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Abstract

Malaria remains a significant global health concern, particularly in regions with high trans-
mission rates. Accurate and timely prediction of malaria incidence can assist health authorities
and policymakers in implementing effective prevention and control measures. However, because
data are in limited supply, most of the relevant research studies concentrated on monthly or
quarterly data. This study proposes a hybrid forecasting model combining Seasonal Autore-
gressive Integrated Moving Average (SARIMA) and Long Short-Term Memory (LSTM) neural
networks to predict malaria incidence. The hybrid approach enhances accuracy and robustness
by capturing historical data’s temporal dependencies and seasonal patterns. The methodology
involves collecting historical malaria incidence data, preprocessing it, fitting SARIMA models,
extracting residuals, and training LSTM neural networks on residuals. These models capture
nonlinear and complex data components, making accurate predictions and capturing long-term
dependencies. After training, the hybrid SARIMA-LSTM model is created by combining the
predictions from both models. This integration ensures that both the temporal and nonlinear
patterns are considered, leading to improved forecast accuracy. Finally, the model is evaluated
using appropriate performance metrics, such as mean absolute percentage error (MAPE) or
root mean square error (RMSE). The hybrid SARIMA-LSTM model outperforms SARIMA
and LSTM in predicting malaria incidence and its accuracy was evaluated through compar-
isons with other forecasting methods. It captures temporal and nonlinear patterns, enabling
timely resource allocation, intervention planning, and proactive measures for improved control
and prevention efforts.

Keywords: Malaria, Long Short-Term Memory, Seasonal Autoregressive Integrated Moving Av-
erage, Seasonal Autoregressive Integrated Moving Average-Long Short-Term Memory, Predictive
Accuracy.
MSC2010: 26A18.

