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Abstract

Soft set has been introduced to deal with uncertainty involved in many real life problems. How-
ever, most of the time, these decision-making problems involve less important and redundant
parameters, which make the decision making process more complex and challenging.Therefore,
in this study the concept of reduct of a soft set is discussed and a new algorithm is developed
for normal parameter reduction (NPR) base on the unit similarity matrix. Finally, the propose
algorithm is compared with previous parameter reduction algorithms in terms of computational
complexity.
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Abbreviations
S-set: Soft Set
F -set: Fuzzy Set
FS-set: Fuzzy Soft Set
FPS-set: Fuzzy Parameterized Soft Set
FPFS-set: Fuzzy Parameterized Fuzzy Soft Set
FFPS-set: Full Fuzzy Parameterized Soft Set
V S-Set: Vague Soft Set
SR-Set: Soft Rough Set
PRS-Set: Probabilistic Soft Set
BIV S-Set: Belief Interval-valued Soft Set
FPHFLTS-set: Fuzzy Parameterized Hesitant Fuzzy Linguistic Term Soft Set.

1 Introduction
In an attempt to overcome the problems of uncertainty and vagueness when dealing with data
in many fields such as environmental sciences, social sciences, economics, medical sciences and
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engineering, a number of non-classical mathematical theories have been developed such as F -set
theory [1] by Zadeh, Rough set theory [2] by Pawlak, Intuitionistic fuzzy set theory [3] by Atanassov
and Interval set theory [4] by Gorzalzany. But in [5], Molodtsov pointed out that each of these
theory has their associated difficulties. Therefore, in 1999 soft set was introduced by Molodtsov [5]
as a new theory to handle these difficulties. Soft set uses adequate parameterization as its tool in
its development. Since then soft set have rapidly developed with numerous works by researchers
like Maji et al., [6] defined some operations on S-set and used the theory to solve some decision
making problems [7]. Chen et al., [8], presented a new definition of S-set as an improvement of [7].
In a related development scholars like Cagman & Enginoglu [9], introduced and investigated soft
matrix theory and its application to decision making problem, Aktas et al., [11] introduced the
notion of soft group to initiate the study of the algebraic structure of S-set, then Ali et al., [10],
in his work noted some errors of previous works and then defined some new operations such as:
restricted union, extended intersection, restricted intersection, etc. In [12] Maji et al., introduce
the notion of FS-set as a hybridization of S-set to handle more complicated problems that may
not be 2-valued. In this direction, researchers have come up with interesting applications of the
theory. Roy & Maji [13], investigated some application of FS-set. Yang et al., [14, 15] made some
improvement on this concept. As a follow-up Cagman et al., in [16], defined fuzzy soft set theory
and its related properties, and fuzzy soft aggregation operator that makes the decision-making pro-
cess immensely simple and more proficient. In [17] the algebraic property of fuzzy soft sets was
studied by Liu & Yan. Consequenctly, Cagman et al., [18,19], introduced the concepts of FPS-set
and gave their related properties, and in [19] the same authors introduced the idea of FPFS-set
and investigated their associated properties. In the same vein, Alkhazaleh et al., [20] introduced the
concept of fuzzy parameterized interval-valued FS-set and gave its application in decision making.
FPS-set has continuously developed such that numerous researchers have applied it towards solv-
ing more realistic decision making problems. For instance; the work of Rodzi and Ahmad [21] on
FPHFLTS-set in multi-criteria decision making, which came up by studying the work on hesitant
fuzzy linguistic term soft set [22] in a fuzzy parameterized environment. The authors also described
some related concepts and consider the fundamental operations of FPHFLTS-set, they were able
to develop three different algorithm for solving group decision making. In a related development
Edeghagba & Muhammad [23] introduced the concept of FFPS-set and its related properties.
Apart from the combination of S-set theory with F -set theory, researchers have also combined
S-set theory with other theories to obtain concepts like: V S-set [24], SR-set [25], PRS-set [26],
BIV S-Belief interval-valued soft set [27]. Also researchers have also studied soft algebraic struc-
tures like soft groups [28], soft quasigroups [29], etc.
The process of parameter reduction is used to remove superfluous and redundant information dur-
ing decision making problem in S-set theory without changing the decision order of alternatives.
Therefore finding a reduction method with less computational complexity have been an important
direction for many researchers. In [30] Maji et al., introduced the concept of S-set reduction,
Chang in et al., [31, 32] pointed out some problems with the S-set reduction presented in [30] and
hence proposed a new method for parameter reduction of S-set. Kong et al., [33] considered the
drawbacks of suboptimal choices and parameter addition, and hence proposed a new algorithm for
normal parameter reduction which overcame this drawbacks. Ma et al., [34] pointed out that the
algorithm presented in [33] is hard and difficulty to understand, and involve a great number of com-
putation, hence proposed a new algorithm. Furthermore, normal parameter reduction algorithm
was studied by Danjuma et al., in [35] where the authors propose an alternative approach to normal
parameter reduction method to improve computational complexity and reduce running time.
This paper presents a novel approach to the normal parameter reduction method in soft set theory.
The proposed method utilizes a unit similarity matrix, leading to improved computational com-
plexity and reduced running time.
The rest of the paper is organized as follows. In section 2 we give a review of basic concepts of
S-set theory and information system. In section 3 we give analysis of some previous algorithms.
Section 4 presents our new algorithm as an alternative approach of normal parameter reduction. A
comparative study among the mentioned algorithms in section 2 is provided in Section 5. Finally,
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in section 6 we conclude the work.

