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Abstract

The effects of surface mass flux (suction/injection) and variable viscosity on free-forced convec-
tion along a stretching or shrinking permeable plate embedded in a saturated porous medium
are investigated through Lie-group analysis for steady two-dimensional flow in this paper. As-
sumptions are made that the fluid viscosity varies as a linear function of temperature and the
heat flux through the plate wall varies with power law of the distance from the edge of the
plate in a thermally radiating and incompressible fluid. The governing equations are tackled
by means of Lie-group scaling transformation as to obtain a system of ordinary differential
equations. Using Runge-Kutta-Gill scheme along with the shooting iteration technique, the
resultant boundary-value problem is integrated numerically for different values of the phys-
ical fluid flow parameters. Comparisons between other previously published works with the
present study were carried out for special cases and excellent agreements were demonstrated.
The effect of moderate Prandtl number for a shrinking sheet is to reduce not only the velocity
and temperature of the fluid but also the wall temperature gradient. Findings reveal that the
wall friction parameter (skin-friction coefficient) and local heat transfer rate (Nusselt number
or inverse wall temperature) increase with viscosity variation parameter aside the significant
dependence on other emerging flow controlling parameters.
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Table 1: Nomenclature of Symbols

1 Introduction
Many a physical phenomenon involves free (natural) convection driven by buoyancy forces in con-
junction with the influences of thermal radiation. Free convective boundary-layer flow near moving
or stationary solid surfaces is a classical problem and has been extensively investigated and still
receives serious attention in active research areas for the last few decades; dated back to the con-
tracted investigation of [1]. Obvious reasons are adduced to perceived industrial and technological
applications such as aerodynamic extrusion, material processing, glass fiber and wire drawings,
cooling of metallic sheets, cooling of nuclear reactors, crude oil extraction and petroleum processes,
passive solar systems designs among many others [2]. In practice, it has been confirmed that free
convection induces the thermal stresses which promotes critical structural damage in the piping
systems of nuclear reactors [3] and seabed crude oil extractions at high temperature and pressure.
When a surface is continuously moving through an otherwise still medium, boundary-layer always
ensues. This mechanism finds applications in manufacturing and materials processes such as aerody-
namic plastic and paper productions, hot rolling, metal casting, glass fiber production, wire drawing
and spinning, and crystal growing [4]. The pioneering work on an incompressible steady boundary-
layer flow and heat transfer past a linearly stretching plate was examined theoretically [5]. The
researchers [5,6] extended the work of Crane on steady free convective problem of stretching sheet
under different physical situations and boundary conditions. Several studies are ongoing for use
of Lie symmetry in solving heat and mass transfer not only in Newtonian but also non-Newtonian
fluid flow past stretching surfaces. More recently [7] and his research colleagues employed multiple
symmetry analysis as per expanding sheet in a Casson fluid.
Thermal radiation effects become relevant when the temperature difference between the fluid and
the solid surface are considerably high. Immediate applications are in engineering and geophysics
most especially in space technology, high temperature processes and geothermal systems [3, 8].
To predict the fluid flow behavior correctly, it is necessary to put into account the viscosity vari-
ation of an incompressible fluid which in practice is temperature dependent. Of course, the fluid
temperature is itself dependent on the spatial coordinates. The viscosity of a fluid is generally
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dependent on temperature and pressure. For gases it increases rapidly with temperature, but de-
creases with increase in temperature for common liquids such as water, light and crude oils. For
example, experimental results indicate that at room temperature of about 200 C, a one percent
change in temperature proffers a seven percent change in the water viscosity and approximately a
twenty six percent change in the glycerol viscosity [9].
Active research in momentum, mass and heat transfer in porous medium has received increasingly
large-scale attention in the literature during the past recent decades in view of the relevance of
the topic in technological devices and applications [10]. Most often it is necessary to introduce
porous matrix into the flow regime of boundary layer flow as this may serve as a means of reduc-
ing the speed which consequently dampens the influence of boundary layer separation or postpone
transition from laminar to turbulence flow. Flows through porous media have many applications
in several engineering devices and industrial processes such as design of heat exchangers, chemical
devices and process equipment, industrial filtrations, underground water pollution control, storage
of nuclear wastes and many others.
The method of scaling group of transformations finds its source from the symmetries associated with
some classes of differential equations in conjunction with auxiliary conditions under the application
of classical approach of Lie group symmetries [11]. It competes favorably with the existing sim-
ilarity transformations vis-à-vis, Blasius, Pouhlhausen, Boltzmann and ordinary scaling schemes.
Worthy to mention is the interest in similarity solutions which stems naturally from the basic fact
of provision of intermediate asymptotic solutions that possess bearings to more related complex
