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Abstract
In this manuscript, a new concept of interpolative contraction, namely interpolative Kannan-
type (G-α-µ)-contraction is introduced in metric space endowed with a graph and novel condi-
tions for which the new mapping is a Picard operator are investigated. The preeminence of this
type of contraction is that it complements and subsumes a few corresponding notions in the
literature. Substantial examples are constructed to validate the assumptions of our obtained
results and to show their distinction from the existing ones.
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1 Introduction and Preliminaries
The prominent Banach contraction in metric space has laid a solid foundation for fixed point theory
in metric space. The applications of fixed point range across inequalities, approximation theory,
optimization and so on. Researchers in this area have introduced several new concepts in metric
space and obtained a great deal of fixed point results for linear and nonlinear contractions (see,
e.g. [1–6]). Recently, Karapınar [7] introduced a new notion of interpolative contraction which is
an extension of the famous Kannan contraction in metric space in the following manner.

Definition 1.1. [7] Let (X, d) be a metric space. A self-mapping T : X −→ X is called an
interpolative Kannan-type contraction if there exist µ ∈ [0, 1) and α ∈ (0, 1) such that

d(Tx, Ty) ≤ µd(x, Tx)α · d(y, Ty)1−α (1.1)

for all x, y ∈ X with x 6= Tx.
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Theorem 1.2. [7]. Let (X, d) be a complete metric space and let T : X −→ X be an interpolative
Kannan-type contraction. Then T has a unique fixed point in X.

However, [8] observed that the fixed point obtained in the above Theorem 1.2 is not necessarily
unique. Hence, a robust version of the results in [7] is provided therein.
For some extensions of the idea of interpolative contractions in fixed point theory, we refer to [9,10]
and the references therein.

Following Petruşel and Rus [11], a self-mapping T of a metric space (X, d) is said to be a Picard
operator (abbr., PO) if T has a unique fixed point x∗ and limn→∞ Tnx = x∗ for all x ∈ X and T
is said to be a weakly Picard operator (abbr. WPO) if the sequence {Tnx}n∈N converges, for all
x ∈ X and the limit (which may depend on x) is a fixed point of T .

Jachymski [12] introduced the notion of contraction in metric space endowed with a graph G.
Accordingly, let (X, d) be a metric space and let ∆ denote the diagonal of the Cartesian product
X×X. Consider a directed graph G such that the set V (G) of its vertices coincides with X, and the
set E(G) of its edges contains all loops, i.e., E(G) ⊇ ∆. It is assumed that G has no parallel edges,
so G can be identified with the pair (V (G), E(G)). Moreover, G may be treated as a weighted
graph (see [ [13], p. 376]) by assigning to each edge the distance between its vertices. Denote by
G−1, the conversion of a graph G, i.e., the graph obtained from G by reversing the direction of
edges. Therefore,

E(G−1) = {(x, y) ∈ X ×X|(y, x) ∈ E(G)}.

The letter G̃ denotes the undirected graph obtained from G by ignoring the direction of edges, or
more conveniently, by treating G as a directed graph for which the set of its edges is symmetric.
Under this convention,

E(G̃) = E(G) ∪ E(G−1). (1.2)

The pair (V ′, E′) is said to be a subgraph of G if V ′ ⊆ V (G), E′ ⊆ E(G) and for any edge
(x, y) ∈ E′, x, y ∈ V ′. If x and y are vertices in a graph G, then a path in G from x to y of length
N ∈ N is a sequence {xi}Ni=0 of N + 1 vertices such that x0 = x, xN = y and (xn−1, xn) ∈ E(G) for
all i = 1, 2, ..., N . A graph G is connected if there is a path between any two vertices. G is weakly
connected if G̃ is connected.

Subsequently, fixed point results for Lipschitzian-type contractions in metric spaces endowed
with graph have been obtained by several authors (see, e.g. [14–20]). In particular, Bojor [20]
obtained the following result.

Definition 1.3. [20] Let (X, d) be a metric space endowed with a graph G. A self-mapping
T : X −→ X is called a G-Kannan mapping if:

(i) ∀x, y ∈ X
(
(x, y) ∈ E(G)⇒ (Tx, Ty) ∈ E(G)

)
;

(ii) there exists µ ∈
[
0, 12
)
such that

d(Tx, Ty) ≤ µ[d(x, Tx) + d(y, Ty)] (1.3)

for all (x, y) ∈ E(G).

