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Abstract

This work focuses on the study of a new four-parameter Exponentiated Weibull Inverse
Rayleigh Distribution (EWIR) using Exponentiated Weibull-G family of distribution as the
generator. Statistical properties of the distribution (like, Moment, Quantile, Skewness & Kur-
tosis, Moment, Mgf) were derived along with its asymptotic behaviour. The parameters of the
new distribution were estimated using Maximum Likelihood Estimation (MLE) methods. The
performance of the EWIR distribution was compared with other related distribution from the
literature using the Akaike Information Criterion (AIC), Bayesian information criterion (BIC),
and Hannan-Quinn information criterion (HQIC) methods comparison. A simulation study
was conducted to evaluate the MLE estimates, bias, and standard error for various parameter
combinations at different sample sizes. Application of the distribution was made using a real
dataset, the data set contains carbon fiber strength (20mm). The MLEs, Standard Errors
(SEs), and –log-likelihood for the new distribution and five other related distributions were
fitted to the data set. Goodness-of-fit measures based on AIC, BIC, Kolmogorov-Smirnov test
(K-S) values and their corresponding ranks (in parentheses) for the dataset was also presented.
Hence, the new EWIR model provided the best fit among the other models for the data set,
since it has the lowest values of AIC, BIC, and K-S Values.

Keywords: Exponentiated; Maximum Likelihood Estimation; Parameter Estimation; Simulation
Study; Weibull Inverse Rayleigh.
MSC2010: 26A18.

1 INTRODUCTION
In recent years, the attention of researchers has been shifted to different methods of generalization
of probability distribution theory, which have the ability to fit any kind of data with some degree
of flexibility. Statistical distributions are widely applied to model and analyze data in different
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disciplines such as engineering, biology, economics, finance and medical sciences. [1] introduced a
method of an extra parameter to cumulative distribution function

F (x) = [G(x)]a

which produced a more flexible distribution compared to the baseline distribution.

FF (x) = 1− [R(x)]a

where R(x) in above equation is the reliability function and several distributions were developed
such as; Weibull-G [2], Exponentiated Weibull-G [3], Weibull-Normal [4], Odd Lomax-Exponential
Distribution [5], exponentiated-exponential-Dagum{lomax} distribution developed by [6], arcsine
exponentiated-X [7], Type II Exponentiated Half Logistic generated family of distributions with
applications [8], Weibull Inverse Rayleigh Distribution [9], and Gamma-Power{log-logistic} by [10,
11].

This research aims to introduce an Exponentiated version of the Weibull Inverse Rayleigh
Extended-G (EX-G) distributions which is called as Exponentiated Weibull Inverse Rayleigh dis-
tribution. The remaining part of the article is organized as thus: In section 2, the Exponentiated
Weibull Inverse Rayleigh distribution is derived, the mixture representation of the EWIR distribu-
tion pdf in terms of base line CDF and PDF. Some mathematical properties including rth moment,
moment generating function, the density of ith order statistics is given and enthropy of the new
distribution are derived. In section 3, model parameters are estimated by ML method. In section
4, application is carried out on two real data sets. In section 5, conclusion is made.

2 RESULTS

2.1 2.1 Derivation of EWIR Distribution
In this section, the four-parameter EWIR distribution is obtained based on the EW-G family of
distribution and some of its mathematical properties are explained.

2.1.1 The Exponentiated Weibull Inverse Rayleigh Distribution Given Exponentiated
Weibull-G family of distribution [3]. The cumulative distribution function of the family is defined
by

F (x) =

[
1− exp

(
−b

[
G(x)

1−G(x)

]β)]a
; a, b, β > 0, (2.1)

Where a, β are shape parameters, b > 0 is a scale parameter and G(x) is the CDF of the baseline
distribution. The probability density function (pdf) of the EW-G family of distribution is given
below

f(x) =
abβg(x)(G(x))

β−1

(1−G(x))
β+1

e−b[ G(x)
1−G(x) ]

β

[
1− exp

(
−b

[
G(x)

1−G(x)

]β)]a−1

, (2.2)

where a, b, β > 0 or Weibull Inverse Rayleigh Distribution (WIR) [9]:

F (x) = 1− exp

−b

[
exp

(
λ

x

)2

− 1

]−β


The PDF and CDF of a random variable X having the Inverse Rayleigh distribution with scale
parameter λ are given by

g(x, λ)) =
2λ2

x3
e−(

λ
x )

2

;x, λ > 0 (2.3)

G(x, λ)= e−(
λ
x )

2

(2.4)
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Substituting (2.4) into (2.1) (the Exponentiated Weibull-G family), we get the CDF of EWIR
distribution as follows

F (x) =

1− exp

−α

[
e−(

λ
x )

2

1− e−(
λ
x )

2

]βa

If further simplified, it will give

F (x,Ψ) =

1− exp

−α

[
exp

(
λ

x

)2

− 1

]−β

a

(2.5)

where F (x,Ψ) ≡ (a, α, β, λ) are the set parameters vector.
Differentiate the CDF of EWIR distribution in equation (2.5), the pdf of EWIR distribution is

obtained as follows

f(x,Ψ) = 2aαβλ2x−3 exp

[
−β

(
λ

x

)2
]{

1− exp

[
−
(
λ

x

)2
]}−β−1

exp

−α

[
exp

(
λ

x

)2

− 1

]−β


×

1− exp

−α

[
exp

(
λ

x

)2

− 1

]−β

a−1

(2.6)

where x ≥ 0, a, α, β, λ > 0

Fig.1. Illustration of the PDF of EWIR Distribution
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Figure 1 shows that the PDF of EWIR distribution is left skewed with heavy tail. The skewness
and the kurtosis of the new distribution are demonstrated from the figure above. The PDF of WIR
distribution is demonstrated with different shape and scale parameters are shown in Figure 1.

Fig.2. CDF of EWIR distribution different values of a, α, β, λ

Figure 2 shows that the sum of probability values of EWIR distribution with its domain is equal
to one.

2.2 2.1.2 Mathematical Properties of EWIR
Some mathematical properties such as survival function, hazard function, cumulative hazard func-
tion and moment of the exponentiated Weibull inverse Rayleigh distribution are derived

Survival function
The survival function is given as

S(x,Ψ) = 1− F (x,Ψ), hence the Survival function of EWIR distribution is as thus:

S(x,Ψ) = 1−

1− exp

−α

[
exp

(
λ

x

)2

− 1

]−β

a

(2.7)

Hazard function
The Hazard function is given as;
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h(x,Ψ) = f(x,Ψ)
S(x,Ψ)

h(x,Ψ) =

2aαβλ2x−3 exp
[
−β
(
λ
x

)2]{
1− exp

[
−
(
λ
x

)2]}−β−1

exp

{
−α

[
exp

(
λ
x

)2 − 1
]−β

}
1−

(
1− exp

{
−α

[
exp

(
λ
x

)2 − 1
]−β

})a

×

1− exp

−α

[
exp

(
λ

x

)2

− 1

]−β

a−1

(2.8)

Cumulative hazard function
The cumulative hazard function of EWIR distribution are respectively defined as

HX(x) = − log[SX(x)]

H(x,Ψ) = − log

1−
1− exp

−α

[
exp

(
λ

x

)2

− 1

]−β

a (2.9)

Reversed hazard function of EWIR distribution:
By definition, the reverse hazard function is given by

τ(x, Ψ) =
f(x,Ψ)

F (x, Ψ)

Thus, the reverse hazard function of EWIR distribution is given by

τ(x,Ψ) =

f(x,Ψ) = 2aαβλ2x−3 exp
[
−β
(
λ
x

)2]{
1− exp

[
−
(
λ
x

)2]}−β−1

exp

{
−α

[
exp

(
λ
x

)2 − 1
]−β

}
1− exp

(
−α

[
e
−λ2

x2

1− e
−λ2

x2

]β)

×

1− exp

−α

[
exp

(
λ

x

)2

− 1

]−β

a−1

(2.10)
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Fig. 3. Histogram of EWIRD with different values of a, α, β, λ

2.3 2.1.3 Quantile Function
Given a random variable x with continues and strictly monotonic probability density function
f(x), a quantile function (x) assigns to each probability p attained by the value x for which
Pr(X < x) = p . [12].

The quantile function, sayQ(u) = F−1(u), of X is obtained by inverting (5) the CDF of EWIR
distribution.