2 Preliminaries
This section reviews some basic notions regarding S-set theory and information system.

(See [5]) (S-set): Let U be a universe set, and E be the set of parameters. A pair (F,E) is
called a S-set over U if and only if F is a mapping from E into the set of all subsets of the universe
set U , i.e., F : E → P (U), where P (U) is the power set of U .
In other words, S-set over U is a parameterized family of subsets of U .
Every set F (e), for every e ∈ E, from this family may be considered as the set of e-elements of the
S-set (F,E) or considered as the set of e-approximate elements of the soft set. Accordingly, we can
view a soft set (F,E) as a collection of approximations: (F,E) = {F (e) : e ∈ E}. As an illus-
tration, we use the following example, to express the meaning of definition 2 Given the following
initial universe, U = the set of houses under consideration for sales, E be the set of parameters.
Suppose: U = {h1, h2, h3, h4, h5, h6} and E = {e1, e2, e3, e4, e5, e6}
Where we have six houses in the defined universe, and ei ∈ E for i = 1, 2, 3, 4, 5, 6 stands for the
parameters: e1 = expensive, e2 = beautiful, e3 = wooden, e4 = in green surrounding, e5 = in serene
environment, e6 = in noisy environment .

Suppose that:
F (e1) = {h1}
F (e2) = {h2, h4}
F (e3) = {h3, h4, h5}
F (e4) = {h1, h2, h3}
F (e5) = {h4, h6}
F (e6) = {}

Where F (ei) is a subset of U whose elements match ei ∈ E. The Boolean-valued table representing
the S-set, (F,E) as defined in Example 2, is given by Table 1.

U/E e1 e2 e3 e4 e5 e6 fE(·)
h1 1 0 0 1 0 0 2
h2 0 1 0 1 0 0 2
h3 0 0 1 1 0 0 2
h4 0 1 1 0 1 0 3
h5 0 0 1 0 0 0 1
h6 0 0 0 0 1 0 1

Table 1: Tabular Representation of S-Set (F,E)

(See [36]) A knowledge representation system can be formulated as a quadruple K = (U,A, V, f),
where U is a nonempty finite set of objects and A is a nonempty finite set of attributes, such that
fa : U → Va for any a ∈ A, is a knowledge function, where Va is called the value set of a and V =
∪a∈AVa. Therefore, for a given S-Set (F,E) over the universe U , then K(F,E) = (U,E, V, f (F,E))
is a Boolean-valued knowledge representation system induced by (F,E) such that for Ve = {0, 1}
for all e ∈ E we have:

f (F,E)
e (x) =

{
1 : x ∈ F (e)
0 : x /∈ F (e)

3 Analysis of Some Previous Algorithms
In this section, we analyse the method of normal parameter reductions and their algorithms pro-
posed by Kong et al., [33] and Ma et al., [34].
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3.1 Normal parameter reduction of soft sets and its algorithm (See [33])
Assume U = {h1, h2, ..., hn}, E = {e1, e2, ..., em}, then the choice value of each hi is defined by
fE(hi) :=

∑
j hij , where hij are entries in the (F,E) table, given as Table 1. (See [33]) Given a

S-Set (F,E), with every subset of parameters B ⊆ E, an indiscernibility relation IND(B) is defined
by

IND(B)= {(hi, hj) ∈ U × U : fe(hi) = fe(hj),∀e ∈ B}.

For S-Set (F,E) and U = {h1, h2, ..., hn}.Then

CE = {{h1, h2, ..., hi}f1 , {hi+1, hi+2, ..., hj}f2 , ..., {hk, hk+2, ..., hn}fs} (3.1)

refers to the decision partition of elements in U , which classifies and ranks the elements in U accord-
ing to the value of fE(.) based on the indiscernibility relation. For subclass {hu, hu+2, ..., hu+w}fi ,
fE(hu) = fE(hu+1) = ... = fE(hu+w) = fi, f1 ≥ f2 ≥ · · · ≥ fs, where s is the number of subclasses.

(See [33]) Given a S-Set (F,E), with E = {e1, e2, ..., em}, if there exists a subset A = {e′1, e′2, ..., e′p} ⊂
E such that fA(h1) = fA(h2) = · · · = fA(hn) holds, then A is dispensable, otherwise A is indis-
pensable.
A subset B ⊂ E is said to be a normal parameter reduction of E, if the following two conditions
hold
(i) B is indispensable
(ii) fE−B(h1) = fE−B(h2) = · · · = fE−B(hn).

(See [33]) Given a S-Set (F,E), with E = {e1, e2, ..., em}, and U={h1, h2, ..., hn}, then the
decision partition as given in equation 3.1 and the decision partition deleted ei are respectively
given as

CE = {Ef1 , Ef2 , ..., Efs} (3.2)

and
CE−ei =

{
E − e′if ′

1
, E − e′if ′

2
, ..., E − e′if ′

s

}
(3.3)

The importance degree of ei for the decision partition is defined by

rei =
1

|U |
(α1,ei + α2,ei + · · ·+ αs,ei) (3.4)

where | · | refers to the cardinality of set and

αk,ei =

{
|Efk − E − e′if ′

z
|, ∃z′ : fk = f ′

z, 1 ≤ z′ ≤ s′, 1 ≤ k ≤ s

|Efk |, otherwise.

Using the parameter importance degree the authors in [33] presented the algorithm for parameter
reduction as in Fig 1.

