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Abstract

In some applications, nano-sized particles are used to enhance heat transfer in thermal energy
systems. Two important practical concerns are the shape of the nanoparticles and the volume
fraction that could lead to optimal performance. This study investigates the effects which the
shape and volume fraction of copper nanoparticles may have on the velocity and temperature
of water based nanofluid. To account for more physical reality, we incorporate the variability
of the viscosity and thermal conductivity. The Hamilton-Crosser’s model of nanofluid ther-
mal conductivity is also adopted. It is proposed that for a fluid with temperature-dependent
thermo-physical properties, the fluid thermal conductivity in the Hamilton-Crosser’s relation
should be replaced with a constant (temperature-independent) thermal conductivity. The gov-
erning system of nonlinear partial differential equations is solved by using a convergent finite
difference scheme. The results show that increasing the volume fraction decreases the velocity
but increases the temperature, while copper nanoparticles of spherical shape lead to enhanced
temperature than other shapes.
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u Nanofluid velocity (dimensional). U0 Free stream velocity.
T Nanofluid temperature (dimensional). T∞ Ambient temperature.
µ0 Water viscosity at constant temperature. κ0 Thermal conductivity of Water at constant temperature.
Hm Channel width (dimensional). β̄ Thermal conductivity variation parameter.
Tw Wall Temperature (dimensional). Pr Prandtl number.
κf Variable thermal conductivity of water. κp Thermal conductivity of copper.
µf Variable viscosity of water. φ Volume fraction of copper nanoparticles.
(ρCp)f Heat Capacity of water. (ρCp)p Heat Capacity of copper.
ρf Density of water. ρp Density of copper.
ρnf Density of water-copper nanofluid. np Shape factor of nanoparticles.
κnf Thermal conductivity of nanofluid. σnf Electrical conductivity.
B Magnetic Field constant. βTnf Thermal expansivity.
w∗ Constant velocity. α viscosity parameter.
λ Wall suction parameter. ᾱ Viscosity variation parameter.
g acceleration due to gravity.
β Thermal conductivity parameter.
H2 Hartman number.
Gr Grashof number.
Qs Heat source parameter.
θ nondimensional temperature.
y, t non-dimensional space variable, time variable.

1 Introduction
One innovative approach to optimize the performance of thermal energy systems is the suspension
of metallic nanometer-sized particles in a base fluid such as water, oil, ethylene, biofluids and
lubricants. Such suspension of nanoparticles in a base fluid is called a nanofluid, and it can improve
the thermo-physical properties of the base fluid [1]. The term nanofluid was first coined by Choi [2]
who applied some nanoparticles into a base fluid to enhance thermal conductivity. Nanofluids find
applications in diverse areas, including biomedical engineering, nuclear reactors, cooling systems,
solar energy systems, and automobile and IT industries [1–3].

The numerous applications mentioned above have attracted much research in nanofliuds and
nanotechnology. For example, [4] investigated the heat transfer in a steady flow of water-copper
nanotubes in a backward-facing channel, while [5] considered the pressure drop and heat transfer
in a water based nanofluid flow in a heat exchanger. The influence of variable heat source on MHD
nanofluid flow over a stretchable disk with double-diffusion is investigated in [6]. The comparative
analysis of two nanofluids, namely water-aluminum oxide and water-copper oxide, is undertaken
in [7]. Constant thermo-physical properties are considered. Their resulting partial differential
equations were solved using the method of Laplace transform. It is found that an increase in
the Hartmann number increases the flow of copper oxide nanofluid compared to the aluminum
nanofluid. Other investigations include those of [8, 9] and a review on the combined use of porous
media and nanofluids to optimize heat transfer can be found in [10].

Recently, [11] investigated heat transfer in an unsteady nanofluid flow over a rotating plate,
accounting for viscous dissipation, and Brownian and thermophoresis diffusion. The base fluid
is water and three nanoparticles were considered, namely copper, aluminum oxide and titanium
dioxide. They assumed all thermophysical properties to be constant and the formulated model was
solved using the homotopy perturbation method. Their results show that the shape of nanoparticles
has an influence on the rate of heat transfer. It is well known that real fluid properties are, in general,
not constant, they vary with temperature [1]. In this line, a comparison of the results obtained from
making constant property assumptions and variable property assumptions was undertaken in [12].
The variable properties were assumed to depend on temperature. It was found that constant
property assumptions do not lead to correct prediction of flow and heat transfer processes. This
is especially important when the temperature variations are significant. Hence, it is important to
consider thermo-physical properties as non-constants.