So we have,

Q(u) =

√√√√√ λ2

ln

[
1−

(
−α

ln(1−u)

) 1
a

] (2.11)

where
(

−α
ln(1−u)

)
<1 and β, λ2 > 0.

If Q(u) is uniform (0, 1), then Q(u)is EWIR random variable. Therefore, one can simulate numbers
from the EWIR distribution by using (2.11). Given u =0.25, 0.75, and 0.5, in (2.11), the 1stquantile,
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the 3rd quantile, and the median can be obtained respectively for the EWIR distribution.
The median will be

Med = Q(0.5) =

√√√√√ λ2

ln

[
1−

(
−α

ln(1−0.5)

) 1
a

] (2.12)

2.1.4 Linear Mixture Representation: Useful expansions
The linear mixture of PDF and CDF of EWIR distribution is obtained below:
Recall the CDF of EWIR distribution in (5) given as

F (x, Ψ) =

1− exp

−α

[
exp

(
λ

x

)2

− 1

]−β

a

Using the generalized binomial expansions;

(1− h)
d

=

∞∑
i=0

(−1)
i

(
d

i

)
hi (2.13)

Now by using (2.13), we obtain the expansion for CDF raised to the power of m, where m is an
integer.

F (x,Ψ) =

∞∑
q=0

(−1)
q

(
a

q

)
e
−αq

(
e
−(λ

x )
2

−1

)β

(2.14)

Using power series expansion for the inverse Rayleigh function gives

F (x,Ψ) =

∞∑
q,w=0

(
a

q

)
(−1)

q+w
(αq)

w

w!

[
e(

λ
x )

2

− 1
]βw

=

∞∑
q,w=0

(
a

q

)
[ (−1)]q+w[(αq)]w

w!

[
1− e(

λ
x )

2]βw
eβw(

λ
x )

2

(2.15)

Using equation (2.13) again and the identity(−r
k

)
=
(
r+k−1

k

)
(−1)

k , we have

eβw(
λ
x )

2

=
(
1−

[
1− eβw(

λ
x )

2 ])βw
=

∞∑
j=0

(
βw + j − 1

j

)(
1− e(

λ
x )

2)j
Thus, F (x, Ψ) is written as

F (x, Ψ) =

∞∑
k=0

ηk,q,w e−k(λ
x )

2

where

ηk,q,w =

∞∑
i,j=0

(−1)
q+w+k

(αq)
w

w!

(
a

q

)(
βw + j − 1

j

)(
βw + j

k

)
(2.16)

Also, we find an expansion forf(x, Ψ)

f(x, Ψ) = 2aαβλ2x−3e−(
λ
x )

2 (
1− e−(

λ
x )

2)(β−1)

exp− α

[
e−(

λ
x )

2

1− e−(
λ
x )

2

]β
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×

1− exp

−α

[
e−(

λ
x )

2

1− e−(
λ
x )

2

]β(a−1)

Using equation (6) we have

f(x,Ψ) = 2aαβλ2x−3e−(
λ
x )

2
∞∑
q=0

(−1)
q

(
(a− 1)

q

)
e
−αq

(
e(

λ
x )

2

−1

)β

(2.17)

= 2aαβλ2x−3e(
λ
x )

2
∞∑
j=0

∞∑
q=0

[(−1)]j+q[αq]j

j!

(
(a− 1)

q

)(
e(

λ
x )

2

− 1
)βj

(2.18)

Using identity
e(

λ
x )

2

− 1 =
(
1− e−(

λ
x )

2)
e(

λ
x )

2

(2.19)

we have
f(x,Ψ) = 2aαβλ2x−3e−(

λ
x )

2

×
∞∑

q,j=0

(−1)
j+q

[αq]j

j!

(
(a− 1)

q

)(
1− e−(

λ
x )

2)βje−(λ
x )

2
β(j+ε)

(2.20)

Considering equation (13) and using equation (18), So, the PDF of EWIR can be rewritten as

f(x,Ψ) =
(
2aβλ2x−3

)ε
×e−(

λ
x )

2
∞∑

q,j=0

(−1)
j+q

[α(q + ε)]
j

j!

