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Abstract

This study applies the Projected Differential Transform Method (PDTM) to solve nonlin-
ear higher-order partial differential equations (PDEs). The Projected Differential Transform
(PDT) series solutions converge to exact solutions with relative ease. Numerical problems
of fourth- and sixth-order nonlinear hyperbolic equations and nonlinear wave-like equations
with variable coefficients are solved to show that PDTM can efficiently provide exact solu-
tions for nonlinear PDEs of higher order with initial conditions. The results demonstrate
that the PDTM is exceptionally accurate, efficient, and reliable and that it can be applied
to many other types of nonlinear higher-order PDEs. Compared to the Modified Decomposi-
tion Method, the Homotopy Analysis Approach, and the Homotopy Perturbation Method, this
method significantly reduces numerical computations and outperforms in accuracy.

Keywords: Projected differential transform method, Cauchy problem, Nonlinear Higher Order
Partial Differential equation, Hyperbolic Equation, Wave-like Equation.
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1 Introduction
The Cauchy problem for nonlinear higher order partial differential equations (PDEs) with source
term is considered in this paper given as follows:(

∂2

∂t2
− α

∂2

∂x2

)k

w(x, t) = Nw(x, t) + h(x, t), k ≥ 1, (1.1)

given the initial conditions

∂iw(x, 0)

∂ti
= fi(x), i = 0, . . . , 2k − 1, (1.2)
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where w = w(x, t) is the unknown function, Nw(x, t) represents the nonlinear term with nonlinear
differential operator N , h(x, t) is the in-homogeneous or source term and α = α(x, t) may be a
constant or function of x or t. When k > 1, eqn.(1.1) becomes a higher order nonlinear hyperbolic
equation [1], while for k = 1, is reduced into a wave-like equation [2, 3]. Some nonlinear problems,
such as earthquake stresses, elastic waves in soil, and coupling currents in a planar multi-strand
two-layer superconducting cable, are described by models similar to eqn. (1.1) - (1.2) [4], [5], [6].

Special cases of eqn. (1.1) and (1.2) have been considered in [1–3] using the Modified Decompo-
sition Method (MDM), Homotopy Perturbation Method (HPM) and Homotopy Analysis Approach
(HAA) respectively. One of the main difficulties in the use of the Adomian Decomposition Method
(ADM) and its modification, MDM, is the complex calculations of the Adomian polynomials [7], [8].
While HPM needs some restrictive assumptions and functional equations to be solved in each it-
eration which is tricky in case of nonlinear problems [9, 10]. The HAA as applied by [3] requires
initial guesses and the choice of an auxiliary linear operator is computationally stressful [10]. The
projected differential transform method (PDTM) known for its simplicity and versatility in solving
nonlinear initial valued problems was first presented by Jang [11]. This method does not require the
computation of Adomian polynomials, any restrictive assumptions and auxiliary linear operators,
or an initial guess like MDM, HPM, and HAA respectively.

The PDTM typically involves transformations and a series of iterative computations that can
be carried out with the aid of symbolic computational software such as Maple or Mathematica. It
requires selecting appropriate basis functions to transform each differential and function involved
in the given problem and the associated initial conditions and solving a set of algebraic equations
iteratively [11], [12]. The solutions obtained are usually infinite power series for suitable initial
conditions, which easily converge naturally to the exact solution of the differential equations [13].
PDTM can provide accurate solutions when applied correctly, particularly for problems with well-
behaved solutions [13]. It is well-suited for handling nonlinear PDEs, which are prevalent in various
scientific and engineering applications. PDTM has been applied to a wide range of PDEs in various
fields, including fluid dynamics, heat transfer, solid mechanics, and quantum mechanics [13], [14].
It has been used to study problems such as the nonlinear Schrödinger equation, the Korteweg-de
Vries equation, and the Burgers’ equation [14], [15], [16].