Consequently, [1] investigated the effects of variations in the effective viscosity of water-based
nanofluids. The variability of the viscosity with temperature is assumed to be linear and the thermal
conductivity was still assumed to be constant. Their results show that increasing the variable
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Figure 1: Physical set up

viscosity parameter led to increased velocity. See also [13] for a related study. As mentioned above,
it is important to consider variable properties, however their work of [1] only considered the case
of linear variation in viscosity, yet allowed the thermal conductivity to remain constant. Again,
their work does not consider time evolution of the flow, it considered only a steady flow, just like
those of [7]. This is a gap that the current study fills. The present study aims to extend the works
of [1] by accounting for unsteadiness, and nonlinearly variable viscosity and thermal conductivity.
We also incorporate nonlinear wall suction velocity, this aspect is an extension of the work of [11].
This study is significant as it helps to understand flow and temperature variations of a nanofluid
consisting of a base fluid with temperature-dependent properties. The objectives of the present
work is to answer the following questions:

1. what is the effect of variable viscosity on the flow?

2. what is the effect of suction velocity on the flow?

3. what is the effect of variable thermal conductivity?

4. how does the shape of nanoparticles affect the flow?

5. how does the volume fraction of the nanoparticles affect the flow?

In section 2, we present the assumptions on the problem and the constitutive relations, then
formulate the governing equations for the problem. In section 3 we formulate a numerical method for
solving the proposed mathematical model. The investigation of the effects of the various parameters
on the velocity and temperature profiles are given in section 4, while conclusions are made in section
5.

2 Mathematical Formulation of the Problem
We consider the unsteady flow of a nanofluid consisting of copper nanoparticles and water in a
rectangular channel, see Figure 1. The coordinate axes (x, y, z) is chosen such that the x-axis is
along the channel, the y-axis is perpendicular to the x-axis and along the lateral (width) direction
of the channel, while the z-axis is vertically upwards and perpendicular to the x − y plane. The
ambient temperature and free stream velocity are T∞ and U0 respectively.
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Fluid properties are generally not constant [1], hence we consider water as an incompressible
base fluid with variable thermo-physical properties. However, we require that at constant temper-
ature, the values of the thermo-physical properties must coincide with those of their temperature-
independent values. To achieve this, we model water as a fluid with temperature-dependent viscocity
and thermal conductivity [14–16] given by

µf (T ) = µ0e
−ᾱ(T−T∞)

and
κf (T ) = κ0e

β̄(T−T∞)

respectively, where µ0 and κ0 are constant viscosity and thermal conductivity of water, respec-
tively, ᾱ, β̄ are positive constants, Tw is the temperature at the channel wall, and T is a variable
representing the temperature. Notice that when T = T∞ both µf and κf reduce to their constant
values, µ0 and κ0 respectively.

The copper nanoparticles have constant properties with constant thermal conductivity, κp. The
particle-fluid solution is a homogeneuos mixture without slip. The effective viscocity of the nanofluid
is given by the Brinkman’s [17] viscocity model in the case of two phase flow:

µnf (T ) =
µf (T )

(1− φ)2.5
, (2.1)

where φ is the nanoparticle’s volume fraction. Let ρp, ρf denote the nanoparticle and fluid (water)
densities, respectively and (ρCp)p, (ρCp)f their constant heat capacities. Then the effective density
and heat capacity of the nanofluid are given by

ρnf = (1− φ)ρf + φρp (2.2)

and

(ρCp)nf = (1− φ)(ρCp)f + φ(ρCp)p (2.3)

respectively [18,19].
To account for the effects of the shape of nanoparticles, we employ the Hamilton-Crosser’s

model [20] which states that the effective thermal conductivity of the nanofluid satisfies:

κnf
κf

=
κp + (np − 1)κf − (np − 1)φ(κf − κp)

κp + (np − 1)κf + φ(κf − κp)
, (2.4)

where np inidicates the shape factor of the nanoparticles, and is given by

np =


3, for spherical nanoparticles,
6, for cylinderical nanoparticles,
3.7, for brick-shaped nanoparticles.