(
(a− 1)ε

q

)(
β(j + ε) + ε+ w − 1

w

)(
1− e−(

λ
x )

2)β(j+ε)−ε+w

(2.21)

2aαβλ2x−3
∞∑

q,j,w,k=0

(−1)
j+q+k

[αq]j

j!

(
(a− 1)

q

)(
βj + w − 1

w

)(
βj + w − 1

k

)
e−(k+1)(λ

x )
2

(2.22)

From the above relations, we arrive at

f(x,Ψ) = 2aαβλ2
∞∑

q,j,w,k

ηq,j,w,k
∗x−3e

−k(λ
x )

2

(2.23)

where

ηq,j,w,k
∗ = 2aαβλ2

∞∑
q,j,w,k=0

(−1)
j+q+k

[bq ]
j

j!

(
(a− 1)

q

)(
βj + w − 1

w

)(
βj + w

k − 1

)
(2.24)

Equation (23) can be used as an alternative for the PDF of EWIR distribution after setting ϵ = 1
2.1.5 Moment
The rth moment of the EWIR model is given by

u
′

r = E(X
r
) =

∫ ∞

0

xrf(x,Ψ)dx (2.25)

Using equation (25) the rth moment of EWIR distribution is defined as
Substituting (23) into (25)

u
′

r = E(X
r
= ηq,j,w,k

∗
∫ ∞

0

xr−3e−k(λ
x )

2

(2.26)
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then u
′

r, using gamma function (26) becomes

u
′

r =
ηq,j,w,k

∗

2

Γ
(
1−

(
r
2

))
(kλ2)(

1−(r2))
; r = 1, 2 (2.27)

Where

ηq,j,w,k
∗ = 2aαβλ2

∞∑
q,j,w,k=0

(−1)
j+q+k

[αq ]
j

j!

(
(a− 1)

q

)(
βj + w − 1

w

)(
βj + w

k − 1

)
(2.28)

And Γ(.) is a gamma function.
In particular, the mean and variance of EWIR distribution are obtained, respectively, as follows

µ = E(X) =
ηq,j,w,k

∗

2

Γ
(
1−

(
r
2

))
(kλ2)(

1−(r2))
=

ηq,j,w,k
∗

2

√
π

kλ2

E(X2) =
ηq,j,w,k

∗

2

V ar(X) = E
(
X2
)
− [E(X)]

2

V ar(X) =
ηq,j,w,k

∗

2
− ηq,j,w,k

∗

2

[√
π

kλ2

]2
V ar(X) =

ηq,j,w,k
∗

2

[
1− π

2kλ2

]
(2.29)

2.1.6 Moment Generating Function
The moment generating function is the expectation of a function of the random variable [13].

Mathematically, the moment generating function (MGF) of a random variable X is a function M
x(s) defined as M x (t) = E[etX].

The moment generating function of EWIR model is given by

M x (t) = E
(
etx
)
=

∫ ∞

0

etxf(x,Ψ)dx (2.30)

M x (t) =

∫ ∞

0

etx2aαβλ2x−3 exp

[
−β

(
λ

x

)2
]{

1− exp

[
−
(
λ

x

)2
]}−β−1

×

1− exp

−α

[
exp

(
λ

x

)2

− 1

]−β

a−1}

(2.31)

M x (t) = (2β λ2)

∞∑
i,j=0

(−1)
i+j

αi

i!(ai + j)

(
−aj

j

)
(ai + j)

∫ ∞

0

xr−3e
−kλ2(ai+j)

x2 dx

Then the moment generating function of EWIR distribution is given by

M x (t) =
ωi,j,w,q,k

∗

2

tr Γ
(
1−

(
r
2

))
r!
(
k
(
λ
x

)2)1−(r2) (2.32)

Where

ωi,j,w,q,k
∗ = 2aαβλ2

∞∑
q,j,w,k=0

(−1)
j+q+k

[αq ]
j

j!(ai + j)