Definition 1.4. [20] Let (X, d) be a metric space endowed with a graph G and T : X −→ X be
a self-mapping. Then G is said to be T -connected if for all vertices x, y of G with (x, y) /∈ E(G),
there exists a path in G, {xi}Ni=0 from x to y such that x0 = x, xN = y and (xi, Txi) ∈ E(G) for
all i = 1, 2, ..., N − 1. A graph G is weakly T -connected if G̃ is T -connected.

Theorem 1.5. [20] Let (X, d) be a complete metric space endowed with a graph G and T : X −→ X
be a G-Kannan mapping. Assume further that:

(i) G is weakly T -connected;
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(ii) for any sequence {xn}n∈N in X, if xn −→ x and (xn, xn+1) ∈ E(G) for n ∈ N, then there is
a subsequence {xkn}k∈N with (xkn , x) ∈ E(G) for n ∈ N.

Then T is a PO.

Following the existing literature, we realize that fixed point results for interpolative contractions
in metric space endowed with graph have not been adequately investigated. Hence, motivated by the
ideas in [7, 12, 19], we introduce a new concept of interpolative Kannan-type (G-α-µ)-contraction
in metric space equipped with graph and prove some related fixed point results. Comparative
examples are constructed to demonstrate that our obtained results are valid and distinct from the
existing results in the literature.

2 Main Results
In this section, we introduce the notion of interpolative Kannan-type (G-α-µ)-contraction in metric
space endowed with a graph G.

Definition 2.1. Let (X, d) be a metric space endowed with a graph G. A self-mapping T : X −→ X
is called an interpolative Kannan-type (G-α-µ)-contraction if:

(i) ∀x, y ∈ X
(
(x, y) ∈ E(G̃)⇒ (Tx, Ty) ∈ E(G̃)

)
;

(ii) there exist µ, α ∈ (0, 1) such that

d(Tx, Ty) ≤ µd(x, Tx)α · d(y, Ty)1−α (2.1)

for all (x, y) ∈ E(G̃) with x 6= Tx.

Example 2.2. Let X = {1, 2, 3, 4} with the Euclidean metric d(x, y) = |x − y| ∀x, y ∈ X. Define
T : X −→ X by

Tx =


2x, if x = 1;

x, if x = 2;

1, if x = 3;
x
2 , if x = 4.

Then T is an interpolative Kannan-type (G-α-µ)-contraction with µ = 4
5 and α = 1

5 , where the
graph G is defined by V (G) = X and

E(G) = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 4), (3, 4), (4, 4)},

but T is not an interpolative Kannan-type contraction defined in [7], since d(T3, T1) = 1 while
4
5d(3, T3)

1
5 · d(1, T1)1−

1
5 = 23

25 .
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Figure 1: Graph G defined in Example 2.2

We now present the following technical lemmas.

Lemma 2.3. Let (X, d) be a metric space endowed with a graph G and T : X −→ X be an
interpolative Kannan-type (G-α-µ)-contraction. If there exists x ∈ X such that (x, Tx) ∈ E(G̃),
then

d(Tnx, Tn+1x) ≤ µnd(x, Tx)

for all n ∈ N∗ = N ∪ {0}.

Proof. Let x ∈ X be such that (x, Tx) ∈ E(G̃). Then by induction, we have (Tnx, Tn+1x) ∈ E(G̃).
Hence, by (2.1), we obtain

d(Tn+1x, Tnx) ≤ µd(Tnx, Tn+1x)α · d(Tn−1x, Tnx)1−α,

implying that

d(Tnx, Tn+1x)1−α ≤ µd(Tn−1x, Tnx)1−α,

so that

d(Tnx, Tn+1x) ≤ µ
1

1−α d(Tn−1x, Tnx) ≤ µd(Tn−1x, Tnx).

Continuing inductively, we have

d(Tnx, Tn+1x) ≤ µnd(x, Tx)

for all n ∈ N∗.

Remark 2.4. Note that the symmetry of the graph G is necessary for the above lemma to hold.

Lemma 2.5. Let (X, d) be a metric space endowed with a graph G and T : X −→ X be an
interpolative Kannan-type (G-α-µ)-contraction such that G is weakly T -connected. Then for all
x ∈ X, the sequence {Tnx}n∈N is a Cauchy sequence.

Proof. Let x ∈ X be fixed. We consider the following cases:
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1. If (x, Tx) ∈ E(G̃), then by Lemma 2.3, we have

d(Tnx, Tn+1x) ≤ µnd(x, Tx) (2.2)

for all n ∈ N∗. Since µ < 1, then we have

∞∑
n=0

d(Tnx, Tn+1x) ≤ 1

1− µ
d(x, Tx) <∞.