In recent years, researchers have continued to exploit the efficiency and robustness of PDTM
in handling non-linearity in PDEs for improving other similar methods, such as variations and
hybrid methods that combine PDTM with other analytic techniques, such as Laplace and Elzaki
transforms, among others that cannot handle nonlinearity, for solving a broader range of PDEs [17],
[18], [19], [20], [21]. Therefore, using the projected differential transform method (PDTM) proposed
in [11], this paper is interested in obtaining analytical solutions to the model eqn. (1.1) - (1.2).
The remaining sections are organized as follows. In the following section, we describe the method
for (n+1)-dimensional differential transform. In "section" 3, the PDTM for nonlinear higher-order
differential equations is defined along with its properties. In "section" 4, PDTM is applied to solve
eqn. (1.1) - (1.2). Section 5 applies this method to some special cases of eqn.(1.1) - (1.2). In
"section" 6, we conclude this paper with a concise discussion.

2 Description of (n + 1)-Dimensional Differential Transform
Method

The fundamentals of (n + 1)-dimensional differential transform method (DTM) are presented by
Jang [11] as follows:
Let the function w(x, t) be analytic at (x̃, t̃), then w(x, t) can be depicted by the Taylor series,

w(x, t) =
∞∑

q1=0

...

∞∑
qn=0

∞∑
p=0

1

q1!...qn!p!

[
∂q1+..+qn+pw(x̃, t̃)

∂xq1
1 ...∂xqn

n ∂tp

]( n∏
i=1

(xi − x̃i)
qi

)
(t− t̃)p (2.1)
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Definition 2.1. The (n+1) dimensional differential transform W (q, p) of w(x, t) at (x̃, t̃) is defined
by

W (q, p) =
1

q1!...qn!p!

[
∂q1+..+qn+pw(x̃, t̃)

∂xq1
1 ...∂xqn

n ∂tp

]
(2.2)

Definition 2.2. The inverse differential transform of W (q, p) is defined by

w(x, t) =
∞∑

q1=0

...

∞∑
qn=0

∞∑
p=0

W (q, p)

(
n∏

i=1

(xi − x̃i)
qi

)
(t− t̃)p (2.3)

It follows that, the coefficient of the Taylor series expansion of the function w(x, t) is what is being
referred to as the (n+ 1) dimensional differential transform W (q, p).

3 Basic Idea of the PDTM
The following fundamental definitions of PDTM are presented in [11]. Consider the Taylors series
of w(x, t) with respect to (w.r.t) some variables Xk ∈ (X1, ..., Xn, t). Without a loss of generality,
let Xk = t. Since w(x, t) is analytic at (x̃, t̃), then we can write eqn. (2.1) as follows:

w(x, t) =
∞∑
p=0

1

p!

[
∂p

∂tp
w(x1, ..., xn, t̃)

]
(t− t̃)p. (3.1)

Let PDT denote the projected differential transform operator and P−1
DT the inverse projected differ-

ential operator. The basic definitions and operations of the PDTM are introduced below.

Definition 3.1. The projected differential transform (PDT) W (x, p) of w(x, t) with respect to the
variable t at t̃ is defined by

W (x, p) =
1

p!

[
∂p

∂tp
w(x, t̃)

]
. (3.2)

Definition 3.2. The inverse projected differential transform of W ( x, p) with respect to the variable
t is defined by

w(x, t) =
∞∑
p=0

W ( x, p)(t− t̃i)
p. (3.3)

From eqn. (3.2) and (3.3), it follows that

w(x, t) =
∞∑
p=0

1

p!

[
∂p

∂tp
w(x1, ..., xn, t̃)

]
(t− t̃)p. (3.4)

which is the Taylor series of the multivariable function w(x, t) at t̃ = 0. Based on the preceding
definitions, the following table outlines the PDTM’s fundamental operations.
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Table 1: Basic Operations of the PDTM

Original Function Transformed Function
u(x, t) = αw(x, t)± βv(x, t) U(x, p) = αW (x, p)± βV (x, p)
u(x, t) = tmxn U(x, p) = δ(p−m)× xn

u(x, t) = etxn U(x, p) =
1

p!
× xn

u(x, t) =
∂

∂t
w U(x, p) = (p+ 1)W (x, p+ 1)

u(x, t) =
∂m

∂tm
w U(x, p) = (p+ 1)(p+ 2) . . . (p+m)W (x, p+m)

u(x, t) =
∂

∂x
w U(x, p) =

∂

∂x
W (x, p)

u(x, t) =
∂n

∂xn
w U(x, p) =

∂n

∂xn
W (x, p)

u(x, t) = α
∂m+n

∂tm∂xn
w U(x, p) = α(p+ 1)(p+ 2) . . . (p+m)