(
−aj

j

)(
(a− 1)

q

)(
βj + w − 1

w

)(
βj + w

k − 1

)
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7. Skewness and Kurtosis

Skewness is a measure of the degree of asymmetric of a probability distribution. Kurtosis is
a statistical technique that measures the degree of peakness of a distribution. Different methods
are used to find skewness and kurtosis in certain distributions. The most common method is the
one that uses moments of the distribution. However, in EWIR distribution we have only the first
moment. Due to this reason, the appropriate method of finding kurtosis and skewness is by using
quantiles. The skewness and kurtosis base on quantile function for EWIR distribution are obtained
numerically. [14,15] proposed skewness base on quantiles called the Bowley skewness which is defined
as follows:

Sk =
Q
(
3
4

)
− 2Q

(
1
4

)
+Q

(
1
4

)
Q
(
3
4

)
−Q

(
1
4

)
Further, the kurtosis proposed by [16] base on quantile called Moors kurtosis is defined as follows:

Ku =
Q
(
7
8

)
−Q

(
5
8

)
+Q

(
3
8

)
−Q

(
1
8

)
Q
(
6
8

)
−Q

(
2
8

)
Table 1: The Galtons skewness and Moors kurtosis for some values of (a, α, λ,) of the new EWIR

distribution when β=1

Table 1 show the Galtons skewness and Moors kurtosis for some values of (a, α, λ,) of the new
EWIR distribution when β=1, however, the result shows that the value of λ does not affect the
shape of the EWIR distribution. The skewness is only affected by the parameters α and λ.
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2.1.8 Renyi Entropy of EWIR Distribution
The entropy of a random variable quantifies its associated uncertainty [17]. The Renyi entropy

has numerous applications in information-theoretic statistics such as classification, distribution
identification problems, and statistical inference.

The Renyi entropy is defined by:

Iω(X) =
1

1− ω
log

∫ ∞

−∞
fω(x)dx, ω > 0 and ω ̸= 1 (2.33)

Therefore, using (33) the Renyi entropy of a random variable X follows the EWIR is given by

Iω(X) =
1

1− ω
log

∫ ∞

−∞
fω(x)dx (2.34)

Substituting equation (23) into

Iω(X) =
1

1− ω
log

[
2

(
λ

x

)ε ∞∑
k=1

ηq,j,w,k
∗e−k(λ

x )
2

]
Where ηq,j,w,k

∗ is defined in (24)
2.1.9 Order Statistics of EWIR Distribution
Order statistics make their appearance in many areas of statistical theory and practice. Let X1,

X2,. . . , . . . , Xn be a random sample from EWIR distribution and let X(1), X(2),. . . , X(n) be the
corresponding order statistics. The pdf of the kth order statistics is given by:

G(k:n)(x) =
1

B(k, n− k + 1)
gx(x) (Gx(x))

k−1
1−Gx(x)

n−k
1 < k < n (2.35)

Using the binomial series expansion of [1−Gx(x)
n−k], we obtain

[1−Gx(x)
n−k

] =

n−1∑
j=0

(−1)
j

(
n− j

j

)
(Gx(x))

j (2.36)

Therefore equation (35) can be rewritten as follows

G(k:n)(x) =
1

B(k, n− k + 1)

n−k∑
j=0

(−1)
j

(
n− k

j

)
gx(x) (Gx(x))

k+j−1 (2.37)

Substituting equation (3) and (17) into equation (37), we get the pdf of the kth order statistics
given as

G(k:n)(x) =
2abβλ2x−3

B(k, n− k + 1)

n−k∑
j=0

(−1)j
(
n− k

j

)1− exp

−a

 e
−λ2

x2

1− e
−λ2

x2

a


k+j−1

(2.38)

Since,

1 − exp


−a

 e
−βλ2

x2

1− e
−βλ2

x2

b



k+j−1

=

n−k∑
j=0

(−1)
q

(
k + j − 1

q

)
×exp


−aq

 e
−βλ2

x2

1− e
−βλ2

x2

b



Then,

G(j,k,:n)(x) =
2abβλ2x−3

B(k, n− k + 1)

n−k∑
j=0

∞∑
q=0

(−1)j+q

(
n− k

j

)(
k + j − 1

q

)
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×exp

−a(q + 1)

 e
−βλ2

x2

1− e
−βλ2

x2

b

[
1− e

−βλ2

x2

]−b−1

e
−bβλ2

x2 (2.39)

Since,

Exp

−a(q + 1)

 e
−βλ2

x2

1− e
−βλ2

x2

b
 =

∞∑
s=0

(−1)s(P )s(q + 1)s

s!

 e
−βλ2

x2

1− e
−βλ2

x2

bs

(2.40)

Then

G(k:n)(x) =
2bβλ2x−3

B(k, n− k + 1)

n−k∑
j=0

∞∑
q=0

(−1)
j+q+s

(
n− k

j

)(
k + j − 1

q

)

×
∞∑
s=0

(P )s+1(q + 1)s

s!