non-similar solutions. Scaling group of transformations also possesses the property of reducing the
number of the independent variables of partial differential equations by at least one [12, 13]. Sym-
metry group of transformations in utilization has been able to preserve a system of equations along
with the prescribed boundary conditions. [14] examined by means of Lie symmetry analysis the
influence of Lorentz force and heat generation on boundary layer flow past a stretching sheet em-
bedded in a porous Newtonian fluid in the presence of variable viscosity. Their findings reveal that
heat generation and the magnetic field can reduce the boundary layer thickness. Lie group alge-
bra has been successfully employed to solve problem of flow and heat transfer of a non-Newtonian
hyperbolic tangent MHD fluid flow in the periphery of a uniformly heated stretching plate [15].
They sorted for numerical solution through MATHEMATICA-10 software package. Many authors
employed one or two-parameter group of transformation to tackle some fluid dynamical problems.
The mechanism of two-parameter groups reduces the number of independent variables of PDEs by
two [16, 45]. The methodology of solution is dependent on the auxiliary equations which are much
easy and straightforward ways for obtaining similarity solutions.
Transfer of heat by free convection in a boundary-layer laminar flow has been analyzed on large
scale for isothermally, non-isothermally or convectively heated plate [12,13] without much deserved
attention to surfaces subjected to uniform or prescribed wall heating in the presence of thermal
radiation. Heating by utilizing electromagnetic wave devices such as microwave ovens, induction
furnaces, hairdryers, among others can serve as means of providing prescribed heat flux at the walls
of processed materials and food products of which temperature controls are essentially important as
in most agro-engineering and industrial processes such as material drying of the ultimate products
or produce for storage of grains and dried vegetable animal feeds. Several learned articles under
various physical aspects with uniform or prescribed surface heat flux have been reported in recent
years [14–16].
A large number of practical technological applications involving natural convective flow and heat
transfer in the presence of fluid withdrawal (suction) or mass blowing (injection) through a contin-
uously moving surface has increased in the recent years. An example is in the seabed extraction of
enhanced thermal recovery of crude oil. Suction can be applied for removal of reactants in chemical
processes. In contrast, injection can be used to add reactants [17]. In problems of convection con-
cerning shrinking of surfaces, lateral mass flux is needed as to curtail the influence of boundary layer
separation and confine the vorticity generated within the thin layer for sustenance of the boundary
layer structure [18].
In the respected journals, hundreds of scientific articles have been written on various physical as-
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pects of boundary-layer flow and heat transfer to analyze the effects of surface stretching. The
work of [19–21] is among a few of the typical inclusions. Little attention has been paid to the case
of shrinking effects in spite of its elaborate and widespread applications in some material processes
such as shrink wraps, flexible and reticulated foams, and many others. Shrinking fluid flow is es-
sentially associated with the backward flow induced due to the wall contraction towards a fixed
point unlike the stretching fluid flow induced by surface expansion relative to a fixed point localized
on the surface [22]. Some of the authors who included the effects of shrinking in their investiga-
tions [18,23,24].
For much closely and related allied studies of laminar forced/natural convective heat transfer from
the flat surfaces analyzed through the use of Lie-group scaling of transformations, [7, 25, 26]. In
the earlier studies by [27–29]; investigation was carried out on the influence of variable viscosity,
thermal heat generation/absorption, uniform magnetic field or buoyancy induced flow but with
unitary Grashof number for the case of isothermally heated stretching plate/sheet. However, in-
stances in the manufacturing and materials processes involving radiation associated with surface
mass flux (suction/injection), and heat transfer, very often may be dependent on application of
uniform heat flux at the plate or sheet surface for proper control of quality of the final products of
sheeting material moving through cooling trough [30]. A few of earlier works analyzed by means
of existing similarity transformations for flow and heat transfer involving stretching sheet heating
cases of (i) the surface with prescribed wall temperature and/or (ii) the surface with prescribed
heat flux include [31–35].
A thorough and careful survey of literature review indicates that the present study, if extant, has
not been reported. It may therefore be of interest to note that the case where the surfaces are
subjected to non-uniform heat flux, and analyzed by group symmetries of transformations, which
are of pertinent importance in practice lacks much needed attention. Our method of approach in
line with [27, 36, 37] overrides the use of nondimensionalization through scaling analysis before the
application of scaling groups of transformation as demonstrated by [38,39].
To the best knowledge of the authors, no extant study in the literature is concerned with the
combined interaction of thermal radiation, temperature-dependent viscosity and surface mass flux
(suction/injection) for free convection boundary-layer flow past a non-uniformly stretching/shrink-
ing vertical plate submitted to a variable wall heat flux and immersed in a fully saturated porous
medium using one parameter Lie-group analysis. These are the crux of motivation and aim of this
present investigation.

