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Abstract

In this work, a new class of analytic function was defined by the Gegenbauer polynomial
involving the sine function. The initial coefficient estimates were obtained and the fourth
Toeplitz determinants was presented.
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1 Introduction

Orthogonal polynomials were discovered by Legendre in 1784 [1]. Under specific model restric-
tions, orthogonal polynomials are frequently employed to discover solutions of ordinary differential
equations. Moreover, orthogonal polynomials are a critical feature in approximation theory. Two
polynomials Pn and Pm, of order n and m, respectively, are orthogonal if

d
(P, Pn) :/ P, ()P, (x)r(z)dz =0

for n # m where r(z) is non-negative function in the interval (¢, d); therefore, all finite order poly-
nomials P, (x) have well-defined integral. An example of an orthogonal polynomial is a Gegenbauer
polynomial (GP) [2]. Several authors have carried out research on the Gegenbauer polynomial,
see [3], [4], [5], [6], [7], [8] and [9].

Many researchers have studied several Hankel and Toeplitz determinants for various classes of func-
tions. For example, Janteng et al. [10] investigated second Hankel determinant for a function with
a positive real part and starlike and convex functions, respectively; Bansal [11], Lee et al. [12] and
Shaharuddin et al [13] discussed the second Hankel determinant for certain analytic functions; Za-
prawa [14]|, Zhang et al. [15] and Babalola [16] derived third-order Hankel determinant for certain
different univalent functions; Raza and Malik. [17] and Shi et al. [18], [19], and Breaz et al [20],
studied upper bounds of the third Hankel determinant for some classes of analytic functions related
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to lemniscate of Bernoulli, cardioid domain and exponential function; Mahmood et al. [21] found
third Hankel determinant for a subclass of g-starlike functions. Following the above work, Zhang et
al. [22] recently considered fourth-order Hankel determinants of starlike functions related to the sine
function. On the other hand, Ramachandran and Kavitha [23] and Ali et al. [24] studied Toeplitz
matrices whose elements are the coefficients of starlike, close-to-convex, and univalent functions.
Besides, Tang et al., [25] studied third-order Hankel and Toeplitz determinant for a subclass of mul-
tivalent g-starlike functions of order ; Zhang et al. [26] considered third-order Hankel and Toeplitz
determinants of starlike functions, which are defined by using the sine function; Ramachandran et
al. [27] derived an estimation for the Hankel and Topelitz determinant with domains bounded by
conical sections involving Ruscheweygh derivative; Srivastava et al. [28] found the Hankel determi-
nant and the Toeplitz matrices for a newly defined class of analytic g-starlike functions.
Motivated by the work of Al-Hawary et al [2], Al-Shbeil et al [3], Olatunji et al [29] and Zhang and
Tang [30], it is established that Gegenbauer polynomial also promotes the advancement of geometric
function theory. In this paper, we aim to investigate the second, third and fourth-order Toeplitz
determinant for this function class K, , associated with sine function and obtain the upper bounds
for the determinants.

2 Preliminaries

Let A denote the class of functions of the form
flz) = erZakzk (2.1)
k=2

in the unit disk D, D= (2 € C: |z| <1).

which are analytic in the unit disc D with conditions f(0) = f/(0) — 1 = 0. Recall that, S is
representing a univalent function with some of the above conditions. With simple modificaton and
differentiation, various subclasses of A are known such as starlike function, convex function, close-
to-convex just to mention but a few with representations below 1001[31].

[32] A function f(z) € A is said to be starlike if it satisfies the condition

R (i{éi?) >0 (ze€D).

Denote this class by S*.
[32] A function f(z) € A is said to be convex if it satisfies the condition

2f"(2)
f'(z)

§R<1+ )>O(z€]D)).
Denote this class by C.
[32] A function f(z) € A is called close-to-convex, if there exist a convex function ¢ such that

R (55:8) >0 (2eD).

Kaplan’s definition does not require that the function ¢ is normalized, but since the majority of
results obtained for close-to-convex functions assume this, we will suppose that ¢ so that ¢(0) =0
and ¢'(0) = 1.