(1) Input the S-Set (F,E) and its parameter set E ;
(2) Compute the parameter importance degree rei , for 1 ≤ i ≤ m;
(3) Select the maximum subset A = {e′1, e′2, ..., e′p} in E such that the

sum of rei ,
for 1 ≤ i ≤ p is a nonnegative integer then put A into the feasible
parameter reduction set;

(4) Find A for which fA(h1) = fA(h2) = · · · = fA(hn) holds,
then E-A is the normal parameter reduction, otherwise delete A
from the feasible parameter reduction set;

(5) Find the maximum cardinality of A in the feasible parameter re-
duction set;

(6) Compute E-A as the optimal parameter reduction.
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Figure 1: Normal parameter reduction algorithm

It is clear that the algorithm presented by Kong et al. [33], which utilizes the parameter im-
portance degree, is computationally intensive and quite difficult to understand. In an effort to
overcome this computational complexity, Ma et al. [34] proposed a new and efficient normal param-
eter reduction algorithm for soft sets.

3.2 A new efficient normal parameter reduction algorithm
In this section we briefly analyze the new efficient normal parameter reduction algorithm of S-set
as was presented by Ma et al. in [34].

(See [34]) Given a S-Set (F,E), with E = {e1, e2, ..., em}, and U={h1, h2, ..., hn}, we de-
note fE(hi) =

∑
j hij as an oriented-object sum. (See [34]) Given a S-Set (F,E), with E

= {e1, e2, ..., em}, and U={h1, h2, ..., hn}, we denote S(ej) =
∑

i hij as an oriented-parameter
sum. (See [34]) Given a S-Set (F,E), with E = {e1, e2, ..., em}, and U={h1, h2, ..., hn}, we
denote SA =

∑
j S(ej), for A ⊆ E as the overall sum of A. The next two definitions fol-

lows from definitions 3.2, 3.2 and 3.2 to check and remove parameters with the same entries.
(See [34]) Given a S-Set (F,E), with E = {e1, e2, ..., em}, and U={h1, h2, ..., hn}. For ej ∈ E,
if h1j = h2j = · · · = hnj = 1, we denote ej as e1j . (See [34]) Given a S-Set (F,E), with E =
{e1, e2, ..., em}, and U={h1, h2, ..., hn}. For ej ∈ E, if h1j = h2j = · · · = hnj = 0, we denote ej as
e0j .
Using the oriented-parameter sum the authors in [34] presented the algorithm for parameter reduc-
tion as in Fig 2.

(1) Input the S-Set (F,E) and its parameter set E;
(2) If there exist e0j and e1j , put them into the reduced parameter set

denoted by C, and establish a new S-set (F,E′) without e0j and
e1j , where U = h1, h2, ..., hn and E′ = e1′ , e2′ , ..., er′ ;

(3) For S-set (F,E′), calculate S(ej′) of ej′ (i.e., the oriented-
parameter sum), for j′ = 1′, 2′, · · · , t′;

(4) Find the subset A ⊆ E′ in which SA is a multiple of |U |, and put
A into a candidate parameter reduction set;

(5) Check every A in the candidate parameter reduction set. If
fA(h1) = fA(h2) = · · · = fA(hn), keep it; otherwise omit it;

(6) Find the maximum cardinality of A in the candidate parameter
reduction set, then compute E −A−C as the optimal parameter
reduction.

Figure 2: New efficient normal parameter reduction algorithm

4 Proposed Techniques to Normal Parameter Reduction
In this section, we present our proposed algorithm of a new approach to normal parameter reduction
using unit similarity matrix

4.1 Proposed Technique
Given that (F,E) is a S-set with tabular representation, for which E = {e1, e2, ..., em}, is the
parameter set, U={h1, h2, ..., hn} is the objective set and hij are the entries in (F,E) table.

(Complementary pairs) Given a S-Set (F,E), with E = {e1, e2, ..., em}, and U={h1, h2, ..., hn}.
Two parameters ei and ej are said to be complementary if they do not have the same value for
each of their corresponding hij entries. That is for all hk ∈ U , f (F,E)

ei (hk) ∧ f
(F,E)
ej (hk) = 0 and

f
(F,E)
ei (hk) ∨ f

(F,E)
ej (hk) = 1. Then {ei, ej} is special entry denoted by CP .
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(Unit similarity matrix) Given a S-Set (F,E), with E = {e1, e2, ..., em}, and U={h1, h2, ..., hn}.
Let K(F,E) = (U,E, V, f (F,E)) be a Boolean-valued the knowledge representation system induced
by (F,E) such that for any hi, hj ∈ U the unit similarity parameter set of hi and hj is given as:

sE(hi, hj) = {e ∈ E : f (F,E)
e (hi) = 1 = f (F,E)

e (hj)}, (4.1)

S((F,E)) = {sE(hi, hj) : (hi, hj) ∈ U2} is called the unit similarity matrix of the S-Set (F,E).
Using Example 2 and Table 1 we explain Definitions 4.1. Clearly, the unit similarity parameter set
of hi and hj for all hi, hj ∈ U are:

For sE(h1, hj), j = 1, 2, . . . , 6
sE(h1, h1) = {e1, e4}, sE(h1, h2) = {e4}, sE(h1, h3) = {e4}, sE(h1, h4) = {}, sE(h1, h5) = {},
sE(h1, h6) = {};

For sE(h2, hj), j = 1, 2, . . . , 6
sE(h2, h1) = {e4}, sE(h2, h2) = {e2, e4}, sE(h2, h3) = {e4}, sE(h2, h4) = {e2}, sE(h2, h5) = {},
sE(h2, h6) = {}