2 Model Formulation
Consider two-dimensional steady, laminar, viscous, incompressible, mixed convection boundary-
layer flow of a Newtonian fluid over a semi-infinite flat plate immersed in a fully saturated porous
medium as depicted in Fig. 1. The choice of coordinates (x, y) with the origin at the leading
boundary-edge is such that x measured along the plate, increases in the direction parallel but op-
posite to the gravitational acceleration g, while y is measured normal to the plate. The fluid is
quiescent with uniform ambient temperature T∞, the permeable plate is subjected to a variable
wall heat flux qw(x). Fluid velocity components along and perpendicular to the plate are u(x, y)
and v(x, y) respectively. The mass flux normal (lateral) velocity at the wall is Vw(x). The fluid
confined to the region y > 0 is assumed to be grey, emitting and absorbing.

∂u

∂x
+
∂ν

∂y
= 0 , (2.1)

ρ

(
u
∂u

∂x
+ ν

∂u

∂y

)
=

∂

∂y

(
µ(T )

∂u

∂y

)
+ ρgβ(T − T∞)− µ

Kp
u , (2.2)

(ρCp)

(
u
∂T

∂x
+ ν

∂T

∂y

)
=

∂

∂y

[(
k +

16σ ∗ T 3
∞

3k (k ∗+σs)

)
∂T

∂y

]
, (2.3)
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Figure 1: Schematic Diagram of the Physical Model

The boundary conditions for eqns. (1)-(3) are

y = 0 : u = λUw(x), ν = Vw(x),−k
∂T

∂y
= qw0x

n

y →∞ : u = 0, T → T∞ , (2.4)

where Uw = cxm, Vw = V0x
m−1

2 , and c > 0, m, V0 are constants. β,Cp,Kp, k, k∗, σs are re-
spectively the thermal expansion volumetric coefficient, specific heat capacity at constant pressure,
porous medium permeability coefficient, thermal conductivity coefficient, Rosseland mean absorp-
tion coefficient, Stefan-Boltzmann constant and the emission scattering coefficient. σs vanishes for
non-scattering medium as in the present situation. Our boundary conditions for the velocity at
the wall are similar to those of [45], save the sign as per the lateral velocity. It is customary to
introduce stream and dimensionless temperature functions ψ(x, y), θ(x, y) as

u =
∂ψ

∂y
, ν = −∂ψ

∂x
, θ =

T − T∞
∆T

,∆T =
qw
k

√
ν∞
c

(2.5)

and the temperature dependent dynamic viscosity takes the form [9,40]:

µ = µ∞ [a+ b (T0 − T )] (2.6)

where T0 (= ∆T + T∞) is the typical temperature; qw0 ̸= 0, a, b are constants such that b = 0 is the
case for non-varying viscosity, b > 0 corresponds to heated wall in consequence of variable surface
heat flux qw (= qw0x

n) [3, 41]; b > 0 corresponds to cooled wall while µ∞ = µ(T∞) and ν∞ = µ∞
ρ

are respectively the free stream viscosity and kinematic viscosity, and n is the heat flux exponent,
where n = 0 corresponds to uniform heat flux. It is worthy to mention that the insertion of T∞ = 0
into (5) recovers similar dimensionless temperature employed by [17].
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Inserting (5) into the momentum equation (2) and then into the energy equationn (3) after substi-
tuting (4) and (6), the following set of equations are obtained.

∂ψ
∂y

∂2ψ
∂x∂y −

∂ψ
∂y

∂2ψ
∂y2 = −Aν∞ ∂θ

∂y
∂2ψ
∂y2 + ν∞ [a+A(1− θ)] ∂

3ψ
∂y3

−ν∞Kp
[a+A(1− θ)] ∂ψ∂y +A gβ

b θ

(2.7)

n

x
θ
∂ψ

∂y
+
∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y
=
ν∞
Pr

(1 +Nr)
∂2θ

∂y2
(2.8)

Also using (5) in the boundary conditions (4):

y = 0 : ∂ψ∂y = λcxm, ∂ψ∂x = −V0x
m−1

2 , ∂θ∂y = −sqrt c
ν∞

y →∞ : ∂ψ∂y → 0, θ → 0.

 (2.9)

where ν∞ = µ∞
ρ , A = b∆T, Pr =

µ∞Cp

k , and Nr =
16σ∗T 3

∞
3kk∗ are respectively kinematic viscosity

far from the sheet, viscosity variation parameter, the Prandtl number and the thermal radiation
parameter. Note that in (8) use has been made of the relation k∞

ρCp
= ν∞

Pr .

3 Solution Method
The crux upon which the similarity solution rests, is centered on the use of a one-parameter scaling
group of transformations which reduce the system of the BVPs (7)-(9) to a set of ODEs with the
boundary conditions dependent on only one independent variable referred to as similarity variable.
3.1 Lie-group analysis Introduce the following simple form of one-parameter Lie-group transforma-
tion [27]:

Γ =

{
x∗ = xeU̇α1 , y∗ = yeU̇α2 , ψ∗ = ψeU̇α3 ,

u∗ = ueU̇α4 , ν∗ = νeU̇α5 , θ∗ = θeU̇α6
(3.1)

where U̇ is a small parameter and αi, i = 1to6 are arbitrary transformation parameters. The
preceding equation (10) depicts Γ as a point transformation of coordinates (x, y, ψ, u, ν, θ) to new
coordinates (x∗, y∗, ψ∗, u∗, ν∗, θ∗). Applying (10) on equations (7)-(9), the following system of
equations are obtained:

eϵ(α1+2α2−2α3)
{
∂ψ∗

∂y∗
∂2ψ∗

∂x∗∂y∗ −
∂ψ∗

∂x∗
∂2ψ∗

∂y∗2

}
= −Aν∞eϵ(3α2−α3−α6) ∂θ

∗

∂y∗
∂2ψ∗

∂y∗2

+ ν∞ (a+A) eϵ(3α2−α3) ∂
3ψ∗

∂y∗3 −Aν∞θ
∗eϵ(3α2−α3−α6) ∂

3ψ∗

∂y∗3

− ν∞
Kp

[a+A (1− θ∗e−ϵα6)] eϵ(α2−α3) ∂ψ
∗

∂y∗ + A
b gβθ

∗e−ϵα6

(3.2)

eϵ(α1+α2−α3−α6)