1001[32],1001[33],1001[34] and 1001[35]. A function f(z) € A is called close-to-convex, if there
exist a function g € S* such that
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Denote this class by K. Choosing g(z) = f(z), it is clear that $* C K, and so C C §* C K.
[32] Let p be analytic in D, with p(0) = 1. Denote by P the class of functions p with Taylor series
expansion

p(z) =1+ dp2" (2.2)

satisfying
R(p(z)) >0 (2 €D).
(Derek et al., 2018). Functions in P are referred to as functions with positive real parts in D or

Caratheodory functions. [32] For two functions f and g analytic in U, we say that the function f(z)
is subordinate to ¢g(z) in U and write

f(z) <g(2) (2.3)

(z € U) if there exists a Schwartz function w(z) analytic in U with w(0) = 0 and |w(z)| < 1 (z € U)
such that

f(z) = g(w(z))
In particular, if the function g is univalent in U, the above subordination is equivalent to f(0) = ¢(0)
and f(U) C ¢g(U).
For non-zero real constant A, a generating function of Gegenbauer polynomials.
1

(1 —2mz + 22)’ (24)

kx(m,z) =

where m € [-1,1] and z € U. For fixed m the function kj ,, is analytic in U, so it can be expanded
on a Taylor series as

Fam = Y Ch(m)z", (2.5)
n=0

where C)(m) is Gegenbauer polynomial of degree n.
Obviously k) generates nothing when A = 0. Therefore, the generating function of the Gegen-
bauer polynomial is set to be

ko(m,z) =1 —log(1 — 2mz + 2*) = Z C%(m)z" (2.6)
n=0

for A = 0 and Gegenbauer polynomials can also be defined by the following recurrence relations:

! 2m(n 4+ X —1)C)_(m) — (n+ 2\ — 2)C>_,(m)] (2.7)

n

Cp(m)

with initial values

Co(m) = 1,07 (m) =2 m, Cy(m) =2X(1+ N\)m? — X
AN+ 1A +2)

and C3(m) = 3

m? — 2 (A +1)m  (2.8)

see details in [30]
Szynal [37] introduced the class T'(A) as a subclass consisting of functions of the form

c(z) = /71 k(z,m)do(m) (2.9)
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where -
k(z,m)=z+ Z )y (m)z" (2.10)
n=2
Let -
Omf(z)=k(z,m)« f=2z+ Z i (m)ayz" (2.11)
n=2

(2.11) denotes the Hadarmard product of (2.1) and (2.10).

To prove our desired results, we require the following lemmas and definitions.
Lemma 2.1. [30]. If p(z) € P from 2.2, then |d,| < 2,n=1,2,....

Lemma 2.2. [30] Let p(z) € P, then 2ds = d3 + (4 — d3)¢. and 4ds = d3 +2d1 (4 — d3)€ — dy (4 —
d})§? +2(4 = d})(1 = [¢*)n. for some &,n satisfying |§] < 1,]¢| <1 and d; € [0,2].

Lemma 2.3. [70] If p(z) € P, then

d? 43
-Gy <2- 4, 212
|dnr — pdnpdi] <2,0< <1 (2.13)
|dpvor — pdndi| < 2(1 +2p). (2.14)

Lemma 2.4. [30]. If g(z) € S*, then |b,| <n,n > 2.

[32] Let p be analytic in D , with p(0) = 1. Denote by P the class of functions p with Taylor
series expansion

pz2) =14 dnz" (2.15)
satisfying
R(p(z)) >0 (2 €D).

(Derek et al., 2018).
Now we define the following new subclass of K, s as follows [30]. Let (xm € K, s, if (m € A

and there exists g(z) € S* such that
2(Gm ) (2)
9(2)

where A > 0,m € [1,—1] and K, s denotes the natural close- to-convex analogue of S, Note that
s denotes the Sine function.