∂n

∂xn
W (x, p)

u(x, t) = w2(x, t) U(x, p) =
∑p

s=0 W (x, s)W (x, p− s)

u(x, t) = w3(x, t) U(x, p) =
∑p

r=0

∑p−r
s=0 W (x, p− r − s)W (x, r)W (x, s)

u(x, t) =

(
∂

∂t
w

)2

U(x, p) =
∑p

s=0 (p− s+ 1) (s+ 1)W (x, p− s+ 1)W (x, s+ 1)

u(x, t) =

(
∂2

∂t2
w

)2

U(x, h) =
∑p

s=0 (p− s+ 1) (p− s+ 2) (s+ 1) (s+ 2)W (x, p− s+ 2)W (x, s+ 2)

u(x, t) =

(
∂2

∂x2
w

)2

U(x, p) =
∑p

s=0

(
∂2

∂x2
W (x, s)

)(
∂2

∂x2
W (x, p− s)

)
u(x, t) = w

∂

∂t
w U(x, p) =

∑p
s=0(p+ 1)W (x, s)W (x, p+ 1− s)

u(x, t) = w
∂2

∂t2
w U(x, p) =

∑p
s=0(p− s+ 1)(p− s+ 2)W (x, p− s+ 2)W (x, s)

u(x, t) = w
∂

∂x
w U(x, p) =

∑p
s=0 W (x, p− s)

∂

∂x
W (x, s)

u(x, t) = w
∂2

∂x2
w U(x, p) =

∑p
s=0 W (x, p− s)

∂2

∂x2
W (x, s)
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4 Solution of Equations (1.1)-(1.2) Using PDTM

We apply the PDTM to eqn. (1.1) in standard form. By expanding the LHS of eqn. (1.1) to kth

term using binomial expansion, we have(
∂2

∂t2
− α

∂2

∂x2

)k

w(x, t) =
k∑

r=0

(−α)k−r

(
k

r

)
∂2rw

∂t2r
.
∂2k−2rw

∂x2k−2r
, (4.1)

where the Binomial coefficient is given by
(
k
r

)
=

k!

r!(k − r)!
0 ≤ r ≤ k.

Simplifying the R.H.S of eqn. (4.1), we have(
∂2

∂t2
− α

∂2

∂x2

)k

w(x, t) =
∂2kw

∂t2k
+

k−1∑
r=0

(−α)k−r

(
k

r

)
∂2kw

∂t2r∂x2k−2r
.

Thus eqn.(1.1) becomes

∂2kw

∂t2k
+

k−1∑
r=0

(−α)k−r

(
k

r

)
∂2kw

∂t2r∂x2k−2r
= Nw + h(x, t). (4.2)

Rearranging eqn. (4.2) the following is obtained

∂2kw

∂t2k
= Nw + h(x, t)−

k−1∑
r=0

(−α)k−r

(
k

r

)
∂2kw

∂t2r∂x2k−2r
. (4.3)

Now taking the PDT of each term of eqn. (4.3) using Table 1 above, we have

PDT

{ ∂2kw

∂t2k

}
= (p+ 1)(p+ 2) . . . (p+ 2k)W (x, p+ 2k), (4.4)

PDT

{
Nw(x, t)

}
= NW (x, p), (4.5)

PDT

{
h(x, t)

}
= H(x, p), (4.6)

PDT

{ k−1∑
r=0

(−α)k−r

(
k

r

)
∂kw

∂t2r∂x2k−2r

}
= (−α)k

∂2kW (x, p)

∂x2k
+ (−αk)k−1(p+ 1)×

(p+ 2)
∂2k−2W (x, p)

∂x2k−2
+ (−αk(k − 1)

2
)k−2(p+ 1)(p+ 2)(p+ 3)(p+ 4)

∂2k−4W (x, p)

∂x2k−4
+

· · ·+ (−αk)(p+ 1)(p+ 2) . . . (p+ 2k − 2)
∂2W (x, p)

∂x2
. (4.7)

Plugging the transformed functions eqn. (4.4) - (4.7) into eqn. (4.3), we have

(p+ 1)(p+ 2) . . . (p+ 2k)W (x, p+ 2k) = NW (x, p) +H(x, p) + (−α)k
∂2k

∂x2k
W (x, p)+

(−αk)k−1(p+ 1)(p+ 2)
∂2k−2

∂x2k−2
W (x, p) + (−αk(k − 1)