[
1− e

−βλ2

x2

]b(s−1)−1

e
−bβλ2(s+1)

x2 (2.41)

Again, using the binomial theorem[
1− e

−βλ2

x2

]b(s−1)−1

=

∞∑
q=0

(−1)
w

(
b(s− 1)− 1

w

)
e

−λ2w

x2 (2.42)

Then, the probability density function of the kth order statistics X(1:n) from EWIR distribution
takes the following form

G(k:n)(x) =

n−k∑
j=0

∞∑
q,w,s=0

Ej,q,w,sx
−3e

−λ2(b(s+1)+w)

x2 (2.43)

where,

Ej,q,w,s =
1

B(k, n− k + 1)

n−k∑
j=0

∞∑
q,w,s=0

(−1)

j+q+s+w(
n− k

j

)(
k + j − 1

q

)(
b(s− 1)− 1

w

)

×2bβλ2(P )
s+1

(q + 1)s

s!

In particular, the pdf of the smallest order statistics X(1:n) is obtained from (43) as:

G(1:n)(x) =

n−k∑
j=0

∞∑
q,w,s=0

Ej,q,w,sx
−3e

−λ2(b(s+1)+w)

x2 (2.44)

where

E1,q,w,s =
1

B(1, n)

n−1∑
j=0

∞∑
q,w,s=0

(−1)

j+q+s+w(
n− 1

j

)(
j

q

)(
b(s− 1)− 1

w

)

×2αβλ2(P )
s+1

(q + 1)s

s!

Also, the pdf of the largest order statistics X(n:n) is obtained as

G(k:n)(x) =

∞∑
q,w,s=0

Ej,q,w,sx
−3e

−λ2(b(s+1)+w)

x2 (2.45)
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where

En,q,w,s =
1

B(n, 1)

∞∑
q,w,s=0

(−1)

j+q+s+w(
n+ j − 1

j

)(
j

q

)(
b(s− 1)− 1

w

)
2λ2(P )

s+1
(q + 1)s

s!

2.1.10 Asymptotic Behavior of EWIR Distribution

2.3.1 The asymptotic behavior of the proposed distribution model EWIRD, when
x → 0 and when x → ∞

The value x of the function EWIR distribution when fX(x) approaches∞.
limx→∞ fX(x) = ∞
The functions fX(x) and hX(x) of EWIR distribution will be undefined if{

1− exp

[
−
(
λ

x

)2
]}−β−1

= 0 (2.46)

and x = ∞. Thus, the vertical asymptote of fX(x) is given by

lim
x→∞

fX(x) = ∞ (2.47)

and the vertical asymptote of hX(x) is given by

lim
x→∞

hX(x) = ∞ (2.48)

So, equations (47) and (48) are the vertical asymptotes of the PDF and hazard function of EWIR
distribution respectively for x ≥ 0, a, α, β, λ,> 0.

2.2 Estimation of Parameters of EWIR Distribution
There exist many parameter estimation methods such as maximum likelihood estimation (MLE)

Bayes Estimators, methods of moment estimators, etc, however, in this study the methods of MLE
are considered as it is the classical frequentist approach to parameter estimation. Most of the other
parameter estimation methods are derived from these classical methods. [9], but [18] used quantile
estimation method

2.2.1 Maximum Likelihood Estimation Method
The maximum likelihood estimate (MLE) is the value θ̂ which maximizes the function L(θ)

given by

L(θ) = f(x, Ψ)