— 1| <sinz

3 Main Results

Theorem 3.1. If (\m € K, s where m € [1,—1], then

|a2| < L
= S (m)]
5
R EYen]
|a4| < 53
243 (m)
92
951 < 1 1m)
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Proof: From Definition 2.8, g(z) € S* and according to subordination relationship, there exists
a Schwarz function w(z) with w(0) = 0 and |w(z)| < 1 such that

Z(C)\7mf)/(z) _ sin z
9(z) 1’ B

2(Oum f) (2) = g(2)(1 + sinw(2))
Oumf(z) =2+ Z cf‘,_l(m)anz”
n=2
Oumf'(2) =1+ Z ney_(m)anz""t
n=2

2O0omf'(2) = 2+ Z ned_(m)anz"
n=2

Now, if g(z) € S*
g(z) =z + Z bpz"
n=2

1
3 p(z) = 11_7: =1+4dyz + dyz* + ...such that p(z) € P

and
p(z)—1 diz +dp2® + ...

w(z) = L+p(z) 2+diz+dez?+ ...

d dy d3 i didy d
=g () (T g)

3d3dy dyds dP dd o dy\
( 8 2 16 4 2)F 7t

1 dod?  d? 3dsd?  3dod? 2 3\ .
@) = <48d§> @+ ( 6 3;) 2 ( s 1 Tt 161>Zd”'
5
(w(2)* = 2
. - w(2)®  w(z)®
sinw(z) = w(z) — 3 A + ..

Substituting for w(z) in sinw(z),

ds d‘{>22 <5d§ d1d2+dg)23+(5d§d2_dldg_?ml‘ll_d§+d4>z4

sinw(z) = 2Z+< 2 14 s 2 T2 16 2 32 472
L (5dids | 5didd  5didy | G1d]  dady | dy , dids) s
16 16 45 3840 32 2 2 )7
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1+sinw(z) 1—1—512—&— (22 —

Multiplied by (g(z)), we have

g(z) (1 +sinw(z)) =z + <d21+

L5
18

Equating coefficients (3.1) and (3.3); we have that

HTTPS://D0OI.0RG/10.5281/zENODO. 10202633
d2 3

B o, (5 didy

4 48

d3\ 4 (5d3dy
> 73 ) : +( 16

L (5dids | 5hd3  Sdidy | 61d7  dods

16 16 48 3840 32

st a3

+d24> 2t

ds

2

% + bg) 23
dobo
2

2
b2>2’2+<d22—dl+

4
didy  ds
2

 d3by
4

d1bs
2

2

+ b4> 24 =+ ...

2

(2¢7(m)as) 2% = (dl n b2> .2

(3e}(mar) = =

(4C§‘(m)a4) 4

5d3
(5ci(m)a5) 25

<5d§d2

16
From equation 3.4

dy dids 3d} 3
ya_dids  3dy  dj

ag =

laz| <

=9

las| S‘

dy 2

dqby
2 4

+ 5 + bg) 23
daba
2

dids

ds
2

2

d2by
4

dyb3
2

+ b4) 24

5d3by

badidy
48

2

di
di

— +b
2—1—2

diby
2

bads
2

bsds
2

byd?
1

b
2c1(m)

_
ci (m)|

dy

b
n 2

From equation 3.5

1

4)e

(3
! (an-

1

1(m)]

+0o)
)

dib
)‘F%—Fbg

|dy|[b2]

+7

2

2lct(m)]
B &

4

d1bs

2
a2 diby

PR
1 43
(dz—gl

2
dl
5 — —

2

+ |bs] (3.9)
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From (3.6)
1 (5 dids ds  dsbs by dibs
a4_4c§(m)<48_ y ta ity T Ty th
_ 1 @ %Jrl(d —dydy) + bQ(d,dj)er
acd(m) \ 48 2 T 2Y P SR
5d3 db 1 ba d3
las| < ‘4>\ H 123+§(d3—d1d2) (d2—3)+b4
1 5ldf|  |dallbs| | 1 \b2\ di
—|ds — did do — b 3.10
sl < ot (i + 2 5l — vl + i = S+ (3.10)

Immediately from (3.7)

1 (5d2{d2 dy dyds  3dd % 5d3by  bydidy  dyby  bods  bsdy  bsd?

