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Abstract

In this paper, we construct a complete Lyapunov function which serves as a tool in provid-
ing sufficient conditions that ensure uniform asymptotic stability of the zero solution when
p(t, x, y, z) ≡ 0; uniform ultimate boundedness and asymptotic behaviour of all solutions when
p(t, x, y, z) ̸= 0 of a certain third order non-linear ordinary differential equation. The results
in this paper are new and in some ways generalize and improve on some existing results in
literature. Finally, we provide an example to justify the correctness of the theorems.
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1 Introduction
The equation of interest in this paper, is the following third-order nonlinear differential equation

...
x + f(t, x, ẋ, ẍ)ẍ+ ψ(t)g(x, ẋ)ẋ+ ϕ(t)h(x, ẋ, ẍ) = p(t, x, ẋ, ẍ). (1.1)

On setting ẋ = y, ẏ = z in (1.1), we obtain the following system of first order differential equations

ẋ = y, ẏ = z, ż = −f(t, x, y, z)z − ψ(t)g(x, y)y − ϕ(t)h(x, y, z) + p(t, x, y, z), (1.2)

where h ∈ C(R × R × R,R), g ∈ C(R × R,R); f, p ∈ C
(
[0,∞) × R × R × R, R

)
. It is assumed

that the partial derivatives ft(t, x, y, z), fx(t, x, y, z), fz(t, x, y, z), gx(x, y), gy(x, y), hx(x, y, z),
hy(x, y, z), hz(x, y, z) and the derivatives ψ̇(t), ϕ̇(t) exist and are continuous with respect to their
arguments. Similarly, we shall assume existence and uniqueness of solutions of (1.1) or (1.2).

In reality, differential equations have become tools for modelling many real life problems of con-
cerns in biology, mathematical finance, engineering, medicine, just to mention but few [See, [1],
[2], [3], [4]]. Hence, many notable researchers have devoted their effort to study the qualitative
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behaviour(boundedness, stability, convergence, periodicity, asymptotic behaviour) of solutions of
differential equations without necessarily solving the differential equations analytically. In analyz-
ing the qualitative properties of solutions of differential equations, Lyapunov function, which is a
direct consequence of the second method (also called, the direct method) of Lyapunov, introduced
by Lyapunov [5], has been considered to be an effective tool. Adams and Omeike [6], Ademola and
Arawomo( [7], [8]), Adeyanju and Adams( [9], [10], [11]), Adeyanju [12], Adeyanju and Tunc [13],
Ateş [14], Chukwu [15], Ezeilo [16], Nakashima [17], Olutimo [18], Olutimo et. al. ( [3], [19]),
Omeike( [20], [21]), Qian [22], Swick [23], Tunc et.al. [24], Tunc( [25]- [27]) and Yoshizawa [28]
are some of the numerous authors who have employed the direct method of Lyapunov to study
qualitative properties of various forms of third order differential equations. However, one major
challenge of this method is the difficulty in constructing suitable Lyapunov functions, especially for
nonlinear differential equations.

Specifically, Ezeilo [16] and Ogurtsov [29] investigated the stability property of the zero solution to
the equation ...

x + ψ(x, ẋ)ẍ+ ϕ(ẋ) + g(x) = 0, (1.3)

under certain conditions on ψ(x, ẋ), ϕ(ẋ) and, g(x). Earlier, the global stability of the zero solution
of (1.3) when ϕ(ẋ) = bẋ and g(x) = cx (b and c are positive constants), was examined by [30].
Later, Omeike [20] and Tunc [26] proved some results on the boundedness and asymptotic behaviour
of solutions to the equation

...
x + ψ(x, ẋ)ẍ+ f(x, ẋ) = p(t, x, ẋ, ẍ).

Furthermore, the duo of Ademola and Arawomo ( [7], [8]) established some interesting results on the
stability, boundedness, and asymptotic behaviour of solutions to the following differential equations
using the direct method of Lyapunov

...
x + f(t, x, ẋ, ẍ)ẍ+ q(t)g(x, ẋ) + r(t)h(x, ẋ, ẍ) = p(t, x, ẋ, ẍ),

and ...
x + ψ(t)f(x, ẋ, ẍ)ẍ+ ϕ(t)g(x, ẋ) + φ(t)h(x, ẋ, ẍ) = p(t, x, ẋ, ẍ).