2
)k−2(p+ 1)(p+ 2)(p+ 3)(p+ 4)×

∂2k−4

∂x2k−4
W (x, p) + · · ·+ (−αk)(p+ 1)(p+ 2) . . . (p+ 2k − 2)

∂2

∂x2
W (x, p), (4.8)
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and rearranging the transformed eqn. (4.8) reduces to a recurrence relation as follows:

W (x, p+ 2k) =
1

(p+ 1)(p+ 2) . . . (p+ 2k)

(
NW (x, p) +H(x, p) + (−α)k

∂2k

∂x2k
W (x, p)+

(−αk)k−1(p+ 1)(p+ 2)
∂2k−2

∂x2k−2
W (x, p) + (−αk(k − 1)

2
)k−2(p+ 1)(p+ 2)(p+ 3)(p+ 4)×

∂2k−4

∂x2k−4
W (x, p) + · · ·+ (−αk)(p+ 1)(p+ 2) · · · (p+ 2k − 2)

∂2

∂x2
W (x, p)

)
. (4.9)

We note here that the values of p = 0, 1, 2, . . . , 2k − 1.
Now transforming the initial conditions, eqn. (1.2), using eqn. (3.2) we have

W (x, 0) = F0(x), (4.10)

W (x, 1) = F1(x), (4.11)

W (x, 2) =
1

2!
F2(x), (4.12)

W (x, 3) =
1

3!
F3(x), (4.13)

... (4.14)

W (x, 2k − 1) =
1

(2k − 1)!
F2k−1(x). (4.15)

Substituting eqn. (4.10)-(4.15) into the recurrence relation eqn. (4.9) we have

W (x, 2k) =
1

2k!
F2k(x), (4.16)

W (x, 2k + 1) =
1

(2k + 1)!
F2k+1(x), (4.17)

.... (4.18)

Using the inverse projected differential transform given in eqn. (3.3) and replacing the values of
W (x, p), we have

w(x, t) =

∞∑
p=0

W (x, p)(t− t̃)p

= F0(x) + F1(x)t+
1

2!
F2(x)t

2 +
1

3!
F3(x)t

3 + · · ·+ 1

2k!
F2k(x)t

2k +
1

(2k + 1)!
F2k+1(x)t

(2k+1) + · · ·(4.19)

Hence, the general solution of eqn. (1.1) and (1.2) is given as

w(x, t) =

∞∑
p=0

1

p!
Fp(x)t

p

.

5 Numerical Problems
In this section, three numerical examples of nonlinear higher-order hyperbolic equations and two
nonlinear wave-like equations with variable coefficients are solved using the projected differential
transform method.
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5.1 Nonlinear Higher Order Hyperbolic Equations

Problem 1. If k = 2, α = 1, Nw = w −
(
∂w

∂t

)2

and we set h(x, t) = 0, then eqn. (1.1) - (1.2)

becomes

∂4w

∂t4
− 2

∂4w

∂t2∂x2
+

∂4w

∂x4
= w −

(
∂w

∂t

)2

, (5.1)

Subject to the initial conditions

w(x, 0) =
∂w(x, 0)

∂t
=

∂2w(x, 0)

∂t2
=

∂3w(x, 0)

∂t3
= ex. (5.2)

This is a Cauchy problem for the hyperbolic equation of fourth order [1].

On using the PDT method, eqn. (5.1) becomes

(p+ 1)(p+ 2)(p+ 3)(p+ 4)W (x, p+ 4)− 2(p+ 1)(p+ 2)
∂2

∂x2
W (x, p+ 2) +

∂4

∂x4
W (x, p)

=

p∑
s=0

W (x, p− s)W (x, s)−
p∑

s=0

(p− s+ 1)(s+ 1)W (x, p− s+ 1)W (x, s+ 1) (5.3)

Simplifying eqn. (5.3) reduces it to a recurrence relation as follows:

W (x, p+ 2) =
1

(p+ 1)(p+ 2)(p+ 3)(p+ 4)

(
2(p+ 1)(p+ 2)