BTExm\ 16 2 2 32 4 48 2 2 2 2 4
Sdidy | di | 5diby diby  byds bsdy dids  3d} &3 bydydy  byd?
& b _ _2% G  D2ada  D3dy
las] < H s T Tt 2 32 4 2 1
1 |5d3dy di  5d3bs dibs  bads bgd2 ds  3d3  body  bsdy
< da b +|—d o0 2202 ) 2%
|a5|_5|cjl\|(m)'16 TRt Tt 2 Hedllg+ 5+ 5+
1 5|df||da| | |da| | 5l|d}[ba| |d[[ba| | |b2llds| | [bs]|do]
[0l 4 2M911%21 4 1
|a5|—5cﬁ|(m)[ 16 3 TTag Tl T T
3| 3|d}| | |ballda| | |bs||di] L)
d, 214 11
+ | |< +t Yty +4|2| (3.11)
If G € Cn(2), then Jag] < 58—

Proof:
setting n = 2 in (3.1) yeilds (3.8) and applying lemmas 2.1 and 2.4

d
L

lag| < 5

< 1
= 2le}(m)]

the proof follows. This is the result obtained by Olatunji [29].
If (x.m € Cn(2), then

a5l < o
3] <
3¢y (m)
Proof:
setting n = 3 in (3.1) yeilds (3.9) and applying lemmas 2.1, 2.3 and 2.4, we have
L1 |da]]ba|
las| < 5 + + |bs]
3lez3(m)] 2 2 2

the proof follows. This is the result obtained by Olatunji [29].
If (x.m € Cn(2), then

+ b5>

d;

+-

4
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Proof:
setting n =4 in (3.1) yeilds (3.10) and applying lemmas 2.1, 2.3 and 2.4, we have

1 5|d§| |d1|[bs] 1 \52‘ d%
ay| < + + —|d3 — dids| + ——|dy — —=| + |b
‘4| c (48 2 2|3 12| 2|2 2| |4|

hence the proof.
If Cx.m € Cp(2), then
92

< _
= i)

Proof:
setting n =5 in (3.1) yeilds (3.11) and applying lemmas 2.1, 2.3 and 2.4, we have

1 5|d3||da| |da| - 5|d3||bo]

dqi||b bolld bal|d
|d1]|ba] | |b2]] 3|+|3|| 2|

< al 2102l 4
|a5|_5\ci‘|(m) 6 T2 T Tl 2
|ds| | 3|dP] | [ballda| | [bslldi]) | 1 o
+|d1|( 2 T T Ty + 13l

the proof follows.

Toeplitz Determinants of K, ,
The Toeplitz matrix is a matrix in which each descending diagonal from left to right is constant,
this means

an Gp41 ... Gpdqg-—1
anJrl (079 an+1
Ty(n) =
- Gp41

Gptq—1 -+ QAn41 Gn

n<l1lg<l1
This matrix has computational properties and appearances in various areas, 1001[23],1001[38].

In this work, assume a; = 1, then the estimates for the Toeplitz determinant in the cases of

qg=2n=2,q=3,n=1,¢q=3n=2,qg=4,n=1and g =4,n = 2 of the analytic function
having entries from the class K, s is presented in the following Theorems.