By standard argument, we see that {Tnx}n∈N is a Cauchy sequence.

2. If (x, Tx) /∈ E(G̃), then there exists a path in G̃, {xi}Ni=0 from x to Tx such that x0 = x, xN =
Tx with (xi−1, xi) ∈ E(G̃) for all i = 1, 2, ..., N and (xi, Txi) ∈ E(G̃) for all i = 1, 2, ..., N −1.
Hence, by triangle inequality and (2.1), we have

d(Tnx, Tn+1x) ≤
N∑
i=1

d(Tnxi−1, T
nxi) ≤ µ

N∑
i=1

d(Tn−1xi−1, T
nxi−1)α · d(Tn−1xi, T

nxi)
1−α.

Let d(Tn−1xi−1, T
nxi−1) = d(Tn−1xi,T

nxi)

µ
1

α−1
. Then

d(Tnx, Tn+1x) ≤ µ
1

1−α

N∑
i=1

d(Tn−1xi, T
nxi) ≤

N∑
i=1

d(Tn−1xi, T
nxi) <∞.

The following is our main result.

Theorem 2.6. Let (X, d) be a complete metric space endowed with a graph G and T : X −→ X
be an interpolative Kannan-type (G-α-µ)-contraction. Assume further that:

(i) G is weakly T -connected;

(ii) for any sequence {xn}n∈N in X, if xn −→ x and (xn, xn+1) ∈ E(G̃) for n ∈ N, then there is
a subsequence {xkn}k∈N with (xkn , x) ∈ E(G̃) for n ∈ N.

Then T is a PO.

Proof. By Lemma 2.5, {Tnx}n≥0 is a Cauchy sequence for all x ∈ X and from hypothesis, we have
{Tnx}n≥0 is convergent.
Let x, y ∈ X. Then {Tnx}n≥0 −→ x∗ and {Tny}n≥0 −→ y∗ as n −→ ∞. We now consider the
following two cases:

1. If (x, y) ∈ E(G̃), then (Tnx, Tny) ∈ E(G̃) for all n ∈ N. Therefore,

d(Tnx, Tny) ≤ µd(Tn−1x, Tnx)α · d(Tn−1y, Tny)1−α

for all n ∈ N. Letting n→∞, we obtain

d(x∗, y∗) ≤ µd(x∗, x∗)α · d(y∗, y∗)1−α,

implying that d(x∗, y∗) ≤ 0, that is, x∗ = y∗.

2. If (x, y) /∈ E(G̃), then there exists a path in G̃, {xi}Ni=0 from x to y such that x0 = x, xN = y

with (xi−1, xi) ∈ E(G̃) for all i = 1, 2, ..., N and (xi, Txi) ∈ E(G̃) for all i = 1, 2, ..., N − 1.
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Therefore, (Tnxi−1, T
nxi) ∈ E(G̃) for all i = 1, 2, ..., N and for all n ∈ N. Hence, by triangle

inequality, we have

d(Tnx, Tny) ≤
N∑
i=1

d(Tnxi−1, T
nxi) ≤ µ

N∑
i=1

d(Tn−1xi−1, T
nxi−1)

α · d(Tn−1xi, T
nxi)

1−α. (2.3)

By Lemma 2.5 and hypothesis, the sequence {Tnx}n≥0 is convergent and by the continuity
of d, we have that the sequence {d(Tnxi−1, T

nxi)}n∈N is convergent.
Let lim

n→∞
d(Tnxi−1, T

nxi) = Li for all i = 1, 2, ..., N . Then letting n→∞ in (2.3), we obtain
Li = 0 for all i = 1, 2, ..., N , that is, d(x∗, x∗) ≤ 0, implying that x∗ = y∗.

Hence, for all x ∈ X, there is a unique point x∗ ∈ X such that

lim
n→∞

Tnx = x∗.

We now prove that x∗ ∈ Fix(T ). Since G is weakly T -connected, then there is at least a point x0 ∈
X such that (x0, Tx0) ∈ E(G̃), and so (Tnx0, T

n+1x0) ∈ E(G̃) for all n ∈ N. But lim
n→∞

Tnx0 = x∗.

Hence, by hypothesis, there is a subsequence {T knx0}k∈N with (T knx0, x
∗) ∈ E(G̃) for all n ∈ N.