∂2

∂x2
W (x, p+ 2)− ∂4

∂x4
W (x, p)+

p∑
s=0

W (x, p− s)W (x, s)−
p∑

s=0

(p− s+ 1)(s+ 1)W (x, p− s+ 1)W (x, s+ 1)
)

(5.4)

Transforming the initial conditions eqn. (5.2), using eqn. (3.2) we have

W (x, 0) = ex (5.5)

W (x, 1) = ex (5.6)

W (x, 2) =
1

2
ex (5.7)

W (x, 3) =
1

6
ex (5.8)

Substituting eqn. (5.5)-(5.8) into the recurrence relation eqn. (5.4), we have

W (x, 4) =
1

24
ex, W (x, 5) =

1

120
ex, W (x, 6) =

1

720
ex, W (x, 7) =

1

5040
ex,

W (x, 8) =
1

40320
ex, W (x, 9) =

1

362880
ex, . . .

On using the inverse PDT eqn. (3.3), we have

w(x, t) =

∞∑
p=0

W (x, p)(t− t̃)p

= W (x, 0) +W (x, 1)t+W (x, 2)t2 +W (x, 3)t3 +W (x, 4)t4 +W (x, 5)t5 + · · · (5.9)

Substituting the values of W (x, p) into the inverse projected differential transform, and factoring
ex, we obtain

w(x, t) = ex
(
1 + t+

1

2!
t2 +

1

3!
t3 +

1

4!
t4 +

1

5!
t5 +

1

6!
t6 +

1

7!
t7 +

1

8!
t8 +

1

9!
t9 + . . .

)
(5.10)
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Hence the required closed-form solution is obtained as

w(x, t) = ex+t

as also obtained using MDM by [1] and is presented graphically in Figure 1.

0

2

10

20

1 2

30

w
(x

,t
)

40

x
0

50

t
0

-1

-2 -2

Figure 1: The Graph of Exact Solution to Problem 1 via PDTM.
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Problem 2.

If k = 2, α = 1, and Nw =

(
∂2

∂t2
w

)2

−
(

∂2

∂x2
w

)2

− 144w and h(x, t) = 0, then eqn. (1.1) and

(1.2) becomes

∂4w

∂t4
− 2

∂4w

∂t2∂x2
+

∂4w

∂x4
=

(
∂2w

∂t2

)2

−
(
∂2w

∂x2

)2

− 144w (5.11)

with the initial conditions

w(x, 0) = −x4,
∂w(x, 0)

∂t
=

∂2w(x, 0)

∂t2
=

∂3w(x, 0)

∂t3
= 0 (5.12)

which is the Cauchy problem for hyperbolic equations of fourth order [1].
Taking the PDT of eqn. (5.11) with respect to t, we have

(p+ 1)(p+ 2)(p+ 3)(p+ 4)W (x, p+ 4)− 2(p+ 1)(p+ 2)
∂2

∂x2
W (x, p+ 2)

+
∂4

∂x4
W (x, p) =

p∑
s=0

(p− s+ 1)(p− s+ 2)(s+ 1)(s+ 2)W (x, p− s+ 2)W (x, p− s+ 2)W (x, s+ 2)

−
p∑

s=0

∂2

∂x2
W (x, s)

∂2

∂x2
W (x, p− s)− 144W (x, p) (5.13)

Simplifying eqn. (5.13), reduces to a set of recurrence relations as follows:

W (x, p+ 4) =
1

(p+ 1)(p+ 2)(p+ 3)(p+ 4)

(
2(p+ 1)(p+ 2)

∂2

∂x2
W (x, p+ 2)− ∂4

∂x4
W (x, p)

+

p∑
s=0

(p− s+ 1)(p− s+ 2)(s+ 1)(s+ 2)W (x, p− s+ 2)W (x, p− s+ 2)W (x, s+ 2)

−
p∑

s=0

∂2

∂x2
W (x, s)

∂2

∂x2
W (x, p− s)− 144W (x, p)

)
(5.14)

Transforming the initial conditions (5.12), using eqn. (3.2) we have

W (x, 0) = −x4 (5.15)

W (x, 1) = 0 (5.16)

W (x, 2) = 0 (5.17)

W (x, 3) = 0 (5.18)

Substituting eqn. (5.15)-(5.18) into the recurrence relation eqn.(5.14), we have
W (x, 4) = 1, W (x, 5) = W (x, 6) = W (x, 7) = W (x, 8) = W (x, 9) = · · · = 0.
On using the inverse PDT eqn. (3.3), it follows that

w(x, t) =

∞∑
p=0

W (x, p)(t− t̃)p

= W (x, 0) +W (x, 1)t+W (x, 2)t2 +W (x, 3)t3 +W (x, 4)t4 +W (x, 5)t5 + . . . (5.19)

Substituting the values of W (x, p) into eqn.(5.19), we obtained the required exact solution as

w(x, t) = −x4 + t4.

