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Abstract

In the present work, we use Subordination principle to obtain the bounds for the first few
coefficients of the classes SY)"(b) and RYY"(b) in the unit disk.In addition, we established
relevant connections of our results to Fekete-Szego theorem.
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1 INTRODUCTION AND DEFINITIONS

Suppose that H denote the class of functions

f(2) =24 ag2® +az2® + ... (1.1)

which are analytic and univalent in the open unit disc U = {z : z € C,|2| < 1}, and let S € H
consist of univalent functions in U normalized with f(0) = f’(0) — 1 =0.

The analytic function f(z) is said to be Starlike, Convex, Spiralike, Close-to-Convex and
Bounded turning provided the following geometric conditions are respectively satisfied:

Re{ZJJ:gS)} >0, Re {1 + Z%S)} >0, Re{ew Z}céz)} >0, Re{zg(/g)} > 0and Re {f'(2)}
>0

Let f and g be analytic in U, then f is said to be subordinate to g written as f(z) < g(z), if
there exists a function w(z) with w(0) = 0 and |w(z)| < 1 such that f(z) = g(w(2)) (z € U).

The generalized distribution with univalent functions were examined by Porwal [1] and inter-
esting properties of the said distribution were established.
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Let Y denote the sum of the convergent series of the form

o
Y = § Qp,
n=0

where a,, > 0 for all n € N. Also let p(j) denote the probability mass function given as

b
= — >
p(j) =720

It is important to note that p(j) is the probability mass function because p(j) > 0 and Z,- p(j) =1
In addition, suppose
o(r) = ag + a1 + agx® + ...,

then from Y =37 a, series p converges for both |z| < 1 and z = 1.
Now if X is a discrete random variable that takes values 1, xs, ... associated with probabilities
D1, P2, .. then the expected X denoted by E(X) is defined as

E(X)=> p(j)a’.
j=1
The moment of a discrete probability distribution (r*) about z = 0 is defined by

p, = E(X")

where ull is the mean of the distribution and the variance is given as

’

pp — ().
Moment about the origin is given as
A
M = = —
ean 251 Y ’
. ! / ]. " ’ ql)/ 1 2
Variance = iy  (u1)* = gl (1) +' 1) - L0

The moment generating function of a random variable X is denoted by Mx (t) and defined by
Mx(t) = B(eX")

and the moment generating function of generalized discrete probability is given as

Special values of a,, for various well known discrete probability distributions such as Yule-Simon
distribution, Logarithmic distribution, Poisson distribution, Binomial distribution, Beta-Binomial
distribution, Zeta distribution, Geometric distribution and Bernoulli distribution can be obtained
(see [1] for details).

Here, we consider the polynomial whose coefficients are probabilities of the generalized distri-
bution given by:

T =2+Y a’;lz", (1.2)
n=2

where Y =Y a,. (see also [2]).
The convolution of f and u denoted by (f * u)(z) is given by:
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(f xu)(z —z—&-Zajbz = (ux f)(2) (1.3)

j=2

where -
z)=z+ Z b2
j=2

In 1696, Bernoulli and Leibniz [3] defined the polylogarithm function by the absolutely conver-
gent series Li,(z) = Z;’o | 75> brovided |z] < 1andp>2.
JP

Several authors have investigated polylogarithm function in different perspective and their re-
sults have appeared in prints (see [4]).

However, Al-Shagsi and Darus [5] generalized Ruscheweyh and Salagean derivative operators as
follows:

Let f belongs to H,the generalized polylogarithms DY f(z) : H — H

n™(n+XA—1)!
= - n 1.4
PH =4 D T (1.4
where m, A € Ny =0,1,2,...,z € U and H as earlier defined (see [6—8] among others).

If A =0, the operator (4) reduces to Salagean differential operator and if m = 0 the operator
reduces to Ruscheweyh operator, (see [4] for more properties of polylogarithm ).