For sE(h3, hj), j = 1, 2, . . . , 6 sE(h3, h1) = {e4}, sE(h3, h2) = {e4}, sE(h3, h3) = {e3, e4}, sE(h3, h4) =
{e3}, sE(h3, h5) = {e3}, sE(h3, h6) = {}

For sE(h4, hj), j = 1, 2, . . . , 6 sE(h4, h1) = {}, sE(h4, h2) = {e2}, sE(h4, h3) = {e3}, sE(h4, h4) =
{e2, e3, e5}, sE(h4, h5) = {e3}, sE(h4, h6) = {e5}

For sE(h5, hj), j = 1, 2, . . . , 6 sE(h5, h1) = {}, sE(h5, h2) = {}, sE(h5, h3) = {e3}, sE(h5, h4) =
{e3}, sE(h5, h5) = {e3}, sE(h5, h6) = {}

For sE(h6, hj), j = 1, 2, . . . , 6 sE(h6, h1) = {}, sE(h6, h2) = {}, sE(h6, h3) = {}, sE(h6, h4) = {e5},
sE(h6, h5) = {}, sE(h6, h6) = {e5}

Therefore the unit similarity matrix is:

sE(hi, hj) h1 h2 h3 h4 h5 h6

h1 e1, e4 e4 e4
h2 e4 e2, e4 e4 e2
h3 e4 e4 e3, e4 e3 e3
h4 e2 e3 e2, e3, e5 e3 e5
h5 e3 e3 e3
h6 e5 e5

Table 2: Unit Similarity Matrix

The unit similarity parameter set has the following properties. For a S-Set (F,E),
(1) sE(hi, hj) ⊂ E
(2) sE(hi, hi) ̸= ∅
(3) sE(hi, hj) = sE(hj , hi)
(4) sE(hi, hi) ∩ sE(hj , hj) = sE(hi, hj)

Proof. The proof of properties 4.1 follows easily from definition 4.1.

Using Example 4.1 we explain Properties 4.1. Clearly, all the unit similarity parameter sets are
subset of the parameter set E, that is sE(hi, hj) ⊂ E for i, j = 1, 2, . . . , 6. So property 1 holds. Next,
since sE(h1, h1) = {e1, e4}, sE(h2, h2) = {e2, e4}, sE(h3, h3) = {e3, e4}, sE(h4, h4) = {e2, e3, e5},
sE(h5, h5) = {e3}, sE(h6, h6) = {e5}, it follows that property 2 holds. Obviously from the unit
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similarity matrix, property 3 holds Finally, property 4 holds. For example we have that:
sE(h1, h1) = {e1, e4} ∩ sE(h2, h2) = {e2, e4} =) = {e4} = sE(h1, h2);
sE(h1, h1) = {e1, e4} ∩ sE(h3, h3) = {e3, e4} =) = {e4} = sE(h1, h3);. . . .

For a S-Set (F,E) with E = {e1, e2, ..., em}, U={h1, h2, ..., hn} and A = {e′1, e′2, ..., e′p} ⊂ E,
then E −A is a normal parameter reduction of E if and only if

|
|U |⋃
j=1

sA(hj , hi)| = fA(hi), ∀i = 1, 2, ..., n (4.2)

Proof. In one direction assume that A = {e′1, e′2, ..., e′p} ⊂ E, and E − A is a normal parameter
reduction of E. Given that fE(hi) :=

∑
j hij , then for an arbitrary k if fA(hk) = u, for a nonnegative

integer u, it follows that only u parameters, {e′′1 , e′′2 , ..., e′′u} in A are of value 1, corresponding to
object hk in the S-set tabular representation. Therefore, by equation 4.1 it must be the case that
for any e ∈ {e′′1 , e′′2 , ..., e′′u} there exist some sA(hj , hk) such that e ∈ sA(hj , hk), j ̸= k. Hence
|
⋃|U |

j=1 sA(hj , hk)| = u
The other direction follows easily.

We give the following definition as an alternative to definition 3.1. Given a S-Set (F,E), with
E = {e1, e2, ..., em}, if there exists a subset A = {e′1, e′2, ..., e′p} ⊂ E such that |

⋃|U |
j=1 sA(hj , h1)| =

|
⋃|U |

j=1 sA(hj , h2)| = · · · = |
⋃|U |

j=1 sA(hj , hn)| holds, then A is dispensable, otherwise A is indispens-
able.
A subset B ⊂ E is said to be a normal parameter reduction of E, if the following two conditions
hold
(i) B is indispensable
(ii) |

⋃|U |
j=1 sE−B(hj , h1)| = |

⋃|U |
j=1 sE−B(hj , h2)| = · · · = |

⋃|U |
j=1 sE−B(hj , hn)|.

Corollary 4.1. For a S-Set (F,E) with E = {e1, e2, ..., em}, U={h1, h2, ..., hn}. If there exists a
subset A = {e′1, e′2, ..., e′p} ⊆ E, such that E − A is a normal parameter reduction of E, then we
have

|U |∑
i

|
|U |⋃
j=1

sA(hi, hj)| = xn, for x = 1, 2, ...,m (4.3)

where | · | denotes the cardinality of set.

Proof. Assume that A = {e′1, e′2, ..., e′p} ⊆ E, and E − A is a normal parameter reduction of E,
then |

⋃|U |
j=1 sA(h1, hj)| = |

⋃|U |
j=1 sA(h2, hj)| = · · · = |

⋃|U |
j=1 sA(hn, hj)|. Therefore the following hold:

f
(F,A)
e′1

(h1) + f
(F,A)
e′2

(h1) + · · ·+ f
(F,A)
e′p

(h1) = x

f
(F,A)
e′1

(h2) + f
(F,A)
e′2

(h2) + · · ·+ f
(F,A)
e′p

(h2) = x

...
...