However, in this work, we propose that if a base fluid has a temperature-dependent thermal
conductivity κf , and a temperature-independent thermal conductivity κ0, then κf in the Hamilton-
Crosser’s relation (2.4) should be replaced with the constant value, κ0. That is, we have:

κnf
κf

=
κp + (np − 1)κ0 − (np − 1)φ(κ0 − κp)

κp + (np − 1)κ0 + φ(κ0 − κp)
. (2.5)

We further assume that the flow is dominated along the x-axis, fully developed and with no
slip on the channel walls. One of the channel walls is permanently at rest while the other moves
with time-dependent velocity. Also, the channel wall is porous and suction (draining) is significant
and depends nonlinearly on the velocity. Constant magnetic field is applied and bouyancy forces
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due to thermal energy is significant. The wall temperatures are kept constant and a linear heat
source is applied. With these assumption, the continuity equation asserts that the fluid velocity is
independent of both x and z directions, the same is true for the temperature. Hence, the equations
governing the velocity, u(y, t) and temperature, T (y, t) of the nanofluid at time t, position, y, are
the following [21–24]:

ρnf

(
∂u

∂t
+ w0(u)

∂u

∂y

)
=
∂

∂y

(
µnf (T )

∂u

∂y

)
− σnfB2u

+ ρnfBT nfg(T − T∞), y ∈ (0, Hm) (2.6)

(ρCp)nf

(
∂T

∂t
+ w0(u)

∂T

∂y

)
=
∂

∂y

(
κnf (T )

∂T

∂z

)
+Q(T − T∞), y ∈ (0, Hm) (2.7)

where σnf , B, βTnf and Q are the electric conductivity, magnetic field constant, thermal expansivity
and heat source constant, while w(u) = w∗e

c̄u is the suction (wall draining) velocity, w∗ is a constant
velocity and Hm = µ0

U0ρf
is the channel width. The boundary and initial conditions are

u(0, t) = 0, u(Hm, t) = U0e
tU2

0 ρf/µ0 for all t ≥ 0,

T (0, t) = T (Hm, t) = 0.5(Tw − T∞) + T∞, for all t ≥ 0,

u(y, 0) = U0(U0ρf/µ0)2y2, T (y, 0) = 0.5(Tw − T∞) + T∞ y ∈ [0, Hm].

(2.8)

The nondimensional form of the model is presented next.

2.1 Nondimensionalization
To derive the nondimensional forms of the equations, we define the following nondimensional quan-
tities:

(x̄, ȳ) =
(x, y)U0

µ0
ρf , t̄ =

U2
0 tρf
µ0

, ū =
u

U0
, θ =

T − T∞
Tw − T∞

,

H2 =
B2µ0σf
ρ2
fU

2
0

, Gr =
µ0g(Tw − T∞)

ρfU3
0

, Pr =
µ0Cp,f
κ0

,

Qs =
Qµ0

U2
0 ρf (ρCp)nf

.

(2.9)

Using the above nondimensional quantities, equation (2.6) becomes:

U3
0 ρf
µ0

∂ū

∂t̄
+
U2

0 ρf
µ0

w0(u)
∂ū

∂ȳ
=

U3
0µ0ρ

2
f

µ2
0(1− φ)2.5ρnf

∂

∂ȳ
(e−αθ

∂ū

∂ȳ
)− σnf

ρnf
B2U0ū

+ βT nfg(Tw − T∞)θ

⇒ ∂ū

∂t̄
+
w0(u)