Theorem 3.2. Let (\m € K, s where m € [1,—1], and

az as

TQ(Q): az az

then
9 71

2
<
< T t @)

Proof: The proof follows from equations 3.8 and 3.9

Theorem 3.3. Let (\m € K, s where m € [1,—1], and

ay a2 asg
T3 (1) = | a2 a1 a3z
az as aq

then,

1 5 97
1+2(12((1371)7CL32 §1+ — —
| 2 | 36|c2 ey (m)|  2|2M(m)  18|c3M(m)]

Proof: The proof follows from (3.8),(3.9),(3.10) and (3.11)
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Theorem 3.4. Let (), € K, s where m € [1,—1], and

a2 Az Qg
T3(2): asz az as
a4 as ag
then,
203 s — ) — anas® 1 ad] < |A|3 BEICI , |AIBP AllCP?
= Slef(m)] " 18133 m) 0[N m)] - s2le| 3 (m)

Proof: The proof follows.
Theorem 3.5. Let (\m € K, s where m € [1,—1], and

ap az az aq
a2 a1 G2 04z
asz a2 ai az
a4 az az ai

T,(1) =
then,

1 — 3a3 + 2a3a3 — 2a3 - 2a2a3 + 4azazas — 2a2a3a4 — 2a3ay + a3 + a3 + a2+ a2a2|

__3lAP |A]?|B| 2|B? [AP?|BJ? |Al|BI?|C|
T A@Am)| - 6lefMeal(m) 9l (m) - 36|cEMcBA[(m)  36]cR||c3Alle3] (m)
Elle C|” [AP[CT?

16]ciA[cq|(m) — 16]c3(m) — 64]ei?||c3A|(m)
Proof: The proof follows from (3.8),(3.9),(3.10) and (3.11).

Theorem 3.6. Let () € K, s where m € [1,—1], and

az asz a4 as
as ag az a4

T4(2) - ay, az az as
as G4 G3 G2
then,
(a3 — a3)? + 2(a3 — azaq)(azaq — asas) — (azas — azaq)? + (af — azas)* — (asas — azas)?|
o AP |BI* [ Al|BJ|C|D| [A||BP?|C] (o5
= 16[ciA(m)| - 81]ezM(m)  30lc}[[elleallerl(m)  18eil[e3Allea[(m)  256c3?|(m)
|BI*|D|? n A B|? Yy [APICT? [A]?|DJ? |BI*|C?
225[c3MciA|(m) — 12[cfA[[e3A[(m)  32[efA[[e3A|(m)  100[ciN|[c3M|(m)  72[e3M[e3Al(m)
2|B*|D| |B||C|?| D]

135[c3Y|c3|(m) ~ 120[c3||c3A[[e] (m)

Proof: The proof follows from Theorem 3.1

4 Acknowledgement
The authors sincerely thank the the editor and the anonymous reveiwers for their valuable comments

and suggestions. Their insightful feedback significantly improved the clarity and quality of this
manuscript.

70


 https://doi.org/10.5281/zenodo.10202633

C,! : INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES AND
OPTIMIZATION: THEORY AND APPLICATIONS

IJMSO VoL. 9, No. 2, pp. 62 - 73
HTTPS://D0I.0RG/10.5281/zENODO. 10202633

References

[1] Legendre, A.(1785); Recherches sur Laattraction des Sphéroides Homogénes; Mémoires
Présentes par Divers Savants a laAcadémie des Sciences de lalnstitut de France; Goethe Uni-
versitat: Paris, France, 10, 411-434.

[2] Al-Hawary, T., Amourah, A., Alsoboh, A., and Alsalhi O.A. (2023); New Comprehensive
Subclass of Analytic Bi-Univalent Functions Related to Gegenbauer Polynomials. Symmetry
15(576). https://doi.org/10.3390/sym15030576

[3] Amourah A., Al Amoush A.G. and Al-Kaseasbeh M. (2021); Gegenbauer polynomials and
biunivalent functions. Palestine Journal of Mathematics, 10(2), 625-632

[4] Frasin B.A, Amourah A., Abdeljawad T. (2021); Fekete-Szeg o Inequality for Analytic and
Biunivalent Functions Subordinate to Gegenbauer Polynomials. Journal of Function Spaces,
Article ID 5574673.

[5] Yousef. F., Amourah A., Alomari M., and Alsoboh A. (2022); Consolidation of a Certain Dis-
crete Probability Distribution with a Subclass of Bi-Univalent Functions Involving Gegenbauer
Polynomials. Mathematical Problems in Engineering, Article ID 6354994.