...
...

f
(F,A)
e′1

(hn) + f
(F,A)
e′2

(hn) + · · ·+ f
(F,A)
e′p

(hn) = x.

But we have that
|U |∑
i

|
|U |⋃
j=1

sA(hi, hj)| =
|U |∑
i

f
(F,A)
e′1

(hi) +

|U |∑
i

f
(F,A)
e′2

(hi) + · · ·+
|U |∑
i

f
(F,A)
e′p

(hi)

Hence It follows easily that
|U |∑
i

|
|U |⋃
j=1

sA(hi, hj)| =
|A|∑
j

f
(F,A)
e′j

(h1) +

|A|∑
j

f
(F,A)
e′j

(h2) + · · ·+
|A|∑
j

f
(F,A)
e′j

(hn) = xn

49

 https://doi.org/10.5281/zenodo.8218007


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

Vol. 9, No. 1, pp. 43 - 58
https://doi.org/10.5281/zenodo.8218007

5 Comparison of algorithms
In this section an example is used to analyze the various algorithms in the previous subsections and
how they compare to our proposed algorithm.

U/E e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 f(·)
h1 1 0 0 1 1 0 1 1 1 0 0 0 0 0 1 0 7
h2 1 0 0 1 1 1 0 0 1 0 0 0 0 0 1 0 6
h3 1 1 0 0 0 1 0 1 0 1 1 0 0 0 1 1 8
h4 0 1 0 1 1 1 0 0 1 0 0 1 0 0 1 1 8
h5 0 1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 10
h6 1 0 0 1 1 0 1 0 0 1 0 1 0 0 1 0 7
h7 1 1 1 0 0 1 1 1 1 0 0 1 0 0 1 0 9
h8 0 1 0 1 1 1 1 0 0 1 0 1 0 1 1 0 9

Table 3: S-Set (F,E)

Given that (F,E) is the S-set with the tabular representation in Table 3. Suppose E =
{e1, e2, ..., e16} and U = {h1, h2, ..., h8}.

5.1 Algorithm in [33]
Step 1: The decision partition based on equation 3.1 is:
CE = {{h5}10, {h7, h8}9, {h3, h4}8, {h1, h6}7, {h2}6}.
Thus s = 5.
Step 2: The decision partition of deleted ej based on equation 3.3 are:
CE−e1 = {{h5}10, {h8}9, {h4, h7}8, {h3}7, {h1, h6}6, {h2}5},
CE−e2 = {{h5}9, {h7, h8}8, {h1, h3, h4, h6}7, {h2}6},
CE−e3 = {{h5, h8}9, {h3, h4, h7}8, {h1, h6}7, {h2}6},
CE−e4 = {{h5, h7}9, {h3, h8}8, {h4}7, {h1, h6}6, {h2}5},
CE−e5 = {{h5, h7}9, {h3, h8}8, {h4}7, {h1, h6}6, {h2}5},
CE−e6 = {{h5}9, {h7, h8}8, {h1, h3, h4, h6}7, {h2}5},
CE−e7 = {{h5}10, {h3, h4, h7, h8}8, {h1, h2, h6}6},
CE−e8 = {{h5, h8}9, {h4, h7}8, {h3, h6}7, {h1, h2}6},
CE−e9 = {{h5}10, {h8}9, {h3, h7}8, {h4, h6}7, {h1}6, {h2}5},
CE−e10 = {{h5, h7}9, {h4, h8}8, {h1, h3}7, {h2, h6}6},
CE−e11 = {{h5, h7, h8}9, {h4}8, {h1, h3, h6}7, {h2}6},
CE−e12 = {{h5}10, {h3, h7, h8}8, {h1, h4}7, {h2, h6}6},
CE−e13 = CE ,
CE−e14 = {{h5}10, {h7}9, {h3, h4, h8}8, {h1, h6}7, {h2}6},
CE−e15 = {{h5}9, {h7, h8}8, {h3, h4}7, {h1, h6}6, {h2}5},
CE−e16 = {{h5, h7, h8}9, {h4}8, {h1, h3, h6}7, {h2}6}.
Step 3: Obtaining the importance degree of ei based on equation 3.4 are:

re1 = 1
8 (0 + 1 + 1 + 2 + 1) = 5

8 , re2 = 1
8 (1 + 2 + 2 + 0 + 0) = 5

8 ,

re3 = 1
8 (1 + 1 + 0 + 0 + 0) = 2

8 , re4 = 1
8 (1 + 1 + 1 + 2 + 1) = 6

8 ,

re5 = 1
8 (1 + 1 + 0 + 3 + 1) = 6

8 , re6 = 1
8 (1 + 2 + 2 + 0 + 1) = 6

8 ,

re7 = 1
8 (0 + 2 + 0 + 2 + 0) = 4

8 , re8 = 1
8 (1 + 1 + 1 + 1 + 0) = 4

8 ,

re9 = 1
8 (0 + 1 + 1 + 1 + 1) = 4

8 , re10 = 1
8 (1 + 1 + 1 + 1 + 0) = 4

8 ,
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re11 = 1
8 (1 + 0 + 1 + 0 + 0) = 2

8 , re12 = 1
8 (0 + 2 + 1 + 1 + 0) = 4

8 ,

re13 = 1
8 (0 + 0 + 0 + 0 + 0) = 0

8 , re14 = 1
8 (0 + 1 + 0 + 0 + 0) = 1

8 ,

re15 = 1
8 (1 + 2 + 2 + 2 + 1) = 8

8 , re16 = 1
8 (1 + 0 + 1 + 0 + 0) = 2

8 .