{
nx∗−1θ∗

∂ψ∗

∂y∗
+
∂ψ∗

∂y∗
∂θ∗

∂x∗
− ∂ψ∗

∂x∗
∂θ∗

∂y∗

}
=
ν∞
Pr

(1 +Nr)eϵ(2α2−α6)
∂2θ∗

∂y∗2
(3.3)

y∗e−ϵα2 = 0 : eϵ(α2−α3) ∂ψ
∗

∂y∗ = σu∗e−U̇α4 ≡ σcx∗me−mU̇α1 ,

eϵ(α1−α3) ∂ψ
∗

∂x∗ = −V0x∗
m−1

2 e−ϵα5
, eϵ(α2−α6) ∂θ

∗

∂y∗ = −
√

c
ν∞
.

(3.4)
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From (11), comparing exponents:

α1 + 2α2 − 2α3 = 3α2 − α3 − α6 = 3α2 − α3 = α2 − α3 − α6 = α2 − α3 = −α6 (3.5)

From (12), comparing exponents:

α1 + α2 − α3 = 2α2 − α6 (3.6)

From (13), comparing exponents:

α2 − α3 ≡ −α4 ≡ −α1, α1 − α3 ≡ −α5 (3.7)

Relations (14)-(16) yield

α6 = 0, α1 = α1, α2 =
1

4
α1, α3 =

3

4
α1, α4 =

1

2
α1, α5 = −1

4
α1;m =

1

2
(3.8)

It is noteworthy to mention that the solution parameters were selected and sorted out in compliance
with the invariance of the transformations. Additionally, we realize that the use of symmetry
reduction, naturally renders the existence condition n = 2m − 1 invariantly neutral here [42].
However, the special case for which n = 0 corresponds to natural convection driven by a uniform
heat flux.
Using (17) in (10), the system of transformations is reduced to the following new system with one
group parameter:

Γ∗ :

{
x∗ = xeU̇α1 , y∗ = yeU̇

α1
4 , ψ∗ = ψeU̇

3α1
4 ,

u∗ = ueU̇
α1
2 , ν∗ = νeU̇

α1
4 , θ∗ = θ

(3.9)

Expanding (18) by Lagrange’s theorem of the mean, we obtain

x∗ = x+ xϵα1, y
∗ = y + y

α1

4
ϵ, ψ∗ = ψ + ψϵ

3α1

4
, u∗ = u+ uϵ

α1

2
,

ν∗ = ν − νϵα1

4
, θ∗ = θ (3.10)

with auxiliary equations

dx

α1x
=

4dy

α1y
=

4dψ

3α1ψ
=

2du

α1u
= − 4dν

α1ν
=
dθ

0
(3.11)

together with the corresponding functional invariant solutions taking the form:

η = x−
1
4 y, ψ = x

3
4F (η), θ = θ(η) (3.12)

The relation (21) satisfies automatically the continuity equation (1), while the momentum, energy,
and the boundary conditions transform invariantly as

1

2
F ′2 − 3

4
FF ′′ = −Aν∞θ′F ′′ + ν∞ (a+A−Aθ)F ′′′

−ν∞
Kp

(a+A−Aθ)F ′ +AGrc2θ (3.13)

nθF ′ − 3

4
Fθ′ =

ν∞
Pr

(1 +Nr) θ′′ (3.14)

F ′(0) = cλ, F (0) = 3
4V0, θ

′(0) = −
√

c
ν∞

F ′(∞) = 0, θ(∞) = 0

 (3.15)
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where primes denote ordinary differentiation with respect to η, Fw = − 4
3V0 is the suction/injection

parameter Fw = 0 (or V w = 0) indicates that the plate is impermeable, Fw > 0 (or V w < 0)
indicates suction or fluid withdrawal from the plate while Fw < 0 (or V w > 0) indicates injection
or mass blowing through the plate) . Clearly, Gr is the modified Grashof number (buoyancy
parameter); exhibited as Gr = gβ

b
x
U2

w
. From physical point of view, Gr = 0 indicates the absence of

natural convection, Gr > 0 connotes cooling of the surface, while Gr < 0 connotes heating of the
surface.
To scale out c and ν∞, we apply yet another transformation for η, F and θ as follows