1 INTRODUCTION
Malaria is a life-threatening infectious disease caused by parasites transmitted to humans through
the bites of the infected mosquito vector. The world malaria report released in December 2021
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reflects the global malaria community’s unique challenges. The report showed the devastating toll
of malaria, with an estimated 627,000 losing their lives to the disease in 2020 [1]. Sub-Saharan
African countries are believed to be at the epicenter of this malady with Nigeria, a West African
country, leading the trajectory. According to World Health Organization ’s report on Malaria,
Nigeria alone accounted for 31% and 31.3% of global malaria deaths in 2021 and 2022 respectively.
The most vulnerable to this fatality are children under the age of five. Pregnant women are also
not spared as it causes a high rate of miscarriages. It is a major concern for all and why an age-long
disease that is both preventable and treatable could pose a major public health challenge to Africa
’s most populous nation. This work aims to use two-time series statistical approaches to look into
and predict the prevalence of malaria in Nigeria, as well as to create a hybrid model and evaluate
it against more conventional models. In the literature, many authors used single traditional time
series to predict incidences of malaria but it was discovered that a single model cannot effectively
capture all the properties of the data structure unless the use of stacking architecture which in-
volves the combination of distinct algorithms and models is used, Wang et al. [2]. LSTM has the
advantage of being able to retain information for a very long period, unlike recurrent neural net-
works (RNN), and has a wide range of parameters such as learning rates and ‘input and output
biases ’, whereas classical time series have no further opportunity for fine changes. ARIMA, on the
other hand, predicts future values based on past values by smoothing time series data with lagged
moving averages. It performs well on short-term forecasts but poorly on long-term projections.
When forecasting malaria incidence, combining LSTM and ARIMA models would surely produce
a superior outcome. Several statistical methods have been used to predict malaria incidence in
previous studies. Wangdi et al. [3] developed a temporal model for forecasting and predicting of
malaria infections using time-series and Arimax analyses in the endemic districts of Bhutan. The
study revealed that the ARIMA model performed better than the ARIMAX model and can there-
fore be employed for planning and managing malaria prevention and control programs in Bhutan.
Okoli, [4] carried out an investigation on the incidence and mortality rate of reported cases of
malaria in Anambra state, Nigeria. The study used two-way ANOVA, multiple comparison tests,
the test of equality of proportions, runs test, and trend analysis to carry out the study and found
out that: the mean incidence of malaria in Anambra state differs significantly across age groups, the
mean mortality is equal across the years, the mean mortality differs across age groups, incidence,
and mortality was found to be equal between males and females, among others. Egbuche, et al. [5]
determined the composition of species of anopheles and some climatic factors that influence their
survival and population abundance in Anambra East LGA, Nigeria. Four Anopheles species: An.
Gambiae s, An. funestus group, An. moucheti, and An. nili were identified in the study of 8181
female anopheles mosquitos comprising 4127 larvae and 4054 adults. Kassa et al. [6] assessed the
control measures and trends of malaria in Burie-Zuria district, Ethiopia by undertaking descriptive
cross-sectional control measures and found that the attack rate was higher among children that
are less than 5 years old when compared to other age groups with no sex difference. Olawale and
Donaldson [7] worked ‘on time domain analysis of malaria morbidity in Nigeria ’. ARIMA model
was built for analyzing the secondary data collected on the incidence of malaria. It was observed
that there is going to be a steady increase in malaria prevalence. Santosh et al. [8] proposed a novel
scalable framework to predict the instances of malaria in selected geographical locations. The study
employed satellite data and clinical data along with a long short-term memory (LSTM) classifier to
predict malaria abundances in the state of Telangana, India. It was revealed that the Apache Spark-
based LSTM presents an effective strategy to identify locations of endemic malaria. Permanasari
et al. [9] analyzed and presented the use of the seasonal autoregressive integrated moving average
(SARIMA) method for developing a forecasting model that can support and provide a prediction of
the number of malaria incidences in humans. Tuan Tran et al. [10] predicted the P. falciparum gene
transcription during its blood stage life cycle, implementing a well-tuned recurrent neural network
with gated recurrent neural units. The results of the study showed a high level of accuracy in being
able to predict and forecast the expression levels of the different genes. Olatayo and Adedotun [11]
showed the efficiency of the different methods used to test and estimate fractional parameters in the
fractionally integrated autoregressive moving average (AFRIMA) model. Faniran and Ayoola [12]
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designed a study to model the transmission dynamics of malaria, taking into consideration some
infectious humans who do not comply with drug. Iyare and Akhaze [13] proposed an ordinary dif-
ferential equation co-infection model of tuberculosis-lymphatic filariasis with 17 mutually disjoint
compartments.

2 Materials and Methods

2.1 The SARIMA model
According to Makridakis and Hibon [14], the ARMA model has evolved into the ARIMA model.
The moving average model MA(q) and the autoregressive model AR(p) are combined to form the
ARMA model. The AR and MA models are predicted in a particular order using the ARMA model.
Only data with normality are suitable for the application. ARMA is used for modeling when a time-
series graph lacks a consistent pattern and the Auto-Correlation Function (ACF) steadily declines.
Time series data containing anomalies are transformed or differentially normalized before being
modeled by ARMA. It is known as the ARIMA model. The average regression model, or AR(p)
model, is being used here with the assumption that the historical data from Yt can adequately
describe the current time series data, or Y(t − p) to Y(t − 1). It is predicated on the notion that
the data from the most recent time series are reliant on the data from the most recent series.
The current data is independent of the past and turns into white noise time series data if there
is even a slight dependency between them. The more dependent on the past the current data is,
up to and including a random walk, the stronger the dependency on the past. By examining the
autocorrelation with the past, the AR(p) model examines the properties of the target time series
data. It implies that the data from time t influence the data now. ACF rapidly declines in the
graphs of the Autocorrelation Function (ACF) and Partial Auto-Correlation Function (PACF),
while PACF has a cut point at a specific point. The term ACF refers to the correlation between
data that are spaced by k periods. In other words, the ACF shows the correlation’s order based on
the time difference. The Partial Auto-Correlation Function (PACF), in contrast to the ACF, is a
pure correlation coefficient between two variables that is determined after removing the influence of
all potential differences between the observed values. The PACF transforms into an AR(1) model
if k = 2 is the cut-off point.
A general regression model of AR(p) is as follows:

Yt = α1Yt−1 + α2Yt−2 + ...+ αpYt−p + εt (2.1)

The equation (2) below is an AR(p) model expressed in ARMA (Autoregressive Moving Average)
form. In this form, µ represents the mean of the time series, and (Yt−1−µ), (Yt−2−µ), ..., (Yt−p−µ)
are the deviations from the mean at each lagged time point. The coefficients α1, α2, ..., αp represent
the autoregressive coefficients, p is the autoregressive order and εt is the white noise with mean 0
and variance σ2.

By centering the lagged values around the mean µ, the ARMA form can simplify the interpre-
tation of the model. It allows us to explicitly see the effect of each lagged value on the current
value, relative to the mean of the time series.

Yt = µ+ α1(Yt−1 − µ) + α2(Yt−2 − µ) + ...+ αp(Yt−p − µ) + εt (2.2)

The current time series data is made up of a weighted average of historical residuals, and the MA
model is a moving average procedure. The current data is defined as the mean value of previous
white noise because the residual term is white noise. The MA model based on the sum of them has
an average regression characteristic because the white noise has a high normality and high average
regression characteristic. ACF has a breaking point, while PACF exhibits a sharp decline.
The moving average model MA(q) is a model of weighted linear combination with white noise t, in
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contrast to the autoregressive model AR(p). The current time series data Yt can be expressed by
continuous error terms εt+1, εt+2, εt+3, ..., εt+q. The general form of MA(q) model is as follows:

Yt = εt − θ1εt−1 − θ2εt−2 − ...− θqεt−q (2.3)

Where, ϵt represents the white noise with mean 0 and variance σ2, θq the moving average coefficient,
q the order of moving average. Hence, MA(1) is expressed as Yt = εt − θ1εt+1.
It is challenging to estimate general time series data using only AR(p) or MA(q). Then, Autore-
gressive Moving Average (ARMA), which combines the best features of both models, is applied.
The ARMA model combines the AR and MA models and assumes that the function of historical
time series data and historical residuals determines the current time series data. The ARMA model
has the average regression characteristic, just like the AR and MA models do.
The average regression characteristic of the AR, MA, and ARMA models makes them appropriate
for time series analysis, which always has normality for all parameter values. In comparison to
existing AR or MA models, the ARMA model approximates the value relatively more accurately
and quickly with fewer parameters.
The values of ARMA(1,0) and ARMA(0,1) are equal to AR(1) and MA(1), respectively, because
ARMA is a mixed model of the AR and MA models. The ARMA model’s general formula is as
follows:

Yt = α1Yt−1 + α2Yt−2 + ...+ αpYt−p + εt − θ1εt−1 − θ2εt−2 − ...− θqεt−q (2.4)

The majority of time-series data typically lacks normality and exhibits rising trends or rising vari-
ance over time. Because of the unstable time series, the predicted value is no longer valid because
the mean and variance of the time series change over the course of time. AR, MA, and ARMA
models cannot be used to analyze such time series data. As a result, the data needs to be normal-
ized before being converted to a time series.
In order to convert in accordance with the properties of the data, log transformation, difference,
and seasonal differences are carried out. The ARIMA model is used to analyze the time series after
it has been normalized.
To analyze time series models with seasonal patterns, one can use the regression model using indi-
cator functions and trigonometric functions or Winters’ seasonal exponential smoothing; however,
these techniques can only be applied when the seasonal time series data are independent of one
another. However, since time series data are typically correlated with one another, the ARIMA
model is the most appropriate.
Even if the data itself lacks normality or average regression characteristics, some data may have a
time series average regression characteristic after difference. The differential time series are used
in the ARIMA model, which is an ARMA model. The ARMA model and the ARIMA model with
difference value 0 are equivalent.
The process of differencing is as follows:

∇Yt = (1−B)Yt = Yt − Yt−1 (2.5)

∇2Yt = (1−B)2Yt = (1− 2B +B2)Yt − 2Yt−1 + Yt−2 (2.6)

Where, B is the backshift operator which means BjYt = Yt−j

The process of deducting the prior data from the initial data until the time series data are normal is
what makes the difference. Three orders of ARIMA exist: p, d, and q. These orders are expressed
as ARIMA(p,d,q), where p is the number of autoregressive terms, d is the number of nonseasonal
differences required for stationarity, and q is the number of lagged forecast errors in the prediction
equation.
When the time series data show seasonal trends, seasonal ARIMA is generally used. The seasonal,
autoregressive, intergraded, and moving average components are combined in the SARIMA. The
model assumes that malarial incidence data include trends, seasonal components, and irregular
terms. The following steps are taken in this study to develop the SARIMA models. To begin
with, the Osborn, Chui, Smith, and Birchenhall (OCSB) test is employed to establish the seasonal
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differencing order. The KPSS unit-root test is then used to determine the order of differencing. The
model space is then traversed using stepwise processes to identify the order of autoregressive and
moving average terms, p, q, P, and Q. Finally, the optimal model is chosen using goodness-of-fit
tests based on AIC and estimated residuals (Taiwo et al. [15]; Onasanya et al. [16]). The general
formula of SARIMA(p,d,q) (P,D,Q)s is as follows:

SARIMA = (p, d, q)× (P,D,Q)s (2.7)

Where the additional features are (P,D,Q)s and they are described as follows:
P= Order of seasonality, mathematically, the SARIMA model is written as:

Φ(Bs)ϕ(B)△D
s △dXt = Θ(Bs)θ(B)εt (2.8)

Where εt = whitenoise, B is called the back shift operator, Φ(Bs) is the seasonal Autoregressive
(AR) coefficient, Φ(B)= the seasonal Autoregressive (AR) coefficient, △D= the number of nonsea-
sonal difference d, △D

s = the number of seasonal difference D, Xt=the observation of seasonal time
series without normality, Θ(Bs)= seasonal moving average coefficient (MA), θ(B)= nonseasonal
moving average coefficient (MA) and εt= the error term or white noise. If the order of seasonal
time series model is zero, it is the same with ARIMA.

2.2 LSTM (Long short-term memory) model
This is another statistical method introduced to predict the incidence of malaria as this method is
more robust than ARIMA model in so many ways. The approach in determining the future trends
of this malaria incidence is more realistic than ARIMA model and its prediction gives accurate re-
sult. The word LSTM means long short-term memory, which is a network from a recurrent neural
network. One of the main reasons of introducing LSTM is because the malaria incidence is a time
series, which occurs in periodical manner, and the nature of this series is a number. Now we want
to predict the malaria incidence where the gradient obtained is controlled or overcome and most
important to capture the linear long-term dependencies in the sequence of malaria incidence where
each neuron accommodates a memory room, which has the capacity of storing previous information
used by the recurrent neural network or forgetting if there is necessity. In inclusion to the memory
cell, the long short- term memory cell contains what we call an input gate, output gate and forget
gate where each gate in the memory cell sustains the current input xt, the hidden state h(t− 1) at
the earlier instant and the state information symbolized as c(t− 1) of the internal cell memory to
execute different action and also to dictate whether to activate using logic task. The output at time
t, the state ht of the unit and the hidden state at the time t1 are all set on non-linear activation of
tanh and the available information of output gate. The following figures represent the structures
of recurrent neural network and that of a long short-term Memory
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Figure 1:Structure of a recurrent neural network