This exact solution is also obtained using MDM by [1] and is depicted graphically in Figure 2.
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Figure 2: The graph of Exact Solution to Problem 2 via PDTM.

Problem 3.

If k = 3, α = 1, Nw = w
∂2w

∂t2
− w

∂2w

∂x2
and h(x, t) = 0, then eqn. (1.1) and (1.2) becomes

∂6w

∂t6
− 3

∂6w

∂t4∂x2
+ 3

∂6w

∂t2∂x4
− ∂6w

∂x6
= w

∂2w

∂t2
− w

∂2w

∂x2
, (5.20)

Subject to initial conditions

w(x, 0) =
∂2w(x, 0)

∂t2
=

∂4w(x, 0)

∂t4
= 0, (5.21)

and
∂w(x, 0)

∂t
= cos(x),

∂3w(x, 0)

∂t3
= −1

6
cos(x),

∂5w(x, 0)

∂t5
=

1

120
cos(x). (5.22)

which is the Cauchy problem for the hyperbolic equation of sixth order [1].
Taking the PDT of eqn (5.20) with respect to t, we have

(p+ 1)(p+ 2)(p+ 3)(p+ 4)(p+ 5)(p+ 6)W (x, p+ 6)− 3(p+ 1)(p+ 2)(p+ 3)(p+ 4)×
∂2

∂x2
W (x, p+ 4) + 3(p+ 1)(p+ 2)

∂4

∂x4
W (x, p+ 2)− ∂6W (x, p)

∂x6
=

p∑
s=0

(p− s+ 1)×

(p− s+ 2)W (x, p− s+ 2)W (x, s)−
p∑

s=0

W (x, p− s)
∂2

∂x2
W (x, s). (5.23)

Simplifying eqn. (5.23), reduces to a recurrence relation as follows,

W (x, p+ 6) =
1

(p+ 1)(p+ 2)(p+ 3)(p+ 4)(p+ 5)(p+ 6)

(
3(p+ 1)(p+ 2)(p+ 3)(p+ 4)

∂2

∂x2
W (x, p+ 4)−

3(p+ 1)(p+ 2)
∂4

∂x4
W (x, p+ 2) +

∂6W (x, p)

∂x6
+

p∑
s=0

(p− s+ 1)(p− s+ 2)W (x, p− s+ 2)W (x, s)−

p∑
s=0

W (x, p− s)
∂2

∂x2
W (x, s)

)
. (5.24)
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Transforming the initial conditions eqn. (5.21) - (5.22) using eqn. (3.2) we have

W (x, 0) = 0, (5.25)

W (x, 1) = cos(x), (5.26)

W (x, 2) = 0, (5.27)

W (x, 3) = −1

6
cos(x), (5.28)

W (x, 4) = 0, (5.29)

W (x, 5) =
1

120
cos(x), (5.30)

Substituting eqn. (5.25)-(5.30) into the recurrence relation eqn. (5.24), we have;

W (x, 6) = 0, W (x, 7) = − 1

5040
cos(x), W (x, 8) = 0, W (x, 9) =

1

362880
cos(x),

W (x, 10) = 0, W (x, 11) =
1

39916800
cos(x), . . .

On using the inverse PDT eqn. (3.3), we get

w(x, t) =

∞∑
p=0

W (x, p)(t− t̃)p,

= W (x, 0) +W (x, 1)t+W (x, 2)t2 +W (x, 3)t3 +W (x, 4)t4 +W (x, 5)t5 + . . . (5.31)

Putting the values of W (x, p), into eqn. (5.31) and factoring cos(x), we obtain

w(x, t) = cos(x)

(
t− 1

3!
t3 +

1

5!
t5 − 1

7!
t7 +

1

9!
t9 − 1

11!
t11 + . . .

