f(x) =

∞∑
k=0

(x− x0)k
1

k!

(
dkf(x)

dxk

)
x=x0

(3.6)

equation (3.6) is the Taylor series of f(x) at x = x0.

3.1 Applications of DTM
In an attempt to solve the boundary value problems of equations (2.22), (2.24), and (2.25) with the
boundary conditions at equation (2.18), we transform the coupled ODEs to DTM as
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(1 +K)(k + 1)(k + 2)U(k + 2)− ε1
k∑

l=0

T (l)(k − l + 1)(k − l + 2)U(k − l + 2)−

ε1

k∑
l=0

(l + 1)T (l + 1)(k − l + 1)U(k − l + 1) +K(k + 1)W (k + 1)−

ξ(U(k) + δ(k))− ε1
k∑

l=0

T (l)U(k − l) + (Gr − ε1)T (k)− ∂p

∂x
δ(k) = 0

(3.7)

(k + 1)(k + 2)T (k + 2) + ε2

k∑
l=0

T (l)(k − l + 1)(k − l + 2)T (k − l + 2)

+ ε2

k∑
l=0

(l + 1)T (l + 1)(k − l + 1)T (k − l + 1) + βrPrF (k) = 0

(3.8)

and
M(k + 1)(k + 2)W (k + 2)−K ((k + 1)U(k + 1) + 2W (k)) = 0 (3.9)

where U(k), T (k), and W (k) are the transform functions of u(y), θ(y) and w(y) respectively. F (k)
is the transform of θr for r = 0, 1, 2 and ξ = Ha2 − 1+K

kp
. It will be noticed that when the order

of the rate of heat absorption/generation is zero or one, i.e (r = 0, 1) then, the transform F (k) will
be δ(k) and T (k) respectively. To transform θr when r 6= 0 or 1, we let perform the following;

Let

f(y) = θr

df

dy
= rθr−1θ′

d2f

dy2
=
(
r(r − 1)θr−2(θ′)2 + rθr−1θ′′

)
θ2
d2f

dy2
= r(r − 1)θrθ′2 + rθrθθ′′

θ2
d2f

dy2
= r(r − 1) f θ′2 + r f θθ′′

(3.10)

The boundary conditions satisfying the equation above is

f ′(0) = 0, f(h) = 1 (3.11)

Transforming equation (3.10) when r = 2 to DTM to get

(k + 1)(k + 2)F (k + 2) = 2

k∑
l=0

(l + 1)T (l + 1)(k − l + 1)T (k − l + 1)+

2

k∑
m=0

m∑
l=0

T (l)(m− l + 1)T (m− l + 1)(k −m+ 1)(k −m+ 2)T (k −m+ 2)

(3.12)

The boundary conditions for transformed equations (3.7), (3.8), (3.9) and (3.12) are;

U(0) = a, U(1) = b,W (0) = c,W (1) = d, T (0) = e, T (1) = 0, F (0) = g

F (1) = 0
(3.13)
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where a, b, c, d, e, and g are constants which will be evaluated by substituting the boundary condi-
tions in (2.18) into the series solutions gotten from the transform DTM. The term by term of (3.7),
(3.8), (3.9) and the boundary condition (3.12) are given below;

U(0) = a, U(1) = b, U(2) =
−c (aε1 +Gr)−Ke+ (a+ 1) ξ +A

−2 ε1 c+ 2K + 2

U(3) = −
(cε2 + 1)

(
Mb (ε1 c− ξ) +K2 (b+ 2 d)

)
+MPr bβr gε1

6M (cε2 + 1) (−ε1 c+K + 1)

U(4) = −



− 2MPr aβr cgε1
2 −Mac3ε1

2ε2 − 2GrMPr βr cgε1 −GrMc3ε1 ε2

−K2ac2ε1 ε2 − 2K2c2eε1 ε2 −KMPr aβr gε1 − 3KMPr βr egε1

−KMc2eε1 ε2 + 3MPr aβr gξ ε1 + 2Mac2ξ ε1 ε2 + 3AMPr βr gε1

+AMc2ε1 ε2 −GrK
2c2ε2 −GrKMPr βr g +GrMc2ξ ε2 +K3ceε2

+K2acξ ε2 +KMceξ ε2 −MPr aβr gε1 + 3MPr βr gξ ε1 −Mac2ε1
2

−Macξ2ε2 +Mc2ξ ε1 ε2 +AK2cε2 −AMcξ ε2 −Gr βr Pr gM

−GrMc2ε1 −K2acε1 − 2K2ceε1 + 2K2ceε2 +K2cξ ε2

−KMceε1 + 2Macξ ε1 −Mcξ2ε2 +AMcε1 −GrK
2c

+GrMcξ +K3e+K2aξ +KMeξ −Maξ2+

Mcξ ε1 +AK2 −AMξ + 2K2e+K2ξ −Mξ2


24M (cε2 + 1) (−ε1 c+K + 1)