Motivated by the earlier works of [1,2,5,9—-11], we investigate bounds for a new class of analytic
function defined with complex order in the open unit disk U.

Using (2), (3) and (4), We can write that

TL—|—)\—1) an—1 ,
DY+ T(z _Z+Z N(n —1)! v ? (1.5)
where m, A € {0,1,2,..} and Y = Y% a,.

Definition 1.1 Let f(z) € SY*(b), then for k € [0,00), @ € [0,1), m, A € No,b# 0 and |0] < g

v fer A

Definition 1.2: Let f(z) € RY"(b), then for k € [0,00), a € [0,1), m, A € Ny,b # 0 and

71'
0 —_
o< 3

L+ {037 1) <pee)

2 PRELIMINARY LEMMA

Let P denote the class of functions with positive real parts (Caratheodogy functions) such that
p € P with {Rep(z)} >0 and p(z) =1+ a1z + ... in U, then |ag| <2, k=1,2,3,...
Lemma 2.1 : Let w(z) = w12z + we2? + ... € Q be so that |w(z)] < 1in U. If p is a complex
number, then
jwa + twi| < maz{1, |pl}

2

The sharp inequality for the functions w(z) = z or w(z) = 22, (see also [12-17].
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3 MAIN RESULTS

The first few coefficient bounds for the classes defined in the Definitions above are considered in
the following results .
Theorem 3.1: Suppose f(z) € SY;"(b), then for k € [0,00), € [0,1), m, A € Np,b # 0 and

b

T
g < =
o<
‘ |blevy
m(A+1)(2e — 1)’
‘ 4‘b|0¢1 max d 1 (6%) + qu
m(3e® —1)(A+2)(A+1) lag(2et? — 1) (2e — 1)
and
a4
y  Hyz|=
m+1 i0 __am 0 _
| 2|bla max 1, a 2N+ 1) (e 1) -3 lu(3e 1)()\+2)ba1
3m(3e® — 1)(A+2)(A+1) ap(2e? —1) 2m(A+1)(2e¥ — 1)
where ) is as earlier defined.
Proof
If fe SYqb(ozk) and w € 2 then by the definition of subordination, we have that
1 , z(DmK(z))l
14200 4 — . 3.1
vy { e Pr(w (=) (31)

The first few terms of (6) gives

. 2 1 . 2 1
2616+2m+1()\+1);22620+3m+1 (/\ + )(/\ + )%23616—2—2771(/\4—1)%22—3”1 ()\ + )(>\ + )a2 23

2 Y 2 Y
A4+2)(A+1
= bayw 22 + bajwiz® + 2™ (N + 1)%z3ba1w1 + 3m%%24ba1w1. (3.2)
From (6) and (7), we have
ai bajwy
- = . 3.3
Y  2m(2e% —1)(A+1) (3:3)
and
as 2bovy 1 o) 9
- = . —— — | —+5b . 3.4
Y 373’ —1)(A+2)(A + 1) {”2 * (2@9 —1 [al * 0‘1} ”1)} 34
Solving (8) and (9), we obtain
2
az ay 2bay
Y ~PYI T 3 S0 s o) 2 T
where ‘ ‘
g 2L\ + 1) (26 — 1) — 3™ (3¢ — 1)(\ +2)
- - + - bOll

ay(2e9 —1) 22m+1(\ +1)(2e* — 1)
The desired result is obtained by applying the Lemma 2.1.
corollary 3.2
For k € [0,00),a € [0,1),m = 0,b # 0 in theorem 3.1 and if f € SY?(b, o) then

‘ |b|a1
1)(2e — 1)’
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‘ 2‘b|0¢1 ma 1 Qg n bOél
Be? —DA+2)A+1) 7 [an (26 — 1) T (2e — 1)

and
a _ a
vy Hyz|=

2|l as 200+ D) (e — 1) — p(3e?? —1)(A +2)
- 1 - - .
B )AL 2)(A+ 1) max{ ’{al(Qew 7t O+ (2 — 1) bay