η = να∞c
βη∗, F = να

′

∞cβ
′
F ∗, θ = να

′′

∞ cβ
′′
Θ∗. (3.16)

where η∗, F ∗,Θ∗ are variables and α, α′, α′′, β, β′, β′′ are transformation parameters.
Applying (25) on the last set of equations (22)-(24), following similar steps as those in equations
(11)-(13) and comparing exponents, we obtain

α′′ = 0, α′ =
1

2
; β′′ = 0, β′ = −β =

1

2
(3.17)

Use is made of relation (26) in the set of equations upon which the relation (25) was applied; and
after replacement of F ∗,Θ∗ respectively by f, θ the following dimensionless governing equations are
gotten:

(a+A−Aθ) f ′′′ −Aθ′f ′′ + 3

4
ff ′′ − 1

2
f ′2 −Da (a+A−Aθ) f ′ +Grθ = 0 (3.18)

(1 +Nr) θ′′ + Pr

(
3

4
fθ′ − nθf ′

)
= 0 (3.19)

f ′(0) = λ, f(0) = Fw, θ′(0) = −1

f ′(∞) = 0, θ(∞) = 0

 (3.20)

3.2 Skin-friction coefficient and Nusselt number:
The physical quantities of pertinent interest are the local skin-friction coefficient Cfx and the local
Nusselt number Nux, which represent the wall shear stress and the heat transfer rate at the surface
respectively. They may be defined as

Cfx =
τw
ρU2

w

, Nux =
xqw

k (Tw − T∞)
, (3.21)

where

τw = µ∞

[
(a+A (1− θ)) ∂u

∂y

]
y=0

, qw = −
[
k
∂T

∂y
+

16σ∗T 3
∞

3k∗
∂T

∂y

]
y=0

(3.22)

Substituting (5) (21) and (26) into (30)-(31), the non-dimensional forms of Cfx and Nux are
respectively written as

CfxRe
1
2
x = (a+A (1 + θ(0))) f ′′(0); NuxRe

− 1
2

x =
1 +Nr

θ(0)
, (3.23)

where use has been made of the condition θ′(0) = −1. 3.3 Numerical simulation The set of equa-
tions (27)-(28) under the boundary conditions (29) have been solved numerically using a shooting
algorithm with a fourth order Runge-Kutta-Gill integration scheme, for full detail [43]. A system-
atic guessing of f ′′(0) and θ′(0) have been accessed until upstream (far-field) boundary conditions
are gotten asymptotically. Use has been made of the step-size ∆η = 10−3 as per the numerical
computations, ensuring the grid independent quest for optimization of our solutions with accuracy
up to the seventh decimal place (10−7); found to be sufficient for convergence criterion. Based on
this technique, a finite value ηmax = 8 has been adopted in place of η ←∞ (in nearly all the cases)
which depends on the simulated values of the physical parameters: A,Da,Gr, Pr,Nr, Fw, n and
λ. Also, the computations were carried out by a program coded in a symbolic and computational
computer language, Maple-18.
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4 Results and discussion
A parametric study of the controlling physical flow parameters each with specified value 0.2 with
exception of the Prandtl number which bears the value of 0.72 (for air), has been conducted as per
the computation default data. Situations with different values are conspicuously demonstrated in
the tabular cells for fluid characteristics (skin-coefficient and Nusselt number) or graphical legends
(velocity and temperature).
4.1 Effects of parameter variation on skin-friction and Nusselt number
From the process of numerical computations, the reduced skin friction coefficient and Nusselt num-
ber, which are defined in (33) were all sorted out in terms of the velocity gradient at the wall and
, the plate temperature, and their numerical values are presented in a tabular form. The accuracy
of this numerical code has been accessed by direct comparison with the numerical results reported
by [4,44] as indicated in Tables 2 and 3, and found to be in satisfactory agreement. It is worthy to
mention here, that in our numerical computations moderate simulated values of Prandtl numbers
were administered as asymptotic behaviour for high values could not be achieved herein.
Table 4 unveils the influences of the physical flow parameters in the list: A,Da,Gr, Pr,Nr, Fw >
0, Fw < 0, n > 0, n < 0 and λ > 0, λ < 0 on the velocity gradient (the shear stress parameter)
f ′′(0), and the plate (wall) temperature θ(0). Intensification of the viscosity variation parameter A,
and the Grashof number (buoyancy parameter) Gr, leads to value enhancement of f ′′(0) and θ(0).
However, increase in the porous medium permeability parameter Da, is tantamount to a decrease
in f ′′(0), but a rise in θ(0).