In 2018, Adeyanju and Adams [11] gave some theorems on the boundedness and asymptotic be-
haviour of solutions to the following nonlinear third-order differential equation

...
x + ψ(x, ẋ, ẍ)ẍ+ f(x, ẋ, ẍ) = p(t, x, ẋ, ẍ).

Being motivated by the works of Ademola and Arawomo( [7], [8]) and other papers listed above, we
now study the stability, boundedness and asymptotic behaviour of solutions to the equation (1.1)
or its equivalent system (1.2) by using a suitable Lyapunov function and Yoshizawa [31] limit point
argument.

Remark 1.1. Equation (1.1) is more general than some other equations studied in the literature. In
particular, (1.1) reduces to the third order differential equation considered in [7] when ψ(t)g(x, ẋ)ẋ
appearing in (1.1) is replaced with q(t)g(x, ẋ).

2 Main Results
Basic Assumptions

In addition to the assumptions imposed on functions f, g, h, p, ψ and ϕ appearing in (1.1) or system
(1.2), suppose there exist the following positive constants a, b, σ0, δ, a1, b1, c1, σ1, σ2, and δ1 such
that for all t ≥ 0, x, y and z, we have:

(i) a ≤ f(t, x, y, z) ≤ a1, b ≤ g(x, y) ≤ b1, hx(x, 0, 0) ≤ c1;
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(ii) h(0, 0, 0) = 0, δ ≤ x−1h(x, y, z) ≤ δ1 ( x ̸= 0), σ0 ≤ ϕ(t) ≤ ψ(t), ϕ(t) ≤ σ1, ψ(t) ≤ σ2,
ψ̇(t) ≤ ϕ̇(t) ≤ 0;

(iii) ft(t, x, y, z) ≤ 0, yfx(t, x, y, z) ≤ 0, ygx(x, y) ≤ 0;

(iv) yfz(t, x, y, z) ≥ 0, hy(x, y, 0) ≥ 0, hz(x, 0, z) ≥ 0;

(v) ab− c1 > 0;

(vi)
∫∞
0

|p(t, x, y, z)|dt <∞.

On the strength of the assumptions stated above, we have the followings as our main theorems.

Theorem 2.1. Given that the conditions stated under the basic assumptions above are satisfied.
Then all the solutions of (1.2) are uniformly ultimately bounded.

Theorem 2.2. If all the basic assumptions listed above hold, then every solution (x(t), y(t), z(t))
of system (1.2) is uniformly bounded and satisfies

lim
t→∞

x(t) = 0, lim
t→∞

y(t) = 0, lim
t→∞

z(t) = 0. (2.1)

Theorem 2.3. If all the conditions of the basic assumptions are satisfied, any solution (x(t), y(t), z(t))
of system (1.2) passing through the initial condition

x(0) = x0, y(0) = y0, z(0) = z0, (2.2)

must satisfy
|x(t)| ≤ D, |y(t)| ≤ D, |z(t)| ≤ D, (2.3)

for all t ≥ 0, x, y and z where D is a positive constant.

Theorem 2.4. The zero solution of system (1.2) is uniformly asymptotically stable if the condition
(i)-(v) listed in the basic assumptions are satisfied.

Our Theorems 2.1 - 2.4 stated shall be proved using the following continuously differentiable
scalar function V (t) = V (t, x(t), y(t), z(t)) given as

V (t) = e−p1(t)U(t, x, y, z), (2.4)

where

p1(t) =

∫ t

0

|p(s, x, y, z)|ds, (2.5)

and U(t, x, y, z) = U(t) is given by

2U(t) = βbc1(ab− c1)x
2 + 6a2c1ϕ(t)

∫ x

0

h(ξ, 0, 0)dξ (2.6)

+ 6a2c1

∫ y

0

τf(t, x, τ, 0)dτ + 2aψ(t)(2c1 + ab)