Step 4: Obtaining the subsets A of E in which the sum of the importance degree of the elements
in A are nonnegative integers.
Base on the above computation of parameter importance degree, A could be any of the following:
{e13}, {e15}, {e9, e10}, {e1, e2, e4}, {e1, e2, e4, e13}, {e1, e2, e4, e15}, {e1, e2, e5}, {e1, e2, e5, e13},
{e1, e2, e5, e15}, {e1, e2, e6}, {e1, e2, e6, e13}, {e1, e2, e6, e15}, {e1, e2, e3, e8},
{e1, e2, e8, e11}, {e7, e8, e9, e10}, {e1, e2, e3, e8}, {e1, e2, e4, e7, e8, e9, e10},
{e1, e2, e4, e13, e15}, {e7, e8, e9, e10, e13, e15}, and so on, and put them into a feasible parameter re-
duction set.
Step 5: Considering the subsets in step 4 we have the following
{e13}, {e15}, {e13, e15}, {e9, e10}, {e9, e10, e13}, {e9, e10, e15}, {e9, e10, e13, e15}, {e1, e2, e4}, {e1, e2, e5},
{e1, e2, e4, e13}, {e1, e2, e5, e13}, {e1, e2, e4, e15}, {e1, e2, e5, e15}, {e1, e2, e4, e13, e15}, {e1, e2, e5, e13, e15},
{e1, e2, e4, e9, e10}, {e1, e2, e5, e9, e10}, {e1, e2, e4, e9, e10, e13}, {e1, e2, e5, e9, e10, e13}, {e1, e2, e4, e9, e10, e15},
{e1, e2, e5, e9, e10, e15},
{e1, e2, e4, e9, e10, e13, e15},{e1, e2, e5, e9, e10, e13, e15},
satisfying the condition fA(h1) = fA(h2) = · · · = fA(hn)
Step 6: Obtaining the maximum A from step 5 we have {e1, e2, e4, e9, e10, e13, e15} or {e1, e2, e5, e9, e10, e13, e15}.
Therefore, the optimal normal parameter reduction set is

{e3, e5, e6, e7, e8, e11, e12, e14, e16}

or
{e3, e4, e6, e7, e8, e11, e12, e14, e16}.

Figure 1 above presents the normal parameter reduction algorithm which describes the steps in-
volved.

5.2 Algorithm in [34]
Step 1: Pick out the parameters, e013 and e115 according to definitions 3.2 and 3.2 and put them into
the reduced parameter set denoted by C. Therefore, we obtain a new S-set (F,E′) without e013 and
e115.
Step 2: Computing the oriented parameter sum S(ej) for each ej in E′ = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e14, e16}
based on definition 3.2 are:
S(e1) =

∑
i hi1 = 1 + 1 + 1 + 0 + 0 + 1 + 1 + 0 = 5,

S(e2) =
∑

i hi2 = 0 + 0 + 1 + 1 + 1 + 0 + 1 + 1 = 5,
S(e3) =

∑
i hi3 = 0 + 0 + 0 + 0 + 1 + 0 + 1 + 0 = 2,

S(e4) =
∑

i hi4 = 1 + 1 + 0 + 1 + 1 + 1 + 0 + 1 = 6,
S(e5) =

∑
i hi5 = 1 + 1 + 0 + 1 + 1 + 1 + 0 + 1 = 6,

S(e6) =
∑

i hi6 = 0 + 1 + 1 + 1 + 1 + 0 + 1 + 1 = 6,
S(e7) =

∑
i hi7 = 1 + 0 + 0 + 0 + 0 + 1 + 1 + 1 = 4,

S(e′8) =
∑

i hi8 = 1 + 0 + 1 + 0 + 1 + 0 + 1 + 0 = 4,
S(e9) =

∑
i hi9 = 1 + 1 + 0 + 1 + 0 + 0 + 1 + 0 = 4,

S(e10) =
∑

i hi10 = 0 + 0 + 1 + 0 + 1 + 1 + 0 + 1 = 4,
S(e11) =

∑
i hi11 = 0 + 0 + 1 + 0 + 1 + 0 + 0 + 0 = 2,

S(e12) =
∑

i hi12 = 0 + 0 + 0 + 1 + 0 + 1 + 1 + 1 = 4,
S(e14) =

∑
i hi14 = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 = 1,

S(e16) =
∑

i hi16 = 0 + 0 + 1 + 1 + 1 + 0 + 0 + 0 = 3,
Step 3: Obtain the subset A ⊂ E for which SA is a multiple of |U | = 8. This produces so many
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subsets:
{e4, e5, e7}, {e1, e2, e6}, {e7, e8, e9, e10, e12}, {e1, e2, e4, e9, e14, e16}, and so which we put into can-
didate parameter reduction set.
Step 4: Next we filter the candidate parameter reduction set in step 3 to obtain the subset A ⊂ E
satisfying the condition fA(h1) = fA(h2) = · · · = fA(hn) and hence we delete others. Therefore,
we have {e1, e2, e4, e9, e10} or {e1, e2, e5, e9, e10}.
Step 5: We find the maximum cardinality of A in the candidate parameter reduction set in which
case

E −A− C = {e3, e5, e6, e7, e8, e11, e12, e14, e16}

or
E −A− C = {e3, e4, e6, e7, e8, e11, e12, e14, e16},

is considered as the optimal normal parameter reduction.
Figure 2 above presents the new efficient normal parameter reduction algorithm which describes
the steps involved.