U0

∂ū

∂ȳ
=− µ0

U3
0 ρfρnf

∂p

∂x
+

ρf
ρnf (1− φ)2.5

∂

∂ȳ

(
e−αθ

∂ū

∂ȳ

)
− σnfB

2µ0

u2
0ρfρnf

ū

+BT nf
µ0g(Tw − Tw)

u3
0ρf

θ

=
A1

(1− φ)2.5

∂

∂ȳ

(
e−αθ

∂ū

∂ȳ

)
−A1A3H

2ū+A1A4Grθ

Because

σnfB
2µ0

u2
0ρfρnf

=
σnf
σf

B2µ0σf
ρ2
fu

2
0

ρf
ρnf

= J3H
2J1,
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and

µ0g(Tw − T∞)

u3
0ρf

βT nf =
µg(Tw − T∞)

ρfu3
0

βTf
βT nf
βTf

= Gr
βT nf
βTf

= Gr
(ρnfβT nf )

(ρfβTf )

(
ρf
ρnf

)
= GrA4A1.

Similarly, using (2.9), the model (2.7) becomes:

∂(θ(Tw − T∞) + T∞)

∂(µ0t̄/(ρfu2
0))

+ w0(u)
∂[θ(Tw − T∞) + T∞]

∂(µ0ȳ/(ρfu0))

=
1

(ρcp)nf

∂

∂(µ0ȳ/(ρfu0))

(
A5κ0e

βθ ∂(θ(Tw − T∞) + T∞)

∂(µ0ȳ/(u0ρf ))

)
+

1

(ρcp)nf
Q(Tw − T∞)θ

⇒

(Tw − T∞)u2
0ρf

µ0

∂θ

∂t̄
+
w0(u)(Tw − T∞)u0ρf

µ0

∂θ

∂ȳ

=
κ0

(ρcp)nf

u2
0ρ

2
f

µ2
0

(Tw − T∞)
∂

∂ȳ

(
A5ρ

βθ ∂θ

∂ȳ

)
+

Q

(ρcp)nf
(Tw − T∞)θ.

⇒

∂θ

∂t̄
+
w0(u)

u0

∂θ

∂ȳ
=

κ0

(ρcp)nf

ρf
µ0

∂

∂y

(
A5e

βθ ∂
∂y

)
+

Qµ0

u2
0ρf (ρcp)nf

θ

=
A2

Pr

∂

∂ȳ

(
A5e

βθ ∂θ

∂ȳ

)
+Qsθ.

Because

1.
κ0

(ρCp)nf

ρf
µ0

=
κ0ρf

µ0(ρcp)nf

cp,f
cp,f

=
κ0

µ0(cp,f )

(ρcp)f
(ρCp)nf

=
A2

Pr
.

2.
Qs =

Qµ0

(U2
0 ρf (ρCp)nf

.

2.2 Summary
Dropping the bars, we have arrived at the following nondimensional equations:

∂u

∂t
+ λe−γu

∂u

∂y
=

A1

(1− φ)2.5

∂

∂y

(
e−αθ

∂u

∂y

)
−A1A3H

2u+A1A4Grθ, (2.10)

∂θ

∂t
+ λe−γu

∂θ

∂y
=
A2

Pr

∂

∂y

(
A5e

βθ ∂θ

∂y

)
+Qsθ, (2.11)

subject to the conditions

u(0, t) = 0, u(1, t) = et for all t ≥ 0,

θ(0, t) = θ(1, t) = 0.5, for all t ≥ 0,

u(y, 0) = y2, θ(y, 0) = 0.5 for all y ∈ [0, 1],

(2.12)
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where λ, α = ᾱ(T − T∞), β = β̄(T − T∞), φ, np are the wall suction parameter, viscosity reduc-
tion parameter, thermal conductivity parameter, nanoparticle’s volume fraction, and shape factor
respectively. The constants, A1 − A5, in (2.10) and (2.11) are also dimensionless and are defined
through the thermo-physical quantities as follows:

A1 =
ρf
ρnf

=
ρf

[(1− φ)ρf + φρs]
, A2 =

(ρCp)f
(ρCp)nf

=
(ρCp)f

[(1− φ)(ρcρ)f + φ(ρCp)p]
,

A3 =
σnf
σf

=
3(
σp
σf
− 1)φ

(
σp
σf

+ 2)− (
σp
σf
− 1)φ

, A4 =
(ρβ∗)nf
(ρβ∗)f

= (1− φ) + φ
(ρβ∗)s
(ρβ∗)f

,

A5 =
κnf
κf

=
κp + (nρ)κ0 − (nρ − 1)φ(κ0 − κp)
κp + (nρ − 1)κ0 + φ(κ0 − κp)

.