∫ y

0

τg(x, τ)dτ + βc21y
2

+ (2ac1 + a2b)z2 + 2a(2c1 + ab)ϕ(t)yh(x, 0, 0) + 2βac1(ab− c1)xy

+ 2βc1(ab− c1)xz + 6a2c1yz,

where a, b, c1 are as defined earlier and β is a constant satisfying

0 < β < min
{
ab(ab− c1)

−1, aσ0(ab− c1)K
−1
8 , 2a2(ab− c1)K

−1
9

}
, (2.7)
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where
K8 =

((
σ0δ

)−1
(ab− c1)(σ2b1 − b)2 + a2b

)
,

and
K9 =

(
4c1

(
σ0δ

)−1
(ab− c1)(f(t, x, y, z)− a)2 + ab2

)
.

The following lemma will be needed to establish the proofs of the theorems.

Lemma 2.1 Suppose all the assumptions listed under the basic assumptions are satisfied. Then,
there exist some positive constants D1, D2 and D3 such that for all t ≥ 0, x, y and z, the function
V (t) defined in (2.4) and its derivative V̇ (t) satisfy

D1{x2(t) + y2(t) + z2(t)} ≤ V (t) ≤ D2{x2(t) + y2(t) + z2(t)}, (2.8)

V (t) → +∞ as x2(t) + y2(t) + z2(t) → +∞ (2.9)

and the derivative of V (t) along the solution path of (1.2) satisfies

V̇(1.2)(t) ≤ −D3{x2(t) + y2(t) + z2(t)}. (2.10)

Proof.
Clearly, the function V (t) defined in (2.4) becomes zero when x = 0, y = 0 and z = 0. Next, we
show that V (t) is positive definite whenever x, y and z are not all zero. To do this, we have to
show that U(t) is positive definite, then, V (t) is automatically positive definite. The function U(t)
defined in equation (2.6) can be written as

2U(t) =6a2ϕ(t)

∫ x

0

[
c1 − hξ(ξ, 0, 0))

]
h(ξ, 0, 0)dξ + 2ϕ(t)

(
c1y + ah(x, 0, 0)

)2
+βc1(ab− c1)a

−1
(
ab− β(ab− c1)

)
x2 + 4c1ϕ(t)

∫ y

0

(
a
ψ(t)

ϕ(t)
g(x, τ)− c1

)
τdτ

+6a2c1

∫ y

0

(
f(t, x, τ, 0)− a

)
τdτ + 2ac1(ay + z)2 + a2ϕ(t)

(
by + h(x, 0, 0)

)2
+ac1

(
β(ab− c1)a

−1x+ ay + z
)2

+ 2a2bϕ(t)

∫ y

0

(ψ(t)
ϕ(t)

g(x, τ)− b
)
τdτ

+a(ab− c1)z
2 + βc21y

2.

On applying some of the assumptions listed in (i) and (ii) of basic assumptions to U(t), we have

2U(t) ≥βc1(ab− c1)a
−1

(
ab− β(ab− c1)

)
x2 + 4c1ϕ(t)

∫ y

0

(
a
ψ(t)

ϕ(t)
g(x, τ)− c1

)
τdτ + a(ab− c1)z

2

≥βc1(ab− c1)a
−1(ab− β(ab− c1))x

2 + 2c1σ0(ab− c1)y
2 + a(ab− c1)z

2.

Thus, we can choose a positive constant

K1 =
1

2
min

{
βc1(ab− c1)a

−1(ab− β(ab− c1)), 2c1σ0(ab− c1), a(ab− c1)
}
,

such that
U(t) ≥ K1{x2(t) + y2(t) + z2(t)}.

Also, it is clear from assumption (vi) and equation (2.5) that we can always find a positive constant
α0 such that for all t > 0, we have

0 ≤ p1(t) < α0. (2.11)

Therefore, for some positive constant K2 = K1e
−α0 , we have

V (t) ≥ K2{x2(t) + y2(t) + z2(t)}, (2.12)
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for all t ≥ 0, x, y and z. Inequality (2.12) shows that, V (t) = 0 if and only if x2(t)+y2(t)+z2(t) = 0
and V (t) > 0 if and only if x2(t) + y2(t) + z2(t) ̸= 0. Therefore,

V (t) → +∞ as x2(t) + y2(t) + z2(t) → ∞. (2.13)