Clearly, the above algorithms have some setback which include: (1) From the discussion above,
we conclude that although the normal parameter reduction algorithm and new efficient normal
parameter reduction algorithm are simple approachs toward soft set reduction, but do not consider
the existence of complementary pairs in the parameter set, which if considered should reduce the
computation complexity of computing the parameter importance degree and oriented parameter
sum respectively (2) The algorithms did not consider using an alternative computation to the
methods of parameter importance degree and oriented-parameter sum, but the proposed algorithm
introduces such an alternative, the use of unit similarity matrix.

5.3 The proposed algorithm
Following from the definitions and theorems given in section 4 we present our proposed algorithm
in Fig 4.
Our algorithm and the other algorithms presented above depict two different procedures to normal
parameter reduction of the S-Set. There exist some differences between them as follows:
(1) We check for complementary pairs and directly put them into the reduced parameter set. This
leads to the number of subsets in the candidate parameter reduction set of the proposed algorithm
being lesser than that of the subsets in the other algorithm presented. Therefore a reduction in
computation.
(2) Instead of using the overall sum of A ⊂ E as presented in [34] we used an alternative computation∑|U |

i |
⋃|U |

j=1 sA(hi, hj)| arising from the unit similarity matrix, which relatively is computationally
similar.
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(1) Input the S-Set (F,E) and its parameter set E
(2) If there exists e0j and e1j , put them into the reduced parameter set denoted by

C
A new S-set (F,E′) will be established without e0j and e1j ,
where U = h1, h2, ..., hn and E′ = e1′ , e2′ , ..., er′

(3) For S-set (F,E′) check if there exists complementary pair ei and ej
Put them into the reduced parameter set denoted by CP
A new S-set (F,E′′) will be established without the pair ei and ej ,
where U = h1, h2, ..., hn and E′′ = e1′′ , e2′′ , ..., et′′

(4) For S-set (F,E′′) construct the unit similarity matrix
(5) Find the subset A ⊆ E′′ in which

∑|U |
i |

⋃|U |
j=1 sA(hi, hj)| is a multiple of |U |,

Then put A into a candidate parameter reduction set
(6) Check every A in the candidate parameter reduction set,

If |
⋃|U |

j=1 sA(hj , h1)| = |
⋃|U |

j=1 sA(hj , h2)| = · · · = |
⋃|U |

j=1 sA(hj , hn)|,
It will be kept; otherwise, it will be omitted

(7) Find the maximum cardinality of A in the candidate parameter reduction set
Then E −A− C − CP becomes the optimal normal parameter reduction set.

Figure 3: The Proposed Algorithm

For a clearer understanding of the Proposed Algorithm, we use the same S-set over U with the
tabular representation, Table 3 Given that (F,E) is the S-set with the tabular representation in
Table 5. Suppose E = {e1, e2, ..., e16} and U = {h1, h2, ..., h8}. Step 1: Pick out the parameters,
e013 and e115 according to definitions 3.2 and 3.2 and put them into the reduced parameter set de-
noted by C. Therefore, we obtain a new S-set (F,E′) without e013, e115. Where U = {h1, h2, ..., h8}
and E′ = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e14, e16}.
Step 2: Since there exists complementary pair e9 and e10 they are put into the reduced parame-
ter set denoted by CP and a new S-set (F,E′′) is obtained without the pair e9 and e10. Where
U = {h1, h2, ..., h8} and E′′ = {e1, e2, e3, e4, e5, e6, e7, e8, e11, e12, e14, e16}.
Step 3: Construct the similarity matrix for S-set (F,E′′). See Table 5.
Step 4: Obtain the subset A ⊂ E′′ for which

∑|U |
i |

⋃|U |
j=1 sA(hi, hj)| is a multiple of |U | = 8. This

produces subsets such as:
{e7, e12}, {e1, e3, e14}, {e1, e2, e4}, {e1, e2, e5}, {e8, e14, e16}, {e12, e14, e16}, {e1, e3, e7, e12, e14}, {e1, e2, e4, e7, e12},
{e1, e2, e5, e7, e12}, {e7, e8, e12, e14, e16}, which we put into candidate parameter reduction set.
Step 5: Next we check every subset A ⊂ E′′ in the candidate parameter reduction set satisfying
|
⋃|U |

j=1 sA(hj , h1)| = |
⋃|U |

j=1 sA(hj , h2)| = · · · = |
⋃|U |

j=1 sA(hj , hn)|, and others are deleted. There-
fore, we choose {e1, e2, e5} .
Step 6: We find the maximum cardinality of the candidate parameter reduction set, thus E −
A − C − CP = {e3, e4, e6, e7, e8, e11, e12, e14, e16} is considered as thenovel approach for normal
parameter reduction, which in this case the optimal parameter reduction as given by Table 4.