Corollary 3.3
For k € [0,00), € [0,1),A = 0,b # 0 in theorem 3.1 and if f € SY;"(b, o) then

‘ |b|0£1

2m 2619 1)7
‘ 2‘b|0¢1 max 4 1 Qa9 i b()q
YI— 3m 36“9 1) Tlag(2et? — 1) (2e —1)

and

a? a? by Qs 2mFL(ef — 1) — 3™ u(6e? — 2)
- P < - - A -~ 1 . . b
Y vz = 3m(3ei — 1) max{ |y (267 — 1) 2m(2ei — 1) a }

Corollary 3.4
Let k € [0,00),a € [0,1),m =0,A=0,b+# 0 and if f € SY?(b, ) then

‘ bl

(2¢0 — 1)
’ 2\b|a1 ma 1
X
(3¢t — 1) ’

Q9 n bay
(29 —1)  (2e¥ — 1)

and

2 2
@ _ 4

y Hy2
Corollary 3.5
Let k € [0,00),a € [0,1),m =1,A=1,b # 0 and if f € SY{! (b, a}) then

2(e” — 1) — p(6e” — 2
ar e —1) — (6 —2)

a1 (26 — 1) (26 — 1) b

b

|b‘0&1
S mma}( 1,

‘ |b|041
610 1)’

’ 2\b|0¢1 max {1

(6] i bOél
32(3ei — 1) a(2¢? — 1) (2e? —1)

and

a? a? |blaa o 23(e?? — 1) — 32u(3e? — 1)
— =< 1 : - b .
Y~ My2| = 3236 — 1) max{ Non@e? —1) 23(2¢1% — 1) “ }

Corollary 3.6
Let k € [0,00),a € [0,1),m=1,A=1,b#0,0 =0,; = ap = 2 and if f € SY;}(b, ;) then
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2[b
| < | |max{1 11+ 25}
and
a? a? D] 9
@ < 11— “HEpl b
y Hy2| =79 max{ ’ 2b‘}
Theorem 3.7: Suppose f(z) € RY"(b, o), then for k € [0,00), a € [0,1), m,A € Ny,b # 0
T
dlol < =
and 6] < 5
‘ |b|011
VISt
ag 2|b‘0&1 (6%}
2l< 1122
Y’ S3mF L) F D) U e
and
a? a? 2|l e d 1,192 3mHL (N +2) -
— — fh—s X —= "= .
Y =3 (A +2)(A 1 1) ! 22mi3(\ 4 1)/
Proof

The method of proof is similar to that of Theorem 3.1 .

Corollary 3.8
Let k € [0,00),a € [0,1),m, X € Ng,b# 0,m = 0. If f(z) belong to RY"(b, ;) then

|b]ey

Y= 20 +1)

‘ 2|blay max d 1%
_ AP ax >
YIS 3052011 ’

and
a? a? 2|blay az  3(A+2)

. D e =222 ,
v~ Hyz )max{ , l)uboq }

T3A+2)(A+1 a1 8N+

Corollary 3.9
Let k € [0,00),a € [0,1),m, X € No,b# 0, A =0. If f(2) belong to RY"(b, ax,) then

a1| _ [blen
Yy | = amt1?
2. 3m+1

3 /’Lbal

(%)

aq

‘ |b| il max < 1
YiI— 3m+1 (A+1) ’

and
042

b
< [blon max{l, —
ay

— 37n+1

a? a?
-~ M
Y Y

22m+

Corollary 3.10
Let k € [0,00),a € [0,1),m, XA € Ng,b# 0,m =0,A =0. If f(z) belong to RY"(b, ;) then

¥

‘ |b|a1
e ax{l, o
aq
and
a? a? |blcy a3
L 1,122~ 20
Yy “Hyz[= 3 max{’al 4‘”"1}
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4 Conclusion

The principal significance of the sharp bounds for the coefficients is the information about geometric
properties of the functions. For instance, the sharp bounds of the second coefficient of normalized
univalent functions readily yields the growth and distortion bounds (see [17]. Also, sharp bounds
of the coefficient functional |az — pa3| helps in the investigation of univalence of analysis function.
Also, apart from n — th coefficients, bounds were used to determine the extreme points of the class
of analysis functions;(see also [10])

ACKNOWLEDGMENTS

The authors would like to extend their gratitude to the reviewers and the editor of this article for
their valuable input.