Similarly, we obtain the upper bounds of functions U(t) and V (t). By assumptions (i) and (ii)
under the basic assumptions and the fact that 2|xy| ≤ x2 + y2, we obtain

U(t) ≤1

2

[
βbc1(ab− c1)x

2 + 3a2c1σ1δ1x
2 + 3a2a1c1y

2 + σ2(ab1c1 + a2bb1)y
2 + βc21y

2
]

+
1

2

[
(2ac1 + a2b)z2 + δ1σ1(2ac1 + a2b)(x2 + y2) + βac1(ab− c1)(x

2 + y2)
]

+
1

2

[
βc1(ab− c1)(x

2 + z2) + 3a2c1(y
2 + z2)

]
≤1

2
(α1x

2 + α2y
2 + α3z

2)

≤K3(x
2(t) + y2(t) + z2(t)),

where,

α1 = c1(ab− c1)(a+ b+ 1)β + aσ1δ1[ab+ c1(2 + 3a)] > 0,

α2 = c21β + 3a2c1(a1 + 1) + ab1σ2(c1 + ab) + ac1(ab− c1)β + a(2c1 + ab)σ1δ1 > 0,

α3 = 2ac1 + a2(b+ 3c1) + c1(ab− c1)β > 0,

and

K3 =
1

2
max{α1, α2, α3}.

Thus, from (2.11) we have
V (t) ≤ K4{x2(t) + y2(t) + z2(t)}, (2.14)

where K4 = K3e
0 = K3. On combining (2.12) and (2.14) together, we obtain inequality (2.8) of

Lemma 2.1.

Next, we proceed to obtain the time derivative of the function V (t) along system (1.2).

V̇(1.2)(t) = −ṗ1(t)e−p1(t)U(t) + e−p1(t)U̇(t), (2.15)

where,
−ṗ1(t)e−p1(t)U(t) = −e−p1(t)U(t)|P (t, x, y, z)|, (2.16)

and

U̇(1.2)(t) =βbc1(ab− c1)xy + 3a2c1ϕ̇(t)

∫ x

0

h(ξ, 0, 0)dξ + 3a2c1ϕ(t)yh(x, 0, 0)

+ 3a2c1
[ ∫ y

0

τft(t, x, τ, 0)dτ + y

∫ y

0

τfx(t, x, τ, 0)dτ + f(t, x, y, 0)yz
]

+ aψ̇(t)(2c1 + ab)

∫ y

0

τg(x, τ)dτ + aψ(t)(2c1 + ab)y

∫ y

0

τgx(x, τ)dτ

+ (2ac1 + a2b)[−f(t, x, y, z)z2 − ϕ(t)h(x, y, z)z + zp(t, x, y, z)]

+ ac1(ab− c1)βxz + (2ac1 + a2b)ϕ̇(t)yh(x, 0, 0)

+ (2ac1 + a2b)ϕ(t)zh(x, 0, 0) + (2ac1 + a2b)ϕ(t)y2hx(x, 0, 0)

+ abc1βyz + ac1(ab− c1)βy
2 + 3a2c1z

2

+ c1(ab− c1)β[−f(t, x, y, z)xz − ψ(t)g(x, y)xy − ϕ(t)xh(x, y, z)

+ p(t, x, y, z)x] + 3a2c1[−f(t, x, y, z)yz − ψ(t)g(x, y)y2

− ϕ(t)h(x, y, z)y + yp(t, x, y, z)].
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For ease of computations, we write U̇(1.2)(t) as:

U̇(1.2)(t) = −U1 − U2 + U3 + U4 + U5

where,

U1 =c1(ab− c1)βϕ(t)x
−1h(x, y, z)x2 + ac1ϕ(t)

[
a
ψ(t)

ϕ(t)
g(x, y)− hx(x, 0, 0)

]
y2

+ aϕ(t)
[
2ac1

ψ(t)

ϕ(t)
g(x, y)− (c1 + ab)hx(x, 0, 0)

]
y2 + 2ac1(f(t, x, y, z)− a)z2 + a2(bf(t, x, y, z)− c1)z

2

+ c1(ab− c1)β(ψ(t)g(x, y)− b)xy + c1(ab− c1)β(f(t, x, y, z)− a)xz − abc1βyz − ac1(ab− c1)βy
2;