(2.13)

3 Numerical Scheme and Analysis
We now formulate a finite difference approximation of the model formulated in (2.10)-(2.12). To
this end let Ny > 1 be a positive integer representing the number of sub-intervals [yi, yi+1], i =
0, 1, 2, · · · , Ny in [0, 1] where yi = ih, h = 1/Ny. Hence, we have the mesh

Ωh = {yi|yi = ih, i = 0, 1, · · · , Ny}.

Choose ∆t and Nt such that Nt is a positive integer. Then we discretize time interval, tn := n∆t
for n = 0, 1, · · · , Nt.

Our goal is to find the following approximations of the solution at the grid points:

uni ≈ u(yi, t
n) and θni ≈ θ(yi, tn).

Define the grid functions,

a(uni ) = λe−γu
n
i , Γni =

A1

(1− φ)2.5
e−αθ

n
i ,Ψn

i =
A2A5

Pr
eβθ

n
i (3.1)

and the intermediate values:

Γni±1/2 =
Γni + Γni±1

2
,Ψn

i±1/2 =
Ψn
i + Ψn

i±1

2
. (3.2)

Since a(u) = λe−γu is non-negative, we adopt the upwind approximation, [25–30] for the suction
term. By adopting backward Euler time integration and "freezing" nonlinear coefficients [14,21,31],
we arrive at the following finite difference approximation:

Velocity Scheme

un+1
i = uni −∆t

un+1
i − wn+1

i−1

h
a(uni )

+
∆t

h2

(
Γni−1/2(un+1

i−1 − u
n+1
i ) + Γni+1/2(un+1

i+1 − u
n+1
i )

)
+ ∆t

(
−A1A3H

2un+1
i +A1A4Grθ

n
i

)
∀(i, n). (3.3)

100

https://doi.org/10.6084/m9.figshare.22337599


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

Vol. 8, No. 2, pp. 94 - 108
https://doi.org/10.6084/m9.figshare.22337599

Temperature Scheme

θn+1
i =θni −∆t

θn+1
i − θn+1

i−1

h
a(uni )

+
∆t

h2

(
Ψn
i−1/2(θn+1

i−1 − θ
n+1
i ) + Ψn

i+1/2(θn+1
i+1 − θ

n+1
i )

)
+ ∆tQsθ

n+1
i ∀(i, n). (3.4)

Subject the following initial and boundary conditions:

u0
i = y2

i , θ
0
i = 0.5, ∀yi ∈ Ωh,

un+1
0 = 0, un+1

Ny
= e−t

n+1

, θn+1
0 = θn+1

Ny
= 0.5 ∀n.

(3.5)

It is easy to show that the scheme proposed in (3.3)-(3.5) satisfies the positivity condition
which guarantees monotocitity of the algorithm [31, 32]. The formulation follows the algorithm
implemented in parabolicSolver which is an in-house code developed by the first author and has
been widely verified for convergence, see [22,23] using the method of manufactured solutions [34,35].

4 Results
The scheme formulated in the previous section is implemented in parabolicSolver, a C++ code
developed by the first author and has been validated for accuracy and convergence in several
studies, see [14–16,29,31] for example. Except otherwise stated, the following data values are used
to obtain the results; Pr = 0.7, Gr = 1.0, Gs = 0.05, H = 1.0, λ = 0.5, γ = 1.0, α = 1.0, β = 1.0, φ =
0.1, np = 3.0 (spherical shape). The values of the thermo-physical properties are displayed in Table
1, see [1, 11]:

Table 1: Thermo-physical Properties

Property Water Copper
ρ(kg/m3) 997.1 8933
Cp(J/kgK) 4179 385
κ(W/mK) 0.613 400
σ(S/m) 0.05 5.96× 107

β∗(1/K) 21× 10−5 1.67× 10−5

Finally, the numerical solutions are computed on a grid with 50 grid points in [0, 1], with
time step size of 0.005 and the solution is outputted after t = 10. The influence of changing the
values of the various parameters on the velocity and temperature profiles are shown in Figures
2-8. In particular, the parameters of interest are the shape factor and volume fraction of copper
nonaparticles. Others are the viscosity, thermal conductivity and suction parameters.