2

T (0) = c, T (1) = 0, T (2) = − βr Pr g

2 cε2 + 2
, T (3) = 0, T (4) = −1/8

ε2 βr
2Pr

2g2

(cε2 + 1)
3

W (0) = d,W (1) = e,W (2) =
K (b+ 2 d)

2M
,W (3) =

K

6M

(
2 e+

−c (aε1 +Gr)−Ke+ (a+ 1) ξ +A

−ε1 c+K + 1

)
W (4) =

K

12M

(
K (2 d+ b)

M
−

(cε2 + 1)
(
Mb (ε1 c− ξ) +K2 (b+ 2 d)

)
+MPr bβr gε1

2M (cε2 + 1) (−ε1 c+K + 1)

)

The inverse transform of Uk, T (k), and W (k) are given as

u(y) =

N∑
k=0

U(k) yk (3.14)

θ(y) =

N∑
k=0

T (k) yk (3.15)

ω(y) =

N∑
k=0

W (k) yk (3.16)
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which when substituted give;

u(y) =

a+ by +
−c (aε1 +Gr)−Ke+ (a+ 1) ξ +A

−2 ε1 c+ 2K + 2
y2

−
(cε2 + 1)

(
Mb (ε1 c− ξ) +K2 (b+ 2 d)

)
+MPr bβr gε1

6M (cε2 + 1) (−ε1 c+K + 1)
y3

−



− 2MPr aβr cgε1
2 −Mac3ε1

2ε2 − 2GrMPr βr cgε1 −GrMc3ε1 ε2

−K2ac2ε1 ε2 − 2K2c2eε1 ε2 −KMPr aβr gε1 − 3KMPr βr egε1

−KMc2eε1 ε2 + 3MPr aβr gξ ε1 + 2Mac2ξ ε1 ε2 + 3AMPr βr gε1

+AMc2ε1 ε2 −GrK
2c2ε2 −GrKMPr βr g +GrMc2ξ ε2 +K3ceε2

+K2acξ ε2 +KMceξ ε2 −MPr aβr gε1 + 3MPr βr gξ ε1 −Mac2ε1
2

−Macξ2ε2 +Mc2ξ ε1 ε2 +AK2cε2 −AMcξ ε2 −Gr βr Pr gM

−GrMc2ε1 −K2acε1 − 2K2ceε1 + 2K2ceε2 +K2cξ ε2

−KMceε1 + 2Macξ ε1 −Mcξ2ε2 +AMcε1 −GrK
2c

+GrMcξ +K3e+K2aξ +KMeξ −Maξ2+

Mcξ ε1 +AK2 −AMξ + 2K2e+K2ξ −Mξ2


24M (cε2 + 1) (−ε1 c+K + 1)

2 y4

(3.17)

θ(y) = c− βr Pr g

2 cε2 + 2
y2 − ε2 βr

2Pr
2g2

8 (cε2 + 1)
3 y

4 (3.18)

and

ω(y) =

d+ ey +
K (b+ 2 d)

2M
y2 +

K

6M

(
2 e+

−c (aε1 +Gr)−Ke+ (a+ 1) ξ +A

−ε1 c+K + 1

)
y3

K

12M

(
K (2 d+ b)

M
−

(cε2 + 1)
(
Mb (ε1 c− ξ) +K2 (b+ 2 d)

)
+MPr bβr gε1

2M (cε2 + 1) (−ε1 c+K + 1)

)
y4

(3.19)