U2 =ϕ(t)
[
3a2c1y + (2ac1 + a2b)z

][
h(x, y, z)− h(x, 0, 0)

]
+ 3a2c1yz

[
f(t, x, y, z)− f(t, x, y, 0)

]
;

U3 =3a2c1
[ ∫ y

0

τft(t, x, τ, 0)dτ + y

∫ y

0

τfx(t, x, τ, 0)dτ
]
+ aψ(t)(2c1 + ab)y

∫ y

0

τgx(x, τ)dτ ;

U4 =3a2c1ϕ̇(t)

∫ x

0

h(ξ, 0, 0)dξ + aψ̇(t)(2c1 + ab)

∫ y

0

τg(x, τ)dτ + (2ac1 + a2b)ϕ̇(t)yh(x, 0, 0);

and

U5 = [c1(ab− c1)βx+ 3a2c1y + (2ac1 + a2b)z]p(t, x, y, z).

To establish inequality (2.10), we estimate the upper bound for each of Ui, (i = 1, 2, 3, 4, 5).
By applying assumptions stated in (i) and (ii) of basic assumptions, together with the obvious
inequality 2|xy| ≤ (x2 + y2) in U1, we have

U1 ≥1

2
c1(ab− c1)βϕ(t)x

−1h(x, y, z)x2 + ac1ϕ(t)
[
a
ψ(t)

ϕ(t)
g(x, y)− hx(x, 0, 0)

]
y2

+ aϕ(t)
[
2ac1

ψ(t)

ϕ(t)
g(x, y)− (c1 + ab)hx(x, 0, 0)

]
y2 + 2ac1(f(t, x, y, z)− a)z2

+
1

4
c1(ab− c1)βϕ(t)x

−1h(x, y, z)
[
x+ 2

(
ϕ(t)x−1h(x, y, z)

)−1(
ψ(t)g(x, y)− b

)
y
]2

− c1(ab− c1)β
(
ϕ(t)x−1h(x, y, z)

)−1(
ψ(t)g(x, y)− b

)2
y2

+
1

4
c1(ab− c1)βϕ(t)x

−1h(x, y, z)
[
x+ 2

(
ϕ(t)x−1h(x, y, z)

)−1(
f(t, x, y, z)− a

)
z
]2

− c1(ab− c1)β
(
ϕ(t)x−1h(x, y, z)

)−1(
f(t, x, y, z)− a

)2
z2

+ βa(c1y − 2−1bz)2 − a2bc1βy
2 − 1

4
ab2βz2 + a2(bf(t, x, y, z)− c1)z

2

≥1

2
c1(ab− c1)βσ0δx

2 + ac1σ0(ab− c1)y
2 + a2(ab− c1)z

2

+ c1

[
aσ0(ab− c1)− β

((
σ0δ

)−1
(ab− c1)

(
σ2b1 − b

)2
+ a2b

)]
y2

+
1

4

[
2a2(ab− c1)− β

(
4c1

(
σ0δ

)−1
(ab− c1)

(
f(t, x, y, z)− a

)2
+ ab2

)]
z2

≥1

2
c1(ab− c1)βσ0δx

2 + ac1σ0(ab− c1)y
2 + a2(ab− c1)z

2

≥K5{x2(t) + y2(t) + z2(t)} ≥ 0,

where K5 = 1
2 min{c1(ab− c1)βσ0δ, 2ac1σ0(ab− c1), 2a

2(ab− c1)}.
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Using mean value theorem with 0 ≤ θi ≤ 1 (i = 1, 2, 3) and conditions given in (iv) of basic
assumptions, we have the following estimate for U2 for all t ≥ 0, x, y and z.

U2 =ϕ(t)
[
3a2c1y + (2ac1 + a2b)z

][
h(x, y, z)− h(x, 0, 0)

]
+ 3a2c1yz

[
f(t, x, y, z)− f(t, x, y, 0)

]
≥ϕ(t)

[
3a2c1hy(x, θ1y, 0)y

2 + (2ac1 + a2b)hz(x, 0, θ2z)z
2
]
+ 3a2c1yfz(t, x, y, θ3z)z

2

≥0.