Figure 2:Structure of a long short-term Memory

Step1: Some informations that are not needed in the LSTM are identified first and once they are
identified, they are removed or thrown away from the LSTM cell through the sigmoid gate layer
also known as the forget layer, it is defined mathematically as:

ft = σ[wf (ht−1, xt) + bf ] (2.9)

ft = σ(wfxxt + wfhht−1 + bf )
Where wf= the weight assigned, xt= the input, ht−1= the output from old time stamp and bf=
the bias.

it = σ[wi(ht−1,xt) + bi] (2.10)

it = σ(wixxt + wihht−1 + bi)

ĉi = tanh[wc(ht−1, xt) + bi] (2.11)

The function of the new cell state is described below:

ct = ft ∗ ct−1 + it ∗ ĉi (2.12)

gt = ϕ(wgxxt + wghht−1 + bg)
The output gate layer will determine which fragment of the cell state will be the output. The
output function is expressed mathematically as:

ot = σ[wo(ht−1, xt) + bi] (2.13)

ot = σ(woxxt + wohht−1 + bo)
st = gt.it + st−1.ft
ht = ϕ(st).ot

ht = ot ∗ tanh(ct) (2.14)

Where wfx, wfh, wix, wih, wgh, wox and woh are weight parameters for the corresponding output
of the network activation function; σ and ϕ are sigmoid functions and tanh(.), respectively. The
sigmoid function with an output range of [0,1] works as a soft switch for the forget gate (ft), input
gate (it ), input node (gt ) and output gate (ot)
This means that it is a decision-making point to determining whether the signal/sequencing data
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should pass the gate or not.
Thus, all gates (forget gate, input gate, input node and output gates), are directly depended on the
current xt and previous output Ht−1

2.3 SARIMA-LSTM
There are linear and nonlinear relationships between time series data. Although statistical methods
are effective at managing linear relationships in time series, they are incapable of handling non-
linear relationships (Martnez et al. [17]; Adesina et al. [18]). Neural network approaches, on the
other hand, can model both linear and nonlinear relationships, but they require careful parameter
selection and a lengthy training period. However, a hybrid model is implemented to compensate for
these deficiencies and enhance performance. Seasonal time series predictions made by the SARIMA
model have shown to be accurate. The benefits of the SARIMA and LSTM models are combined
in the suggested SARIMA-LSTM model. SARIMA is employed to record the seasonal and trend
components of malaria incidence. The input layer of the LSTM model receives residuals produced
by the SARIMA model. The SARIMA-LSTM method takes advantage of the SARIMA model’s
ability to forecast outcomes and the nonlinear model’s capacity to further minimize residuals. For
the SARIMA model and LSTM model in this work, each batch of collected time series data is
divided into two data sets: the training data set (in-sample data) and the testing data set (out-
of-sample data). The training data utilized in the SARIMA-LSTM model study are evenly split
into two parts: the first 50% of the training data are used to determine the size of the SARIMA
model’s rolling windows, which is then used to make one step forward rolling predictions and ob-
tain matching error. To construct predictions and obtain related residual errors, the estimates of
the SARIMA model are combined with the remaining testing data. These mistakes represent the
accuracy of predicting models. The input data sets of the LSTM model are residual errors. The
first 54.5% of the residual error data sets are utilized as the training data for the LSTM model,
and these first 54.5% of the residual error data sets correspond to the middle 35.3% of the original
data. Residual error data sets are likewise separated into training data and testing data. The
LSTM model tests its performance using the remaining 45.5% of the residual error data sets, which
correspond to the final 29.4% of the original data. The search range of the initial hidden layers and
initial number of hidden neurons are chosen at 1 to 3 and 1 to 30, respectively, because a better
prediction result was discovered between the hidden layers of 1 to 3 and hidden neurons of 1 to 30.
First, the quantity of hidden layers is fixed, and the number of hidden neurons is searched within
a range of 1 to 30. The value of 30 training RMSE (root mean square error) is calculated, and the
number of hidden neurons increases by one for each cycle. The number of hidden layers then rises
by one, and the range of hidden neuron searches is set at 1 to 30. Up till 3 * 30 training RMSE
values are calculated, the values of training RMSE are calculated as the number of hidden layers
and neurons changes.