References

[1] Porwal,S. Generalized distribution and its geometric properties associated with univalent func-
tions. J. Compl. Anal. hppts//doi.org/10.1155/8654505, 3,(2018).

[2] Oladipo,A.T. On bounds for the generalized distribution defined by generalized polylogarithm.
J. Nig. Math. 51(7), 19-26,(2016).

[3] Gerhardt.C.I. & Leibniz,G.W. Mathematische Schriften III/I, Georg Olms, New York, NY,
USA, 1971.

[4] Ponnusamy,S. & Sabapathy,S. Polylogaritms in the theory of univalent functions, Results in
Mathematics.30,136-150,(1996).

[6] Al-Shagsi,K. & Darus,M. An operator defined by convolution involving the polylogarithm
functions. J. Math and Stat. 4,46-50,(2014).

[6] Alhindi,K.R. & Darus,M. A new class of meromorphic functions involving the polylogarithm
function. J. Compl. Anal. 5,(2014).

[7] Lewin,L. Polylogarithms and Associated functions, North-Holland, Amstedan, New York 1981.

[8] Hamzat,J.O. & Makinde, D.O.Coeflicient Bounds for Bazilevic functions involving Logistic Sig-
moid function Associated with Conic Domains. International Journal of Mathematical Analysis
and Optimization. Vol 2018, (392-400), 2018.

[9] Kanas,S. & Raducanu,D. Some class of analytic functions related to conic domains, Math.
Slovaca 64,1183-1196,(2014).

[10] Pauzi,M.N.M., Darus,M. & Siregah,S. Second and third Hankel determinant for a class defined
by generalized polylogarithm functions. TIMM. 10,1,31-41,(2018).

[11] Porwal,S. An application of a Poisson distribution series on certain analytic functions. J.Compl.
Anal.http://dx.doi.org/10.1155/984135.3,(2014).

[12] El-Ashwah,E. & Kanas,S. Fekete-Szego inequalities for quasi-subordination functions classes
of complex order. Kyun. Math.J.55,679-688,(2015)

[13] Darwish,H., Lashin,A.M. & Soileh,S. Fekete-Szego type coefficient inequalities for certain sub-
classes of analytic functions involving Salagean operator. Pun. Univ.J. math. 48,65-80,(2016).

[14] Mohd,M.H. & Darus,M. Fekete-Szego problems for quasi-subordination classes, Abstr. Appl.
Anal. 14,(2012).

154


 https://doi.org/10.5281/zenodo.8277526

C,! : INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES AND
OPTIMIZATION: THEORY AND APPLICATIONS
IJMSO Vor. 9, No. 1, pp. 148 - 155
HTTPS://D0OI.0RG/10.5281/ZENODO.8277526

[15] Oladipo,A.T. Determinants for the class of Bazilevic functions, Pal. J. Math. (to appear).

[16] Das,K.P. Bounding the ruin probability under interest force. J. Appl. Prob. and stat. 5,119-
127,(2010).

[17] Hamzat,J.O. & Adeyemo,A.A. New Subclasses of Analytic functions with respect to Symmet-
ric and Conjugate points Defined by Extended Salagean Derivative Operator. International
Journal of Mathematical Analysis and Optimization. Vol 2019, (644-656), 2019.

155


 https://doi.org/10.5281/zenodo.8277526

	INTRODUCTION AND DEFINITIONS
	PRELIMINARY LEMMA
	MAIN RESULTS
	Conclusion