Also, by assumptions listed in (iii) of basic assumptions, we have

U3 =3a2c1
[ ∫ y

0

τft(t, x, τ, 0)dτ + y

∫ y

0

τfx(t, x, τ, 0)dτ
]

+ aψ(t)(2c1 + ab)y

∫ y

0

τgx(x, τ)dτ

≤0.

Similarly, by applying some of the assumptions in (i) and (ii) of basic assumptions to U4, we have

U4 =ψ̇(t)
[
3a2c1

ϕ̇(t)

ψ̇(t)

∫ x

0

h(ξ, 0, 0)dξ + a(2c1 + ab)

∫ y

0

τg(x, τ)dτ + a(2c1 + ab)
ϕ̇(t)

ψ̇(t)
yh(x, 0, 0)

]
≤ ψ̇(t)

2b

[ ϕ̇(t)
ψ̇(t)

∫ x

0

(
6a2bc1 − 2a(2c1 + ab)

ϕ̇(t)

ψ̇(t)
hξ(ξ, 0, 0)

)
h(ξ, 0, 0)dξ

+ a(2c1 + ab)
(
by +

ϕ̇(t)

ψ̇(t)
x−1h(x, 0, 0)x

)2]
≤ ψ̇(t)

2b

[
2ac1(ab− c1)δ

ϕ̇(t)

ψ̇(t)
x2 + a(2c1 + ab)(δx+ by)2

]
≤0.

Lastly, we have

U5 = [c1(ab− c1)βx+ 3a2c1y + (2ac1 + a2b)z]p(t, x, y, z)

≤ K6{|x|+ |y|+ |z|}|p(t, x, y, z)|,

where K6 = max{c1(ab− c1)β, 3a
2c1, (2ac1 + a2b)}.

On gathering the estimates for Ui, (i = 1, 2, 3, 4, 5) into U̇(t) we obtain,

U̇(1.2)(t) ≤ −K5{x2(t) + y2(t) + z2(t)}+K6{|x|+ |y|+ |z|}|p(t, x, y, z)|.

Similarly,

V̇(1.2)(t) ≤− e−p1(t)
(
K1{x2(t) + y2(t) + z2(t)} −K6{|x|+ |y|+ |z|}

)
|p(t, x, y, z)| (2.17)

−K5e
−p1(t){x2(t) + y2(t) + z2(t)}

≤ − e−p1(t)
(
K1{x2(t) + y2(t) + z2(t)} −K63

1
2 {X} 1

2

)
|p(t, x, y, z)|

−K5e
−p1(t){x2(t) + y2(t) + z2(t)},

for all t ≥ 0, x, y and z. If we choose {x2(t) + y2(t) + z2(t)} 1
2 ≥ 3

1
2K−1

1 K6 and taking into account
assumption (vi) of the basic assumptions, we obtain for all t ≥ 0, x, y and z

V̇(1.2)(t) ≤ −K7{x2(t) + y2(t) + z2(t)}, (2.18)

where K7 = K5e
−p1(∞) > 0. The proof of the lemma is now completes.
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Proof of Theorem 2.1
Since the inequalities (2.12), (2.13), (2.14) and (2.18) satisfy all the conditions of [Theorem 35.1,
[32]], then any solution (x(t), y(t), z(t)) of system (1.2) is uniform-ultimately bounded.

Proof of Theorem 2.2
By Lemma 2.1, the Lyapunov function defined in (2.4). has been shown to satisfy all the conditions
of [Theorem 31.1, [32]]. Therefore, solution (x(t), y(t), z(t)) of system (1.2) is uniformly bounded.
The conclusion of the proof of this theorem follows by employing the same reasoning as in Qian
[ [33], Theorem 2] using (2.8) and (2.18). Thus, any solution (x(t), y(t), z(t)) of system (1.2) is
uniformly bounded.