2.4 Evaluation Metrics
Despite the fact that there have been numerous suggested metrics for evaluating time series models,
we choose to concentrate on the Mean Average Percent Error, Root Mean Squared Error, and Mean
Average Error. ŷt represents the model’s forecast for each of the following measures of error, while
yt represents the actual value at time t.

MAPE =
1

n

n∑
t=1

|ŷt − yt|
yt

(2.15)

RMSE =

√√√√ 1

n

n∑
t=1

(ŷt − yt)2 (2.16)

MAE =
1

n

n∑
t=1

|ŷt − yt| (2.17)
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The percentage difference between the prediction and the actual can be calculated using the MAPE
measurement, which is frequently used in literature. However, it seems that MAPE performs poorly
on data sets with a lot of low or zero-valued scores of 0, as MAPE approaches infinity as the actual
value approaches 0. As a result, in addition to reporting MAPE scores, we also took into account
the MAE as a more broadly applicable estimator of the typical difference between the prediction and
the actual value. The worst possible MAE on a data set with values ranging from 0 to 100 is 100,
while a naive model with a constant value of 50 would achieve an MAE of 50 or less. Each model
was evaluated, and the corresponding RMSE distribution was utilized to produce 95% confidence
intervals (CI) and p-values comparing significant differences to determine the statistical significance
of the reduction in RMSE in models compared to LSTM.

3 Results

3.1 Data Source
The data used for the research study is a monthly case of malaria from January 2000 to December
2021, and these data was obtained or coined from World Bank data bank (https://www.datacatalog.worldbank.org).
There are some specific unreported cases of malaria across Nigeria. These data obtained are avail-
able from cases reported nationwide across all the states in Nigeria over the sample periods of 21
years. The training data points used for building the ARIMA model started from January 2000 to
December 2021 and a short-term forecast was implemented to determining whether the accuracy
of the ARIMA Model built.
In this section, the performance of the proposed hybrid model is evaluated using the latest avail-
able public data on malaria. The R package version 3.6.3. was used for this study. Plotting time
series data is the first and most crucial step in creating a time series model. The main goal is to
examine any elements that might show up in the time series. The time plot of malaria incidence is
shown in Fig 4. Malaria incidence exhibits seasonal components and random components because
the seasonal fluctuations and random fluctuations are partially or roughly constant in size. Fig 3
shows a downward trend from the first quarter of 2010 to December 2018, and this can be seen
from Fig 4 which displays the decomposition graph of malaria incidence. The peak and trough
of malaria occurred mostly in January having a seasonal index of value (-2464.5) and while high
malaria incidence occurred in August. The series is hereby described using an additive seasonal
time series model. It is this month that the mosquitoes breed more, and the spread of malaria get
increased and then decrease after during the dry season.
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Figure 3: Time plot of Malaria

Figure 4:Decomposition of Malaria Data

Since malaria incidence contains seasonal factors, hence SARIMA model was built based on the
following series of orders with a period of seasonality. Table 1 shows the different types of SARIMA
models built. The best model was the SARIMA model (1, 2, 2) because it has the smallest Alkaike
information criteria of value 3318.27
The SARIMA model-(1, 2, 2) attained this smallest AIC after taken the differencing order to be

(1,0,1) (1,1,1) (0,1,1) (1,1,0) (1,1,2) (2,1,1) (2,2,2) (1,2,2) (2,2,1)
AIC 3354.06 3334.65 3349.69 3341.86 3329.38 3325.91 3364.22 3318.27 3342.68
Nobs 267 266 266 266 266 266 265 265 265
Loglik -2754. 48 -2747.63 -2783.57 -2699.10 -2763.44 -2784.90 -2774.62 -2776.51 -2792.77