Therefore,

d(x∗, Tx∗) ≤d(x∗, T kn+1x0) + d(T kn+1x0, Tx
∗)

≤d(x∗, T kn+1x0) + µd(T knx0, T
kn+1x0)α · d(x∗, Tx∗)1−α.

Letting n→∞, we obtain

d(x∗, Tx∗) ≤ d(x∗, x∗) + µd(x∗, x∗)α · d(x∗, Tx∗)1−α,

implying that d(x∗, Tx∗) ≤ 0, that is, x∗ = Tx∗. Hence, x∗ ∈ Fix(T ).
If there exists some y ∈ X such that Ty = y, then from the above, we must have that Tny −→ x∗,
implying that y = x∗.
Therefore, T is a PO.

Example 2.7. Let X = {1, 2, 3, 4, 5, 6} be endowed with the metric d : X ×X −→ R+ defined by

d(x, y) = |x− y|, ∀x, y ∈ X.

Then (X, d) is a complete metric space.
Define a self-mapping T : X −→ X by

Tx =

{
x
2 , if x ∈ {2, 4, 6};
1, if x ∈ {1, 3, 5}

for all x ∈ X.
Consider the symmetric graph G̃ defined by V (G̃) = X and

E(G̃) = {(1, 2), (1, 3), (1, 5), (2, 3), (2, 4), (3, 4), (3, 6), (4, 5), (4, 6), (5, 6)} ∪∆.

Then it is clear that T preserves edges and G is weakly T -connected.
To see that T is an interpolative Kannan-type (G-α-µ)-contraction, let µ = 9

10 and α = 2
5 . We then

consider the following cases:

Case 1: x, y ∈ {2, 4, 6}, x = y;

Case 2: x, y ∈ {2, 4, 6}, x 6= y;

Case 3: x, y ∈ {1, 3, 5}, x = y;

Case 4: x, y ∈ {1, 3, 5}, x 6= y;

Case 5: x ∈ {2, 4, 6} and y ∈ {1, 3, 5};

Case 6: x ∈ {1, 3, 5} and y ∈ {2, 4, 6}.
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We demonstrate using the following Table 1 that inequality (2.1) is satisfied for each of the above
cases.

Table 1: Table of values for cases 1-6.
Cases x y d(Tx, Ty) µd(x, Tx)α · d(y, Ty)1−α

Case 1
2 2 0 0.9 [t]
4 4 0 1.8 [t]
6 6 0 2.7 [b]

Case 2

2 4 1 1.36414 [t]
4 2 1 1.18755 [b]
4 6 1 2.29576 [t]
6 4 1 2.11694 [b]

Case 3
1 1 0 0 [t]
3 3 0 1.8 [t]
5 5 0 3.6 [b]

Case 4

1 3 0 0 [t]
1 5 0 0 [t]
3 1 0 0 [t]
5 1 0 0 [b]

Case 5

2 1 0 0 [b]
2 3 0 1.36414 [b]
4 3 1 1.8 [b]
4 5 1 2.72828 [b]
6 3 2 2.11694 [b]
6 5 2 3.20868 [b]

Case 6

1 2 0 0 [t]
3 2 0 1.18755 [t]
3 4 1 1.8 [t]
3 6 2 2.29576 [t]
5 4 1 2.37511 [t]
5 6 2 3.02927 [t]

In the following Figures 2 and 3, we present the symmetric graph G̃ defined in Example 2.7 and
illustrate the validity of contractive inequality (2.1) using Example 2.7.
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1 2

3

4 5

6

Figure 2: Symmetric graph G̃ defined in Example 2.7

Figure 3: Illustration of contractive inequality (2.1) using Example 2.7

Therefore, all the hypotheses of Theorem 2.6 are satisfied, T has a unique fixed point, x = 1 and
lim
n→∞

Tnx = 1 for all x ∈ X. Consequently, T is a PO.

Remark 2.8. Note that an inherent property of interpolative contractions is that the fixed point is
not necessarily unique (e.g. see [ [21], Example 1]). However, in the case of graphic-type interpo-
lation as introduced in this manuscript, the fixed point is unique.

3 Conclusion
In this note, the notion of interpolative Kannan-type (G-α-µ)-contraction in metric space endowed
with graph is introduced (Definition 2.1). Sufficient conditions under which the new mapping
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is a Picard operator are examined (Theorem 2.6). To authenticate the hypotheses and indicate
the generality of our new ideas, comparative examples are constructed with graphical illustration
(Examples 2.2 and 2.7). In particular, the obtained results herein are inspired by and compared
with [7, 12,19].
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