Proof of Theorem 2.3
Suppose (x(t), y(t), z(t)) is any solution to the system (1.2). Then, under the assumptions of The-
orem 2.3, estimates (2.12) and (2.17) of the proof of Lemma 2.1 still hold. If we make use of the
fact that |x| ≤ 1 + x2, |y| ≤ 1 + y2, |z| ≤ 1 + z2 in (2.17), we have

V̇(1.2)(t) ≤ − e−p1(t)
(
K1{x2(t) + y2(t) + z2(t)} −K6{|x|+ |y|+ |z|}

)
|p(t, x, y, z)|

≤ e−p1(t)K6

(
3 + x2(t) + y2(t) + z2(t)

)
|p(t, x, y, z)|.

By applying inequalities (2.11) and (2.12) in the above, we obtain

V̇(1.2)(t)−K6K
−1
2 |p(t, x, y, z)|V (t) ≤ 3K6|p(t, x, y, z)|,

for all t ≥ 0, x, y and z. On solving this differential equation, we have,

V (t) ≤ K7,

where K7 = [V (t0) + 3K6p0] exp(K6K
−1
2 p0) > 0. From inequality (2.12), we get

{x2(t) + y2(t) + z2(t)} ≤ K−1
2 V (t) ≤ K−1

2 K7 = D∗. (2.19)

Thus, inequality (2.3) of Theorem 2.3 follows from (2.19) by setting D =
√
D∗. This completes the

proof of the theorem.

Proof of Theorem 2.4
To prove this theorem, we employ the usual limit point argument as indicated in [31] to show that
if Lemma 2.1 holds, then the function U(t) = U(t, x, y, z) → 0 as t→ ∞. On setting p(t, x, y, z) = 0
in (2.4), we have V (t) = U(t). It then follows from estimates (2.12) of Lemma 2.1, that V (t) = 0 if
and only if x2(t)+ y2(t)+ z2(t) = 0, V (t) > 0 if and only if x2(t)+ y2(t)+ z2(t) > 0 and V (t) → ∞
if and only if x2(t) + y2(t) + z2(t) → ∞.

Suppose that W = W (x, y, z) is any given solution of the system (1.2), and consider the func-
tion V (t) corresponding to this solution. Then, we have from Lemma 2.1 that

V̇ (t) ≤ −D3{x2(t) + y2(t) + z2(t)} ≤ V (0),∀t ≥ 0.

In addition, V (t) is non-negative, non-increasing and thereby tends to a non-negative limit, V (∞)
as t → ∞. Next, we show that V (∞) = 0. But on the contrary, let’s assume V (∞) > 0 and
consider the following set

Q = {(x, y, z) : V (t, x, y, z) ≤ V (0)}.

It thus follows from the properties of the function V (t) that the set Q is bounded and so also the set
W ⊂ Q is bounded. Likewise, the non-empty set containing all the limits points of W consists of the
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whole trajectories of the system (1.2) which is lying on the surface V (t, x, y, z) = V (∞). Suppose
R is any given limit point of W , then there exists a half trajectory, WR , issuing from R and lying
on the surface V (t, x, y, z) = V (∞). Since for every point (x, y, z) on WR , V (t, x, y, z) ≥ V (∞),
we can infer at once that V̇ (t) = 0 on WR . It then follows from inequality (2.10) of Lemma
2.1 that, x = 0, y = 0 and z = 0. Therefore, the point (0, 0, 0) must be lying on the surface
V (t, x, y, z) = V (∞) which is a contradiction to our assumption that V (t, x, y, z) ≥ V (∞). Hence
V (∞) = 0. Also, it is clear that all the conditions of Lemma 2.1 are met. Therefore, the zero
solution of system (1.2) is uniformly asymptotically stable.

3 Example
In this section, we provide an example which is a special case of equation (1.1) or system (1.2).

Example 3.1. In the system (1.2), let

f(t, x, y, z) = 7 +
1

2 + t4 + |xy| sin2 y + e−|yz| , g(x, y) = 3− 1

1 + e−|xy| , h(x, y, z) = 3x+
x

1 + e
( 1
1+|x|y2z2

)
,

p(t, x, y, z) =
1

2 + t2 + e(x+y+z)2
, ψ(t) = 1 +

1

2 + t4
and ϕ(t) = 1 +

1

4 + t4
.

We now proceed to show that functions f, g, h, p, ϕ and ψ satisfy all the assumptions placed on them
under the basic assumptions.