[6] Bavinck H., Hooghiemstra G., and De Waard E.(1993) An application of Gegenbauer polyno-
mials in queueing theory. Journal of Computational and Applied Mathematics, 49, 1-10.

[7] Oyekan E.A, Olatunji T.A. and Lasode A.O. (2023): Applications of (p, q) Gegenbauer Poly-
nomials on a Family of Bi-univalent Functions; Earthline Journal of Mathematical Sciences,
E-ISSN: 2581-8147, 12(2), Pgs 271-284.

[8] Al-Shbeil I., Wanas A.K, Benali A., and Ca~tas A. (2022); Coefficient Bounds for a Certain
Family of Biunivalent Functions Defined by Gegenbauer Polynomials; Hindawi Journal of Math-
ematics, Article ID 6946424, https://doi.org/10.1155/2022/6946424.

[9] Wanas A.K., and Cotirla L.I. (2022); New applications of Gegenbauer polynomials on a new
family of bi-Bazilevi ¢ functions governed by the g-Srivastava-Attiya operator, Math. 10, Art.
ID 1309. https://doi.org/10.3390/math10081309.

[10] Janteng A., Halim S. and Darus M.(2006) Coeflicient inequality for a function whose derivative
has a positive real part, Journal of Inequalities in Pure and Applied Mathematics, 7(2), article
50.

[11] Bansal D. (2013); Upper bound of second Hankel determinant for a new class of analytic
functions, Applied Mathematics Letters, 26(1), 103-107.

[12] Lee S.K, Ravichandran V., and Supramaniam M. (2013); Bounds for the second Hankel de-
terminant of certain univalent functions, Journal of inequalities and Applications, 1, Article ID
281.

[13] Shaharuddin C. S., Daud M., and Huzaifah D. (2023); Coeflicient Estimate on Second Han-
kel Determinant of the Logarithmic Coefficients for Close-To-Convex Function Subclass with
Respect to the Koebe Function: Malaysian Journal of Fundamental and Applied Sciences, 19
(154-163).

[14] Zaprawa P. (2017); Third Hankel determinants for subclasses of univalent functions, Mediter-
ranean Journal of Mathematics, 14(1).

[15] Zhang H.Y., Tang H. and Ma L.N. (2017); Upper bound of third Hankel determinant for a
class of analytic functions, Pure and Applied Mathematics, 33(2), pp. 211-220.

71


 https://doi.org/10.5281/zenodo.10202633

C,! : INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES AND
OPTIMIZATION: THEORY AND APPLICATIONS

IJMSO VoL. 9, No. 2, pp. 62 - 73
HTTPS://D0I.0RG/10.5281/zENODO. 10202633

[16] Babalola K. O. (2009); On third Hankel determinant for some classes of univalent functions,
https://arxiv.org/abs/0910.3779.

[17] Raza M. and Malik S.N. (2013); Upper bound of the third Hankel determinant for a class of
analytic functions related with lemniscate of Bernoulli, Journal of Inequalities and Applications,
13(1), Article ID 412.

[18] Shi L., Srivastava H.M., Arif M., Hussain S. and Khan H. (2019); An investigation of the
third Hankel determinant problem for certain subfamilies of univalent functions involving the
exponential function,” Symmetry, 11(5), p. 598.

[19] Shi L., Ali I., Arif M., Cho S., Hussain N.E, and Khan H.,(2019); A study of third Hankel
determinant problem for certain subfamilies of analytic functions involving cardioid domain,
Mathematics, 7(5), 418.

[20] Daniel B., Adriana C. and Luminita I.C. (2022); On the Upper Bound of the Third Hankel
determinant for certain class of analytic functions related with exponential function: Accesso
Libero, Sciendo. DOI: https://doi.org/10.2478 /auom-2022-0005, 75-89.

[21] Mahmood S., Srivastava H.M., Khan N., Ahmad .Q.Z, Khan B., and Ali I. (2019) Upper bound
of the third Hankel determinant for a subclass of g-starlike functions Symmetry, 11(3) article
347.