)
. (5.32)

Thus, eqn. (5.32) is written in closed form as

w(x, t) = sin(t) cos(x).

This can easily be shown by substitution to be the exact solution to problem 3 as also obtained
using MDM by bougoffa2007cauchy and depicted graphically in Figure 3.
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Figure 3: The graph of Exact Solution to Problem 3 via PDTM.
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5.2 Nonlinear Wave-Like Equations With Variable Coefficients
We now consider the case where α(x, t) is a function of x or/and t.

Problem 4. If k = 1 , Nw(x, t) = −
(
∂w

∂x

)2

, α(x, t) = x2 and h(x, t) = xet + e2t, then eqn.

(1.1)-(1.2) become
∂2w

∂t2
− x2 ∂

2w

∂x2
= −

(
∂w

∂x

)2

+ xet + e2t, (5.33)

with initial conditions
w(x, 0) =

∂w(x, t)

∂t
= x, (5.34)

which is the Cauchy problem for nonlinear wave-like equation with variable coefficients [2, 3].
Taking the PDT of eqn. (5.33) with regards to t, we have

(p+1)(p+2)W (x, p+2)−x2 ∂

∂x2
W (x, p) = −

p∑
s=0

(
∂

∂x
W (x, s)

∂

∂x
W (x, p− s)

)
+

x

p!
+

2p

p!
. (5.35)

Simplifying eqn. (5.35), reduces to a recurrence relation as follows

W (x, p+2) =
1

(p+ 1)(p+ 2)

(
x2 ∂

∂x2
W (x, p)−

p∑
s=0

∂

∂x
W (x, s)

∂

∂x
W (x, p− s) +

x

p!
+

2p

p!

)
. (5.36)

Transforming the initial conditions eqn. (5.34) using eqn. (3.2), we have

W (x, 0) = W (x, 1) = x. (5.37)
Substituting eqn. (5.37) into the recurrence relation eqn.(5.36), the following values of W (x, p) are
obtained
W (x, 2) =

1

2
x, W (x, 3) =

1

6
x, , W (x, 4) =

1

24
x, W (x, 5) =

1

120
x, W (x, 6) =

1

720
x,

W (x, 7) =
1

5040
x, . . .

On using the inverse PDT eqn. (3.3)

w(x, t) =

∞∑
p=0

W (x, p)(t− t̃)p

= W (x, 0) +W (x, 1)t+W (x, 2)t2 +W (x, 3)t3 +W (x, 4)t4 +W (x, 5)t5 + . . . (5.38)

and substituting the values of W (x, p) into eqn. (5.38) and factoring x, we have

w(x, t) = x(1 + t+
1

2!
t2 +

1

3!
t3 +

1

4!
t4 +

1

5!
t5 +

1

7!
t7 + . . . ) (5.39)

Hence, eqn. (5.39) can be written in closed form as

w(x, t) = xet,

which by substitution, it can be clearly shown to be the exact solution to problem 4. Whereas the
approximate-analytic solution obtained using HAA given in [3] is

w(x, t) = −
(
xet − x− tx− 1

2
t− 1

2
t2 − 1

3
t3 − 1

12
t4 +

1

4
e2t − 1

4

)
for x > t (5.40)

and for x < t,
w(x, t) = −

(
tx2 − 3

2
x− t2x− t

3
x3 − t3

3
x+

t2

2
x2 − e2t

4e2x
− 2tx+ xet +

x2

2
− x3

3
+

x4

12
+

e2t

4

)
.(5.41)

Table 2 presents the absolute errors that arise from comparing the exact solution via PDTM and two-
term approximated series solution via HAA [3] for select values of (x, t) in the domain [0, 1]× [0, 1].
Additionally, the exact solution obtained via PDTM for problem 4 is depicted in Figure 4(a), while
Figure 4(b) illustrates the approximate solution derived using HAA [3].
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Figure 4: Comparing the exact solution via PDTM and approximate solution using HAA [3] to
problem 4.

Table 2: Maximum Error of Problem 4 Using HAA [3].