Table 1: Varieties of SARIMA model

two so as to attain stationary, the maximum number of p order for autoregressive is 1 and maximum
order of q for moving average is 2. Since the model is determined, the following table 2 shows the
parameter values of SARIMA model-(1, 2, 2)
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AR1 MA1 MA2 SAR1 SMA1
Coeff.value -0.849 -1.67 0.826 0.755 0.1971

S.E 0.0750 - - 0.0651 0.0715

Table 2: Parameter values of SARIMA model-(1,2,2)

Table 2 shows that the values of every coefficient are all less than 1, indicating that the stationary
and invertibility conditions were all met. The residuals of the top model found, SARIMA, were
used to support the model’s estimated predictive ability using the correlogram tool.

X2V ALUE DF PV ALUE

5.2609 10 0.8731

Table 3: Ljung Box of Residual obtained from SARIMA model-(1,2,2)

We conclude that the residuals of the SARIMA model - are not serially correlated and that the
SARIMA model - is a good model to predict or forecast the incidence of malaria because, according
to table 3, the Pvalue = 0.8867 is higher than the exact level of significance-alpha value 0.05,
indicating that the residuals are independent to each other, which simply means that they are not
related. The forecast for malaria incidence in Fig. 5 for the following five years shows that the
incidence of malaria will increase from January 2019 to December 2023. The prediction intervals
for malaria incidence were presented or reported at 80%, 85%, 90%, and 95%.

Figure 5:Forecast from SARIMA (1, 2,
2),(1,0,1),(1,2)

Different LSTM models were created using various activation methods, optimizers, and learning
rates. Tables 4 and 5 show the loss value and accuracy value of the LSTM models under the
aforementioned conditions:
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Activation type
Softmax Relu LR RMSE

OPTIMIZER ADAM Loss value 2.55 -
Accuracy
value

0.3884 - 0.01 20.653

SGD Loss value 0.094 1258.68
Accuracy
value

0.9354 0.1259 0.01 6.3498

Table 4: The Loss and Accuracy value of malaria LSTM model under learning rate 0.01

Activation type
Softmax Relu LR RMSE

OPTIMIZER ADAM Loss value 143.9 -
Accuracy
value

0.5379 - 0.02 14.36

SGD Loss value 0.004 1173.2
Accuracy
value

0.9278 0.3835 0.02 6.2143

Table 5: The Loss and Accuracy value of malaria LSTM model under learning rate 0.02

According to tables 4 and 5, the accuracy value of the malaria LSTM model under the optimizer
"SGD" remained constant with respect to the training rate and learning rate for the malaria data,
and both models produced the lowest RMSE, with its counterpart "ADAM" optimizer varying with
activation types.

Figure 6:The training and validation data described under the epoch of 100 and learning rate of
0.02

In figure 6, the epoch parameter was set to 100 for each model’s training, and dropout was used to
reduce overfitting and enhance the model’s performance. Srivastava et al.
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Figure 7:The plot of observed value of malaria Incidence against predicted value from
SARIMA-LSTM

Different Approaches RMSE MAPE
ARIMA 13784.63 0.4551
SARIMA 11637.31 0.4441
Naive-1 18901.53 0,6658
Mean 16266.06 0.5749

Seasonal Naive 23896.55 0.6961
SES 18901.59 0.6658
Holt 47442.27 1.1231

LSTM 16742.28 0.6286
SARIMA-LSTM 11254.24 0.4228

Table 6: RMSE and MAPE for Forecasting Malaria Incidence Using Different Approaches

Table 6 compares the model prediction comparison results. In both forecasting scenarios, the
RMSE and MAPE of LSTM-SARIMA are less than those of SARIMA and LSTM, indicating that
LSTM-SARIMA outperforms other models.