U/E e3 e4 e6 e7 e8 e11 e12 e14 e16 f(·)
h1 0 1 0 1 1 0 0 0 0 3
h2 0 1 1 0 0 0 0 0 0 2
h3 0 0 1 0 1 1 0 0 1 4
h4 0 1 1 0 0 0 1 0 1 4
h5 1 1 1 0 1 1 0 0 1 6
h6 0 1 0 1 0 0 1 0 0 3
h7 1 0 1 1 1 0 1 0 0 5
h8 0 1 1 1 0 0 1 1 0 5

Table 4: S-Set (F,E)

Therefore, the the original decision order is the same with the reduction soft set. Hence E − A −
C − CP = E −A− C = E −A
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6 Analysis of the Proposed Method
The computational complexities of the Unit Similarity Matrix:

• Construction of the unit similarity matrix involves computing the unit similarity parameter
sets for all pairs of objects.

• The number of object pairs is given by |U |2, where |U | is the number of objects.

• For each pair, the algorithm checks the values of the corresponding parameters and determines
the similarity set.

• The time complexity for constructing the unit similarity matrix for the parameter set E is
O(|U |2 × |E|), where |E| is the number of parameters.

• The space complexity is also O(|U |2 × |E|) since the matrix needs to be stored.

If there are complementary pairs such that E′′ is the set of parameters without the complemen-
tary pairs then the space and time complexity becomes O(|U |2 × |E′′|). Suppose |U | = |E| = n,
then the space and time complexity is less or equal to O(n3) since if there are complementary pairs,
|E′′| ≤ n.
Assessing the candidate parameter reduction set:

The proposed algorithm first puts parameters that form complementary pairs into the reduced
parameter set CP . Assume the number of parameters in CP is denoted by t. Then, the proposed
algorithm tests combinations from combination-1 to combination-t′, where t′ = m − t. In other
words, the number of accessed entries in the unit similarity parameter set is assumed to be C(t′, 1)+
C(t′, 2)+ · · ·+C(t′, t′). This implies that as the value of t increases, the number of accessed entries
for the proposed algorithm decreases.

6.1 Comparison of the proposed method with the previous methods
1. Computation Complexity:
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• The ”Normal Parameter Reduction Algorithm” has a computation complexity of O(|U |×
|E|2), where |U | is the number of objects and |E| is the number of parameters. It iterates
through all parameter pairs for each object, which can be computationally expensive for
large datasets.

• The ”New Efficient Normal Parameter Reduction Algorithm” improves the computation
complexity to O(|U | × |E|). It eliminates redundant iterations and reduces the number
of comparisons, resulting in faster execution.

• The proposed algorithm introduces complementary pairs and unit similarity matrices to
identify indispensable and dispensable parameters. The computation complexity depends
on the construction of the unit similarity matrix, which requires evaluating the Boolean
functions for each parameter pair. The overall complexity is likely to be similar to or
slightly higher than the ”New Efficient Normal Parameter Reduction Algorithm.”

2. Reduction Results:

• The ”Normal Parameter Reduction Algorithm” aims to find a normal parameter reduc-
tion set that satisfies the properties of indispensability and uniformity. It may achieve
good reduction results but does not consider complementary pairs explicitly.

• The ”New Efficient Normal Parameter Reduction Algorithm” improves the reduction
results by considering complementary pairs and removing redundant iterations. It can
identify normal parameter reductions that satisfy indispensability and uniformity while
reducing the computational burden.

• The proposed algorithm further enhances the reduction results by constructing unit sim-
ilarity matrices. It explores the similarity patterns between parameters and captures the
relationships between objects and parameters more explicitly. This approach may pro-
vide more refined reduction sets and potentially better performance in certain scenarios.

3. Scalability:

• The scalability of the algorithms depends on their computation complexity and memory
requirements. As mentioned earlier, the ”Normal Parameter Reduction Algorithm” has
the highest complexity, making it less scalable for large datasets.

• The ”New Efficient Normal Parameter Reduction Algorithm” improves scalability by
reducing the number of iterations and comparisons. It can handle larger datasets more
efficiently than the previous algorithm.

• The proposed algorithm introduces unit similarity matrices, which require additional
memory to store the similarity information. As the dataset size increases, the memory
requirements of this approach may become a scalability bottleneck. However, if memory
is not a constraint, it has the potential to provide better scalability than the other
algorithms due to its refined reduction results.

6.2 Analysis of the shortcomings of the proposed method
The proposed algorithm provides a new method for parameter reduction in S-Sets. While it offers
a different perspective and approach, there are some possible shortcomings to consider:

1. Dependency on Unit Similarity Matrix: The algorithm heavily relies on constructing the unit
similarity matrix, which involves computing and storing the unit similarity parameter sets for all
pairs of objects. This matrix can be memory-intensive, especially when dealing with large universes
and parameter sets. The space complexity of the algorithm can be a concern.

2. Lack of Evaluation Metrics: The algorithm does not incorporate explicit evaluation metrics or
criteria to assess the quality or effectiveness of the parameter reduction. It relies on the conditions
of indispensability and equal cardinality of unit similarity sets but may not capture other important
aspects such as information loss, predictive accuracy, or complexity reduction.
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7 Conclusion
Before now numerous algorithms have been proposed to handle problems relating to reduction of
S-set, among which few are mentioned in this work and considered. Therefore, in this work we
introduced the notion of unit similarity matrix with some new definitions and theorems. Base on
the results we propose a novel approach for normal parameter reduction algorithm of S-set using
unit similarity matrix. The proposed parameter reduction algorithm introduces a new method
in handling S-set reduction problem and in some ways simplifies the reduction complexity. The
example shows that the new reduction method in this work is feasible and the decision order of
decision alternatives remain also invariant. Moreover, it is an alternative algorithm comparing
with the algorithms mentioned. Our immediate next task is developing more general approach for
parameter reduction of S-set and FS-set.
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