Figure 2 displays the velocity profiles for different values of viscosity parameter, α. It is seen that
the higher the values of this parameter, the higher the velocity of the fluid. This is because increasing
the values of β would decrease the fluid viscosity given by unf = µ0e

−βθ

(1−φ)2.5 (in nondimensional form).
Hence, the decrease in viscosity causes the flow to increase.

Figure 3 shows the plot of the velocity distribution for various values of the suction parameter,
λ. One can observe that increasing the values of λ leads to decrease in the velocity. This is
also physically realistic because suction is a form of flow towards the lateral direction which is
perpendicular to the main flow which is along the channel axis ( x-axis ). Hence, the perpendicular
flow would cause a decrease in the main flow, leading to a decrease in the velocity u.
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Figure 4 displays the velocity profiles for different values of volume fraction of the copper
nanoparticles. It shows that an increase in the volume fraction causes a decrease on the veloc-
ity of the nanofluid. This is due to the fact that more mass is being added into the fluid which
increases the nanofluid density. This then decreases the flow.

The influences of the thermal conductivity and suction parameters on the temperature are
depicted graphically in Figures 5 and 6. It can be seen that increasing the thermal conductivity
parameter leads to a decrease in the nanofluid temperature while increasing the suction parameter
only leads to very slight change in the temperature.

The impact of copper nanoparticle shape on the nanofluid is displayed in Figure 7. It can be seen
that the particles with shape factor of 3 lead to increased temperature more than the others. This
means that spherical shaped copper nanopartcles enhance the temperature more than cylinderical
or brick shaped copper nanoparticles.

Finally, the influence of the volume fraction of copper nanoparticles on water-copper nanofluid
is displayed in Figure 8. It can be seen that increasing the copper nanoparticle volume fraction φ
increases the temperature. This is because the addition of more nanoparticles increases the thermal
boundary layer [11], hence enhances the thermal conductivity.

4.1 Velocity Variations

Figure 2: Velocity Variations with change in Viscosity Parameter, α
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Figure 3: Velocity Variations with change in Suction Parameter, λ

Figure 4: Effect of Nanoparticle Volume Fraction, φ, on the Velocity profile

103

https://doi.org/10.6084/m9.figshare.22337599


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

Vol. 8, No. 2, pp. 94 - 108
https://doi.org/10.6084/m9.figshare.22337599

4.2 Temperature Variations

Figure 5: Effect of Thermal Conductivity Parameter, β, on the Temperature profile

Figure 6: Effect of Suction Parameter, λ, on the Temperature profile
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Figure 7: Effect of Nanoparticle’s Shape, np, on the Temperature profile

Figure 8: Effect of Nanoparticle Volume Fraction, φ, on the Temperature profile

5 Conclusion
The flow of water-copper nanofluid in a rectangular channel has been investigated with temperature-
dependent thermophysical properties accounted for. The influence of the volume fraction and shape
of nanoparticles, the variable viscosity, thermal conductivity, and suctions parameters on the flow
are investigated. The results show that

1. increasing the volume fraction decreases the velocity but increases the temperature,

2. copper nanoparticles of spherical shape lead to enhanced temperature than other shapes, and

3. increasing the viscosity parameter increases the flow.

105

https://doi.org/10.6084/m9.figshare.22337599


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

Vol. 8, No. 2, pp. 94 - 108
https://doi.org/10.6084/m9.figshare.22337599

It is our suggestion that more investigation be carried out to incorporate the effect of viscous dissi-
pation, and cross-diffusion on the flow, also the effects on skin friction and Nusselt should studied.

References
[1] T. Hayat, B. Ahmed, F. Abbasi, and A. Alsaedi. Hydromagnetic peristalsis of water based

nanofluids with temperature dependent viscosity: a comparative study. Journal of Molecular
Liquids, 234, 324–329, (2017).