Starting with function f, it is clear that

7 ≤ f(t, x, y, z) = 7 +
1

2 + t4 + |xy| sin2 y + e−|yz| ≤ 7
1

2
, for all t ≥ 0, x, y, z,

which gives a = 7 and a1 = 7 1
2 .

On differentiating f partially with respect to t, x, z one after the other, we have

ft(t, x, y, z) = − 4t3

(2 + t4 + |xy| sin2 y + e−|yz|)2
≤ 0 for all t ≥ 0, x, y, z.

fx(t, x, y, z) = − |y| sin2 y
(2 + t4 + |xy| sin2 y + e−|yz|)2

,

and

yfx(t, x, y, z) = − y2 sin2 y

(2 + t4 + |xy| sin2 y + e−|yz|)2
≤ 0.

Similarly,

fz(t, x, y, z) =
e−|yz||y|

(2 + t4 + |xy| sin2 y + e−|yz|)2
,

and

yfz(t, x, y, z) =
e−|yz|y2

(2 + t4 + |xy| sin2 y + e−|yz|)2
≥ 0, for all t ≥ 0, x, y, z.

Next, we have from function g that

2 ≤ g(x, y) = 3− 1

1 + e−|xy| ≤ 3, for all x, y.
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Thus, b = 2 and b1 = 3.

Differentiating g partially with respect to x and multiply the result by y gives

ygx(x, y) = − e−|xy|y2

1 + e−|xy| ≤ 0, for all x, y.

Similarly, we have
h(x, y, z) = 3x+

x

1 + e
( 1
1+|x|y2z2

)
.

Obviously, h(0, 0, 0) = 0 and

3 ≤ x−1h(x, y, z) = 3 +
1

1 + e
( 1
1+|x|y2z2

)
≤ 4, for all t ≥ 0, x, y, z.

This gives δ = 3 and δ1 = 4. Differentiating function h partially with respect to x, we obtain

hx(x, y, z) = 3+
1

1 + e
( 1
1+|x|y2z2

)
+

xe
( 1
1+|x|y2z2

)
y2z2

(1 + e
( 1
1+|x|y2z2

)
)2(1 + |x|y2z2)2

, and hx(x, 0, 0) ≤ 3+
1

1 + e
= c1.

Thus, ab− c1 = 7× 2− (3 + 1
1+e ) = 11− 1

1+e > 0.
The derivative of h with respect to y and z respectively are:

hy(x, y, z) =
2x2e

( 1
1+|x|y2z2

)|y|z2

(1 + e
( 1
1+|x|y2z2

)
)2(1 + |x|y2z2)2

≥ 0,

and

hz(x, y, z) =
2x2e

( 1
1+|x|y2|z|

)
y2|z|

(1 + e
( 1
1+|x|y2z2

)
)2(1 + |x|y2z2)2

≥ 0.

Also, from functions ϕ(t) and ψ(t), we have

ϕ(t) = 1 +
1

4 + t4
≤ ψ(t) = 1 +

1

2 + t4
, for all t ≥ 0.

Clearly,
1 ≤ ϕ(t) ≤ ψ(t), for all t ≥ 0 where σ0 = 1.

By differentiating both ϕ(t) and ψ(t) we obtain

ϕ̇(t) = − 4t3

(4 + t4)2
and ψ̇(t) = − 4t3

(2 + t4)2
.

It is easy to check that
ψ̇(t) ≤ ϕ̇(t) ≤ 0, for all t ≥ 0.

Finally, the integral of function p(t, x, y, z) with respect to t satisfies∫ ∞

0

|p(t, x, y, z)|dt =
∫ ∞

0

| 1

2 + t2 + e(x+y+z)2
|dt

=
π

2
√
2 + e(x+y+z)2

≤ π

2
√
3
<∞,

for all values of t ≥ 0, x, y, z. Therefore, all the conditions of the theorems are met by this example.
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4 Conclusion
With the aid of a new complete Lyapunov function, we have proved some theorems on the stability,
boundedness and asymptotic behaviour of solutions to the equation (1.1) or system (1.2) under
certain conditions placed on the nonlinear terms present in the equation considered.
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