Table 2: Comparison of the values of the local inverse plate temperature (θ−1(0),
with [4, 31] in the absence of concentration when a = 1, A = Da = Nr = 0

As can be seen in this table, both f ′′(0) and θ(0) depreciate in magnitude in consequence of increase
in the suction parameter Fw > 0, Prandtl number Pr, stretching parameter λ < 0 and heat flux
exponent n > 0. Nonetheless, an increase in either of the injection parameter Fw < 0 radiation
parameter Nr shrinking parameter λ < 0 or negative heat flux exponent n < 0 improves the value
of velocity gradient and plate temperature. We observe in Table 4 that when Gr = 0, while other
parameters bear fixed values (i.e. absence of natural convection) the flow is driven by stretching
effect and the value of f ′′(0) is negative. Also, for the stretching case λ > 0 with other parameters
non-varying in values, the values of f ′′(0) are negative. In physical terms, the negative values
of f ′′(0) signify that the plate impresses a drag force on the fluid while the usual positive values
manifest the reverse.
4.2 Effects of parameter variation on velocity and temperature profiles
In order to gain a thorough insight into the present work, further investigations were carried out for
the effects of various emerging physical parameters on the velocity and temperature fields as depicted
graphically in Figures 2-18, taking a = 1. Generally, both the dimensionless fluid velocity f ′(η)
and temperature θ(η) assume the plate values and vary curvilinearly away from the plate within
the boundary-layer and nosedive towards the boundary-edge satisfying the free stream boundary
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Table 3: Comparison of the values of the local inverse plate temperature (θ−1(0),
with [31] in the absence of concentration when λ = a = 1, A = Da = Nr = 0

Table 4: Computations showing varying values of the wall velocity gradient f ′′(0) and
plate temperature (θ(0), for various values of physical flow parameters indicated

when a = 1

conditions asymptotically. Figures 2-3 demonstrate the effects of viscosity variation parameter A,
on the velocity and temperature fields for either stretching or shrinking plate. It is observed that
adjacent to the wall, f ′(η) increases in either of the cases of stretching or shrinking, but far away
from it the opposite trend prevails. However, increase in A, leads to mild temperature fall in the
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Figure 2: Variation of velocity f ′(η) for different viscosity variation parameter A.