[2] S. U. Choi and J. A. Eastman. Enhancing thermal conductivity of fluids with nanoparticles.
Technical report, Argonne National Lab.(ANL), Argonne, IL (United States), (1995).

[3] K. Khanafer, K. Vafai, and M. Lightstone. Buoyancy-driven heat transfer enhancement in a
two-dimensional enclosure utilizing nanofluids. International journal of heat and mass transfer,
46(19), 3639–3653, (2003).

[4] A. A. Alrashed, O. A. Akbari, A. Heydari, D. Toghraie, M. Zarringhalam, G. A. S. Shabani,
A. R. Seifi, and M. Goodarzi. The numerical modeling of water/fmwcnt nanofluid flow and
heat transfer in a backward-facing contracting channel. Physica B: Condensed Matter, 537,
176–183, (2018).

[5] M. Jafaryar, M. Sheikholeslami, and Z. Li. Cuo-water nanofluid flow and heat transfer in a
heat exchanger tube with twisted tape turbulator. Powder technology, 336, 131–143, (2018).

[6] R. U. Haq, S. Nadeem, Z. Khan, and N. Noor. Mhd squeezed flow of water functionalized
metallic nanoparticles over a sensor surface. Physica E: Low-dimensional Systems and Nanos-
tructures, 73, 45–53, (2015).

[7] K. K. Asogwa, F. Mebarek-Oudina, and I. Animasaun. Comparative investigation of water-
based al2o3 nanoparticles through water-based cuo nanoparticles over an exponentially ac-
celerated radiative riga plate surface via heat transport. Arabian Journal for Science and
Engineering, 47(7), 8721–8738, (2022).

[8] M. Turkyilmazoglu. Nanofluid flow and heat transfer due to a rotating disk. Computers &
Fluids, 94, 139–146, (2014).

[9] T. Hayat, M. Imtiaz, and A. Alsaedi. Impact of magnetohydrodynamics in bidirectional flow
of nanofluid subject to second order slip velocity and homogeneousheterogeneous reactions.
Journal of magnetism and magnetic materials, 395, 294–302, (2015).

[10] A. Kasaeian, R. Daneshazarian, O. Mahian, L. Kolsi, A. J. Chamkha, S. Wongwises, and I.
Pop. Nanofluid flow and heat transfer in porous media: a review of the latest developments.
International Journal of Heat and Mass Transfer, 107, 778–791, (2017).

[11] W. Abbas and M. Magdy. Heat and mass transfer analysis of nanofluid flow based on cu,
al 2o 3, and tio 2 over a moving rotating plate and impact of various nanoparticle shapes.
Mathematical Problems in Engineering, 2020, 1–12, (2020).

[12] M. Heydari and H. Shokouhmand. Numerical study on the effects of variable properties and
nanoparticle diameter on nanofluid flow and heat transfer through micro-annulus. International
Journal of Numerical Methods for Heat & Fluid Flow, (2017).

[13] F. M. Abbasi, T. Hayat, S. A. Shehzad, F. Alsaadi, and N. Altoaibi. Hydromagnetic peristaltic
transport of copperwater nanofluid with temperature-dependent effective viscosity. Particuol-
ogy, 27, 133–140, (2016).

106

https://doi.org/10.6084/m9.figshare.22337599


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

Vol. 8, No. 2, pp. 94 - 108
https://doi.org/10.6084/m9.figshare.22337599

[14] C. Nwaigwe, A. Weli, and O. D. Makinde. Computational analysis of porous channel flow with
cross-diffusion. American Journal of Computational and Applied Mathematics, 9(5), 119–132,
(2019).

[15] C. Nwaigwe. Analysis and application of a convergent difference scheme to nonlinear transport
in a brinkman flow. International Journal of Numerical Methods for Heat & Fluid Flow, 30(10),
4453–4473, (2020).

[16] C. Nwaigwe, J. Oahimire, and A. Weli. Numerical approximation of convective brinkman-
forchheimer flow with variable permeability. Applied and Computational Mechanics, 17(1),
(2023).