4 Discussion
The SARIMA (1, 2, 2) model was created, and it was the best model for capturing the structure
or pattern of malaria incidence in the areas where it was diagnosed. One layer with a lot of neu-
rons was used to build the LSTM model, which was optimized in relation to learning rate (for
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training the data) for model comparisons. The structure and pattern of malaria incidence were
produced by activation - "softmax" and optimizer - "sgd" with learning rate (0.02). The LSTM
model’s predictive accuracy was 92.3%. The training set was used to train the LSTM model and
execute a one-step rolling forecast until the final values are predicted. The final step is to calculate
the predicted value of the SARIMA-LSTM model by combining the predicted values of the LSTM
model and the SARIMA model for the period from January 1, 2022 to December 30, 2030. The
results of the RMSE and MAPE for forecasting Malaria occurrence in the country are summarized
in Table 6. The Nave-1 and SARIMA models have higher RMSE and MAPE than the proposed
SARIMA - LSTM model. It demonstrates the veracity of the SARIMA-LSTM forecasting model.
Table 6 demonstrates that the SARIMA-LSTM model has the lowest RMSE and MAPE. RMSE
and MAPE for SARIMA-LSTM models are 11254.24 and 42.28%, respectively. These outcomes
are the lowest compared to other benchmarking models. This study demonstrates the accuracy of
the applied SARIMA-LSTM model, as it is able to reduce error levels. Based on the comparisons
and results presented, the SARIMA-LSTM models can improve the error rate and accuracy rate;
therefore, the hybrid model is proposed and recommended in this study.

5.0 Conclusion
For malaria control and intervention, early diagnosis is crucial. This can lessen the disease’s devas-
tating effects on morbidity and mortality. The ability to predict future trends in disease incidence
will greatly improve national control and prevention strategies. With little input, the model offers
a way to better understand the dynamics of malaria in an environment with limited resources, pro-
ducing a forecast that can be applied to sub-district-level public health planning. In addition, MDG
6 attempts to fight diseases like malaria, AIDS, and other illnesses. Malaria and other illnesses affect
food and nutrition security, agricultural production, and rural development directly and indirectly.
Malnutrition and food hardship can also make a person more susceptible to illness. Incorporating
HIV, malaria, and other diseases into food, nutrition, and agricultural policies and programs require
the support of FAO policymakers and program planners. The major goal of the study was to use
two-time series statistical approaches to look into and predict the prevalence of malaria in Nigeria,
as well as to create a hybrid model and evaluate it against more conventional models. The informa-
tion utilized was obtained from the World Bank data bank (https://www.datacatalog.org) between
January 2003 and December 2019. We conclude that malaria tends to be low during the dry season
(periods in January) and high during the rainy season (periods in August) due to the presence of
seasonal variability. The findings show that for the years under study, the SARIMA-LSTM model’s
forecasting accuracy outperform that generated by the SARIMA and LSTM models separately. The
suggested framework is based on conventional time series that include random, seasonal, and trend
elements. While LSTM can extract significant patterns from the random component, SARIMA is
utilized to address the seasonal and trend components. In comparing the output of the SARIMA
model with that of the SARIMA-LSTM model in table 7 reveals that the SARIMA-LSTM model
outperforms the SARIMA model in terms of prediction performance. Due to the presumption that
the data set contains both linear and nonlinear characteristics, the SARIMA model is unable to
capture all of the data features in the data set. As a result, some nonlinear data features are present
in the residuals of the SARIMA model that cannot be captured by the SARIMA model; as a result,
the nonlinear feature is then captured by the LSTM model to make a further prediction. The find-
ings of the study confirm our hypothesis. Based on the findings of this study, it is advised that the
developed model be taken seriously by the government, health-related NGO’s, and policy makers to
enable them to administer adequate and prompt malaria control and preventive measures in Nigeria.
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