Problem 5:

If k = 1, Nw = w2, α(x, t) = t and h(x, t) = −t2x4−2t2x3−t2x2−2t2, then eqn. (1.1)-(1.2) become

∂2w

∂t2
− t

∂2w

∂x2
= w2 − t2x4 − 2t2x3 − t2x2 − 2t2, (5.42)

with initial conditions
w(x, 0) = 0,

∂w

∂t
= x+ x2, (5.43)

which is the Cauchy problem for nonlinear wave-like equation with variable coefficients [3].
Taking the PDT of eqn. (5.42) with respect to t, we have

(p+ 1)(p+ 2)W (x, p+ 2)−
p∑

s=0

δ(p− 1)
∂

∂x2
W (x, s) =

p∑
s=0

W (x, s)W (x, p− s)− δ(p− 2)x4 − 2δ(p− 2)x3 − δ(p− 2)x2 − 2δ(p− 2). (5.44)

Simplifying eqn. (5.44), reduces to a recurrence relation as follows.

W (x, p+ 2) =
1

(p+ 1)(p+ 2)

( p∑
s=0

δ(p− 1)
∂

∂x2
W (x, s)+

p∑
s=0

W (x, s)W (x, p− s)− δ(p− 2)x4 − 2δ(p− 2)x3 − δ(p− 2)x2 − 2δ(p− 2)
)
. (5.45)
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Transforming the initial conditions eqn. (5.43) using eqn. (3.2) we have

W (x, 0) = 0, W (x, 1) = x+ x2. (5.46)

Substituting eqn. (5.46) into the recurrence relation eqn. (5.45), we have;

W (x, 2) = 0, W (x, 3) =
1

3
, W (x, 4) = −1

6
, · · ·

Thus from eqn. (3.3), it follows that

w(x, t) =

∞∑
p=0

W (x, p)(t− t̃)p,,

= W (x, 0) +W (x, 1)t+W (x, 2)t2 +W (x, 3)t3 +W (x, 4)t4 + · · · , (5.47)

and substituting the values of W (x, p), we have

w(x, t) = xt+ x2t+
1

3
t3 − 1

6
t4 + · · · . (5.48)

Taking the two-term approximation of the series (5.48) yields the exact solution,

w(x, t) = (x+ x2)t.

Whereas the approximate-analytic solution obtain using HAA in [3] is as follows
for x > t

w(x, t) = − 1

180
t8 − 2

45
t6x2 − 2

45
t6x+

2

3
t3, (5.49)

and for x < t

w(x, t) =
79

45
t7x− 64

9
t6x2 − 1

45
t6x+

473

45
t5x3 − 253

36
t4x4 +

8

9
t4x3+

73

45
t3x3 − 23

6
t3x4 +

1

3
t3x+

1

45
t2x6 +

35

6
t2x5 + t2x2 + t2x+

1

45
tx7 − 71

18
tx6 −

10

3
tx3 +

1

360
x8 +

125

126
x7 +

27

6
x4. (5.50)

Table 3 displays the absolute errors resulting from comparing the exact solution via PDTM and
two-term approximated series solution via HAA [3] for specific (x, t) values within the domain
[0, 1]× [0, 1]. Additionally, Figure 5(a) presents the exact solution obtained via PDTM for problem
5, while Figure 5(b) shows the approximate solution obtained through the HAA [3] method.

6 Conclusion
In this study, the PDTM has been applied successfully to solving higher-order nonlinear partial
differential equations. We considered five numerical problems: three nonlinear higher-order hyper-
bolic equations and two nonlinear wave-like equations with variable coefficients type. The solutions
obtained by PDTM are infinite power series for suitable initial conditions, which more often than
not converge naturally to the exact solution of the differential equations. The obtained results
demonstrate that the PDTM is a powerful mathematical tool for solving nonlinear PDEs of higher
order. The nonlinear wave-like equations results have shown that such problems cannot be solved
to obtain their exact solutions by HAA [3] but can easily be obtained via PDTM. The efficiency
of the PDTM is in the ease of use and reduction in the size of computation, and it is proven to be
super fast in converging to an exact solution which are the advantages of the method over MDM,
HPM, and HAA.
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(a) Exact Solution via PDTM (b) Two-terms approximate solution via HAA [3]

Figure 5: Comparing the exact solution via PDTM and approximate solution using HAA [3] to
problem 5.

Table 3: Maximum Error of Problem 5 Using HAA [3].
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