case of stretching but strong temperature falls for a shrinking plate. The effects of porous medium
permeability parameter Da, on f ′(η) and θ(η) are depicted in Figures 4-5. Clearly Da impedes
the fluid motion and in consequence raises the temperature within the boundary layer for both
stretching and shrinking cases. From these figures, it is affirmed that the viscous boundary-layer
thickness depreciates while the thermal boundary-layer thickens as the porous medium parameter
strengthens. The trends of responses of the fluid velocity and temperature due to increasing value
of suction/injection parameter, as revealed in Figures 6-7 signal a damping influence on the velocity
for both stretching and shrinking plate, and fluid temperature as in the case of stretching while the
temperature of the fluid rises for a shrinking plate. Figures 8-9 unveil the effects of the buoyancy
parameter Gr, on the velocity and fluid temperature for stretching/shrinking plate. As observed,
the influence of increasing natural convection parameter Gr, is to accelerate the fluid and stem down
the fluid temperature increasingly. Also, when Gr = 0 (absence of natural convection), a straight-
line profile ensues, indicating a transformation to convective flow subjected to pure stretching of the
plate in which the plate establishes a dragging force on the fluid (see Table 4 and discussion therein).
Figures 10-11 settle the effects of the heat flux exponent n on f ′(η) and θ(η). As can be seen in
these figures, increasing n gives rise to decrease in f ′(η) and θ(η) in a stretching/shrinking plate.
Figures 12-13 display the varying influence of the radiation parameter on the velocity and fluid
temperature within the boundary layer. These figures illustrate that, in a stretching/shrinking
plate, increasing Nr causes a significant increase in f ′(η) and θ(η). Strengthening the Prandtl
number, as illustrated in Figure 14, procures a significant increase in stretching case and a decrease
in the shrinking case for the fluid velocity within the boundary layer while the fluid temperature
falls drastically as predicted in Figure 15, due to increasing value of Pr in both cases of the plate
motion. Figures 16-17 show the effects of stretching/shrinking parameter on the velocity and the
fluid temperature when other physical parameters have fixed values. In these figures, near the
plate, increase in the stretching parameter λ > 0, can accelerate the fluid and stem temperature
from rising in the boundary layer while the reverse trend is predicted when the shrinking parameter
λ < 0 intensifies.

69

 https://doi.org/10.5281/zenodo.8218009


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

Vol. 9, No. 1, pp. 59 - 80
https://doi.org/10.5281/zenodo.8218009

Figure 3: Temperature θ(η) variation for different viscosity variation parameter A.

Figure 4: Variation of velocity f ′(η) for different permeability parameter Da.
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Figure 5: Temperature θ(η) variation for different permeability parameter Da.

Figure 6: Variation of velocity f ′(η) for different suction parameter Fw.
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Figure 7: Temperature θ(η) variation for different suction parameter Fw.

Figure 8: Variation of velocity f ′(η) for different Grashof number Gr.
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Figure 9: Temperature θ(η) variation for different Grashof number Gr.

Figure 10: Variation of velocity f ′(η) for different heat flux exponent n.
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Figure 11: Temperature θ(η) variation for different heat flux exponent n.

Figure 12: Variation of velocity f ′(η) for different thermal radiation parameter Nr.
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Figure 13: Temperature θ(η) variation for different thermal radiation parameter Nr.

Figure 14: Variation of velocity f ′(η) for different Prandtl number Pr.

75

 https://doi.org/10.5281/zenodo.8218009


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

Vol. 9, No. 1, pp. 59 - 80
https://doi.org/10.5281/zenodo.8218009

Figure 15: Temperature θ(η) variation for different Prandtl number Pr.

Figure 16: Variation of velocity f ′(η) for different stretching parameter λ.
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Figure 17: Temperature θ(η) variation for different stretching parameter λ.

5 Conclusion
The major findings of this study are itemised as follows:

• The surface shear stress parameter and plate temperature are higher in values due to injection
as compared with those due to suction insofar as the plate stretches.

• The porous medium parameter impedes the fluid motion and in consequence raises the plate
temperature for stretching or shrinking surface.

• The surface shear stress parameter is significantly enhanced whereas, not only the plate tem-
perature but also the entirety of the fluid temperature falls as the radiation parameter inten-
sifies for stretching/shrinking plate motion.

• The enhancement of shrinking parameter decelerates the fluid, and in consequence raises the
plate temperature considerably.

• Viscosity variation parameter can cause a rise in the fluid velocity and a fall in plate temper-
ature with a subsequent intensification in the value of the surface shear stress parameter.

• The influence of increasing the buoyancy parameter is to accelerate the fluid, enhance the sur-
face shear stress parameter and stem down wall temperature in either stretching or shrinking
wall motion.

• For a stretching plate, the surface shear stress parameter as well as the plate temperature
depreciates in value as the Prandtl number increases.
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