[17] H. C. Brinkman. The viscosity of concentrated suspensions and solutions. The Journal of
chemical physics, 20(4), 571–571, (1952).

[18] S. Srinivas, R. Gayathri, and M. Kothandapani. Mixed convective heat and mass transfer in
an asymmetric channel with peristalsis. Communications in Nonlinear Science and Numerical
Simulation, 16(4), 1845–1862, (2011).

[19] V. Narla, K. Prasad, and J. Ramanamurthy. Peristaltic transport of jeffrey nanofluid in curved
channels. Procedia Engineering, 127, 869– 876, (2015).

[20] R. L. Hamilton and O. Crosser. Thermal conductivity of heterogeneous two-component sys-
tems. Industrial & Engineering chemistry fundamentals, 1(3), 187–191, (1962).

[21] C. Nwaigwe. Mathematical modeling and numerical analyses of transport phenomena with
variable cross-diffusion and nonlinear radiation. Computational Thermal Sciences: An Inter-
national Journal, 13(1), (2021).

[22] C. Nwaigwe and O. D. Makinde. Finite difference investigation of a polluted non-isothermal
non-newtonian porous media flow. Diffusion Foundations, 26(4), 145–156, (2019).

[23] C. Nwaigwe, R. Ndu, and A. Weli. Wall motion effects on channel flow with temperature-
dependent transport properties. Applied Mathematics, 9(3), 162–168, (2019).

[24] A. Weli and C. Nwaigwe. Numerical analysis of channel flow with velocity-dependent suction
and nonlinear heat source. Journal of Interdisciplinary Mathematics, 23(5), 987–1008, (2020).

[25] R. J. Leveque. Numerical Methods for Conservation Laws. Birkhauser verlag, (1992).

[26] R. J. Leveque. Finite volume methods for hyperbolic problems. Cambridge university press,
31, (2002).

[27] C. Nwaigwe and C. Orji. Second-order non-oscillatory scheme for simulating a pressure-driven
flow. Journal of the Nigerian Association of Mathematical Physics, 52(1), 53–58, (2019).

[28] C. Nwaigwe and A. Weli. Analysis of two finite difference schemes for a channel flow problem.
Asian Research Journal of Mathematics, 15, 1–14, (2019).

[29] E. F. Toro. Riemann solvers and numerical methods for fluid dynamics: a practical introduc-
tion. Springer Science & Business Media, (1999).

[30] E. F. Toro. Shock Capturing Methods For Free-surface Flows. Wiley, (2001).

[31] C. Nwaigwe. An unconditionally stable scheme for two-dimensional convection-diffusion-
reaction equations. https://www.researchgate. net/publication/357606287_An_Uncondition-
ally_Stable_ Scheme_for_Two-Dimensional_Convection-Diffusion-Reaction_ Equations,
(2022). (Accessed on 19-January-2023).

107

https://doi.org/10.6084/m9.figshare.22337599


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

Vol. 8, No. 2, pp. 94 - 108
https://doi.org/10.6084/m9.figshare.22337599

[32] P. Matus, F. Gaspar, V. T. K. Tuyen, et al. Monotone difference schemes for weakly coupled
elliptic and parabolic systems. Computational Methods in Applied Mathematics, 17(2), 287–
298, (2017).

[33] P. Matus, L. G. Vulkov, et al. Analysis of second order difference schemes on non-uniform grids
for quasilinear parabolic equations. Journal of Computational and Applied Mathematics, 310,
186–199, (2017).

[34] C. Nwaigwe and A. Weli. Ishikawa-collocation method for nonlinear fredholm equations with
non-separable kernels. Journal of Advances in Mathematics and Computer Science, 38(3), 1–11,
(2023).

[35] A. Weli and C. Nwaigwe. Computational analysis of two numerical solvers for functional fred-
holm equations. International Journal of Mathematical and Computational Methods, 8, 1–8,
(2023).

108

https://doi.org/10.6084/m9.figshare.22337599

	Introduction
	Mathematical Formulation of the Problem
	Nondimensionalization
	Summary

	Numerical Scheme and Analysis
	Results
	Velocity Variations
	Temperature Variations

	Conclusion