[22] Zhang H.Y and Tang H., (2021); A study of fourth-order Hankel determinants for starlike
functions connected with the sine function, Journal of Function Spaces, Article ID 9991460.

[23] Ramachandran C. and Kavitha D. (2017); Toeplitz determinant for Some Subclasses of Ana-
lytic Functions: Global Journal of Pure and Applied Mathematics, ISSN 0973-1768, 13(2) pp.
785-793 (©) Research India Publications http://www. ripublication.com/gjpam.htm

[24] Ali M.F., Thomas D.K., and Vasudevarao A. (2018); Toeplitz determinants whose elements
are the coefficients of analytic and univalent functions, Bulletin of the Australian Mathematical
Society, 97(2), pp. 253-264.

[25] Tang H., Khan S., Hussain S. and Khan N. (2021); Hankel and Toeplitz determinant for a
subclass of multivalent g-starlike functions of order «v, AIMS Mathematics, 6(6), pp. 5421-5439.

[26] Zhang H.Y., Srivastava R. and Tang H. (2019); Third-order Hankel and Toeplitz determinants
for starlike functions connected with the sine function,” Mathematics MDPI 7(5) p. 404.

[27] Ramachandran C. and Annamalai L.(2016); On Hankel and Toeplitz determinants for some
special class of analytic functions involving conical domains defined by subordination, Interna-
tional Journal of Engineering Research Technology (IJERT), 5, pp. 553-561.

[28] Srivastava R., Ahmad Q.Z. and Khan B.(2019); Hankel and Toeplitz determinants for a sub-
class of g-starlike functions associated with a general conic domain, Mathematics, mdpi.com.

[29] Olatunji S. O. (2022). Analytic univalent function defined by GegenBauer Polynomials. Journal
of Mahani Mathematical research. 179-186.

[30] Zhang H. and Tang H. (2021) Fourth Toeplitz Determinants for Starlike Functions De-
fined by Using the Sine Function: Journal of Function Spaces, Article ID 4103772,
https://doi.org/10.1155/2021/4103772.

[31] Goel R.M and Mehrok B.S. (1982). A subclass of univalent functions, Houston J.Math.,8(3):
343-357.

[32] Derek, K.T., Nikola, T. and Allu, V. (2018). Univalent Functions. Deutsche National Bibli-
ografie Walter de Gruyter.

72


 https://doi.org/10.5281/zenodo.10202633

C,! : INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES AND
OPTIMIZATION: THEORY AND APPLICATIONS

IJMSO VoL. 9, No. 2, pp. 62 - 73
HTTPS://D0I.0RG/10.5281/zENODO. 10202633

[33] Chichra P.N. (1977); New subclasses of the class of close-to-convex functions, Proc. Amer.
Math. Soc. 62(1), 37-43.

[34] Goyal S. P. and Goswami P. (2022), On certain properties for a subclass of close-to-convex
functions, Journal of Classical Analysis, 1(2), 103-112.

[35] Kaplan W. (1952); Close-to-convex schlicht functions, Michigan Math. J. 1, 169-185.

[36] Mehrok B. S., Gagandeep Singh (2013); A subclass of a— close to convex functions: Interna-
tional Journal of Modern Mathematical Sciences, 6(2): 121-131.

[37] Szynal J.(1994); An extension of typically real functions. Ann. Univ. Mariae Curie-Sklodowska,
Sect A. 48, 193-201.

[38] Saba N. A., Ali A., Ahmed H. H., Sameer A. A.(2020) Toeplitz Determinant whose Its
Entries are the Coefficients for Class of Non-Bazilevic Functions; 1st International Confer-
ence on Pure Science (ISCPS-2020) Journal of Physics: Conference Series: doi:10.1088/1742-
6596,/1660,/1/012091

73


 https://doi.org/10.5281/zenodo.10202633

	Introduction
	Preliminaries
	Main Results
	Acknowledgement