Where f(x, Ψ) is the pdf of EWIR distribution
Let X1, X2, . . . , Xn be a random sample of size n from EWIR distribution with observed values

x1, x2, . . . , xn. the likelihood function of EWIR can be given by

L(θ) =

n∏
i=1

f(x, Ψ)

f(x, Ψ) = 2aαβλ2x−3 exp

[
−β

(
λ

x

)2
]{

1− exp

[
−
(
λ

x

)2
]}−β−1

exp

−α

[
exp

(
λ

x

)2

− 1

]−β


×

1− exp

−α

[
exp

(
λ

x

)2

− 1

]−β

a−1

;
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x ≥ 0, a, α, β, λ,> 0

L(θ) =
(
2aαβλ2

)n
x−3n

[
e
−
∑n

i=1

(
β(λ

x )
2
) ] n∏

i=1

{
1− exp

[
−
(
λ
x

)2]}−β−1

exp

{
−α

[
exp

(
λ
x

)2 − 1
]−β

}
×
(
1− exp

{
−α

[
exp

(
λ
x

)2 − 1
]−β

})a−1

(2.49)
By taking the logarithm of (49) we find the log-likelihood function

L = lnf(x,Ψ) = n log(2)+n log(aαβ) +nlog
(
λ2
)
− (2n)sum (log(x))− β

n∑
1

((
λ

x

)2
)
+ (−β− 1)

×
n∑
1

(
log

(
1− exp

(
−
(
λ

x

)2
)))

− β

n∑
1

−α×

(
exp

(
λ

x

)2

− 1

)−β


+(a− 1)

n∑
1

log

1− exp

−α

(
exp

(
λ

x

)2

− 1

)−β
 (2.50)

Taking a partial differentiation of equation (50) for a, α and β, λ respectively and equate them to
zero

∂↕
∂a

=
n

a
+

n∑
1

log

1− exp

−α

(
exp

(
λ

x

)2

− 1

)−β
 (2.51)

∂↕
∂a

=
n

a
−β

n∑
1

(exp(λ

x

)2

− 1

)−β
− (a−1)

n∑
1

log

1− exp

(exp(λ

x

)2

− 1

)−β
−β

(2.52)

∂↕
∂β

=
n

β
−

n∑
1

((
λ

x

)2
)

−
n∑
1

(
log

(
1− exp

(
−
(
λ

x

)2
)))

+

n∑
1

−α

(
exp

(
λ

x

)2

− 1

)−β


×

(
exp

(
λ

x

)2

− 1

)
+ (a−1)

n∑
1

log

1− exp

−α

(
exp

(
λ

x

)2

− 1

)−β
(exp(λ

x

)2

− 1

)
(2.53)

∂↕
∂λ2

=
2n

λ
+Aa (2.54)

where

Aa = −2

n∑
1

((
λ

x

)2
)

− 2(−β − 1)

n∑
1

(
log

(
1− exp

(
−
(
λ

x

)2
)))

+2β

n∑
1

−α

(
exp

(
λ

x

)2

− 1

)−β

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−2(a− 1)

n∑
1

log

1− exp

−α

(
exp

(
λ

x

)2

− 1

)−β


The solution of the non-linear system of equations obtained by differentiating (51), (52), (53) and
(54) for a, α, β and λ gives the maximum likelihood estimates of the model parameters. The
solution can also be obtained directly by using R software when data sets are available.

2.2.2 Simulation Study
A simulation study was conducted to evaluate the MLE estimates, bias, and standard error for

various parameter combinations and different sample sizes. We consider the values a = (0.5, 1.5,
2.0, 2.5) for the parameter a = ( 0.2. 1, 1.5, 2. 5), for β= (0. and 0.5, for the parameter β when
λ= (0.5, 0.1, 1, 1.5). The process is repeated 1000 times. Four different sample sizes n = 10, 100,
500, and 1000 are considered. The estimates, bias, and the standard error are presented in Table 2
below.

Table 2. The estimates, bias, and the standard error of EWIR from the Simulation study

2.3 Application
In this section, real data sets are utilized to show that the EWIR model outperforms some other

models. The data set contains sample of size 69 carbon fiber strength (20mm)
2.3.1 Data Description
The strength data was originally reported by [19] where the strength is measured in GPA for

single carbon fibers and impregnated 1000-carbon fiber tows at gauge lengths of 20 mm. These data
set were fitted to the Half- Logistics Inverse Rayleigh (HLIR) distribution by [20] and the Type II
Topp-Leone Inverse Rayleigh (T2TLIR) distribution was fitted to the data. Other distributions that
have been fitted to these same data are the Transmuted Inverse Rayleigh distribution (TIR), the
Odd Frechet Inverse Rayleigh (OFIR) distribution, one parameter Inverse Rayleigh (IR) distribution
and Weibull Inverse Rayleigh (WIR) distribution was discussed by [9].