4 Results and Discussions
The solutions for the axial velocity, micro rotation component, pressure gradient, volumetric flow
rate, and stream function with energy equation were obtained in the previous section for the cases
when r = 0, 1, and 2. This section presents the results obtained graphically using some of the
parameters as describe by [3, 6–8, 12, 14]. Figure 2 represents the variations of axial velocity with
the height when x = 0 for different values of all other parameters of interest. It can be seen from
Figure 2a that an increase in the magnetic parameter (Ha) reduces the flow of fluid at the two walls,
but increases it towards the centre. It can be observe that at the walls of the channel, the flow
started reducing and is more pronounced at the centre. This is as a result of the external magnetic
force that was applied perpendicular to the flow. Figure 2b shows the effect of slip on the flow
speed and it can be seen that the flow stratified incrementally near the channels as slip parameter
is increasing and damping the flow of fluid at the middle. This evidence of slips parameter is well
pronounce near the walls of the channel. Mention to be made of the reversal trend near the wall.
This is due to the formation of the mucusa and submucosa layer in the stomach and the evidence
of the airy-like tissues villi and micro-villi in the small intestine. Figure 2c describe the effect of
porosity parameter (Kp) on the axial velocity. The effects of variable viscosity and variable thermal
conductivity parameters are shown in Figures 2i and 2j. It is notice that increasing the variable
viscosity parameter speeds-up the flow while increase in the variable thermal viscosity parameter
slows-down the flow of the fluid. It can be noticed from Figure 2g that as the Grashof number (Gr)
is increasing, the velocity is reducing while the reverse is notice for Prandtl number (Pr) in Figure
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2h. The description of microrotation components were depicted in Figure 3. It will be noticed from
Figures (3a, 3b, 3e, 3f, 3h) that the microrotation component increases as the governing parameters
are increasing while Figures. (3c, 3d, 3g) reduces. Figures 5 and 4 show the effect of the governing
parameters on the shear stresses τxy and τyx at both lower and upper walls of the channel. It
will be notice that enhancing the magnetic (Ha), viscosity parameters (K) and thermal viscosity
parameter ε2, increases the shear stresses at both walls of the channel. Reduction in shear stress at
the two walls sets in with increasing porosity permeability (Kp), slip parameters (ζ), Prandtl (Pr),
Grasphof numbers (Gr) and viscosity parameter ε2 which show that more deposition of enzymes at
the passage of chyme reduce shear stress. Figure 6 describe the effects of the governing parameters

on the pressure gradient
∂p

∂x
. It is clear from figures 6a and 6b that an increment in the slip ζ

and viscosity parameters K increases the pressure gradient of the fluid and figures 6b, 6d, 6f and
6g show that the porous permeability, material constant, heat absorption parameters, Prandtl and
Graphof numbers reduce the pressure gradient of the fluid. The graphs of pressure rise against
positive slip parameter for different Hartmann number explain that the pressure rise decreases as
the magnetic parameters is increasing as shown in Figure 7. It would be noticed from 7a, 7c and
7d that as the various parameters (Hartmann, Graphof and Prandtl numbers) were been varied for
pressure rise against slip parameter, it impede the rise of the pressure while there is a pressure rise
as the Graphof number is increasing. This reveals that a propulsion force will be required at the
initial point before the involuntary movement (from the oesophagus through to the rectum) and
when ejecting the waste product (undigested food through the anus).
The stream functions for various parameters of relevance are depicted in Figures [8-13]. By a given
wave length, the distribution of stream lines pattern in the presence of magnetic field is shown in
Figure 8. It was discovered that when the size of the wall shrinks, the production of bolus magnetic
parameters Ha rises. It’s worth noting in Figure 9 that as the slip parameter ς is increased, the
trapped bolus shrinks in size and eventually evaporates. As a result, the magnetic field strength
and slide effects work together to prevent trapped bolus formation. The distribution of streamlines
at various diverging angles is shown in Figure 10. We notice that as theta increases, the trapped
bolus on both sides of the channel’s central line grows in size. However, as seen in Figure 11, the
porous medium permeability parameter Kp continues to create more closed streamlines at the wall.
As shown in Figure 12, more bolus are generated near the channel of the walls. The distribution of
stream functions against the Prandtl number is shown in Figure 13. This demonstrates that when
the Prandtl number rises, more bolus form along the fluid’s flow channel.

5 Conclusion
The effects of slip velocity and heat transfer on the peristaltic transport of physiological fluids
represented by a micropolar fluid model traveling through a non-uniform porous channel are inves-
tigated in this work. The study of velocity distribution, pumping features, variable and thermal
viscosity and trapping phenomena has received considerable attention in this investigation. The
present research leads to the critical conclusion that by adding an external magnetic field is feasible
to enhance pumping action (pressure gradient) as often as necessary, and that bolus development
can be reduced to a significant level. At the bottom and higher sides of the channel walls, shear
stresses τxy and τyx increase as the magnetic parameter Ha increases. The production of trapped
bolus is slowed down by the slip velocities (ζ, ε1, and ε2) near the wall. As a result, the findings shed
some light on issues such as gastrointestinal fluid movement, intra-uterine fluid motion generated
by uterine contraction, and flow through small blood arteries and intrapleural membranes.
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