Data: carbon fibers Strength (20mm) Data set
1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 2.006, 2.021,

2.027, 2.055, 2.063, 2.098, 2.14, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 2.274, 2.301, 2.301, 2.359,
2.382, 2.382, 2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 2.535, 2.554, 2.566, 2.57, 2.586, 2.629,
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2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 2.770, 2.773, 2.800, 2.809, 2.818, 2.821, 2.848, 2.88, 2.954,
3.012, 3.067, 3.084, 3.090, 3.096, 3.128, 3.233, 3.433, 3.585, 3.585.

The MLE of the parameters (with their standard errors) is presented in Table 3 and their
corresponding log-likelihood values. The Akaike Information Criterion (AIC), Bayesian informa-
tion criterion (BIC), and Hannan-Quinn information criterion (HQIC) are used to compare the
performances of all the models on the data sets employed. The results are shown in Table 3.

Table 3. The MLEs, (SEs in parentheses) and -log likelihood of the new EWIR distribution and
those of the other five existing related distributions on the Strength (20mm) data set

Table 3 shows the MLE parameter estimates with their standard errors for the competing mod-
els EWIR, WIR, HLIR, TIR, OFIR, and IR distributions. Their –log likelihood values are also
displayed.

Table 4. Goodness-of-fit measures based on AIC, BIC, HQIC, K-S values for the Strength
(20mm) data set

Table 4 shows the goodness of fit criteria for the competing models. The Akaike Information
Criterion (AIC), Bayesian information criterion (BIC), and Hannan-Quinn information criterion
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(HQIC) are used to compare the performances of all the models on the data sets employed. Base
on The MLEs, SEs (parentheses), and -log likelihood of the new EWIR distribution and those of the
other five existing related distributions on the Strength (20mm) data set. These five distributions
are fitted to the data using maximum likelihood estimation. Based on the criteria displayed, the
new EWIR model provides the best fit among the other models for data as shown in Table 4, since
it has the lowest values of AIC, BIC, and K-S Values.

3 DISCUSSION
In this study, a new continuous distribution is developed named Exponentiated Weibull Inverse
Rayleigh (EWIR) distribution. Different properties of EWIR were derived. The maximum like-
lihood estimation method was used to estimate the parameters of the distribution. A simulation
study was carried out to show the consistency of the MLEs. Table 2 shows that when n ≥ 100 the
biases are a bit high but as the value of n increases to infinity the biases converge to zero. Table 3
shows the MLE parameter estimates with their standard errors for the competing models EWIR,
WIR, HLIR, TIR, OFIR, and IR distributions. Their -log likelihood values are also displayed. Table
4 shows the goodness of fit criteria for the competing models. The Akaike Information Criterion
(AIC), Bayesian information criterion (BIC), and Hannan-Quinn information criterion (HQIC) are
used to compare the performances of all the models on the data sets employed. Base on The MLEs,
SEs (parentheses), and −log likelihood of the new EWIR distribution and those of the other five
existing related distributions on the Strength (20mm) data set. These five distributions are fitted
to the data using maximum likelihood estimation. Based on the criteria displayed, the new EWIR
model provides the best fit among the other models for data as shown in Table 4, since it has the
lowest values of AIC, BIC, and K-S Values.

4 CONCLUSION
In this study, a four-parameter Exponentiated Weibull Inverse Rayleigh is introduced. Some cer-
tain properties of the proposed distribution are discussed. This model includes some new special
distributions, nevertheless, the relevance of the new model is clarified through the application of
real data, where the EWIR yields the best fit among the other related models. We conclude that
EWIR distribution can be regarded as a more flexible model for modeling real-life data. Believing
that the new EWIR distribution may serve as the most preferred model for life distribution and has
application in lots of scientific fields. The MLE method was used for the parameter estimation base
on the simulation and application of real data, but it will be imperative to employ other estimation
methods to compare their performance.
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