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Abstract

In this work, two block methods with characteristics of LMF are derived, analysed and nu-
merically applied to solve second-order Singular Boundary Problems (SBVPs) of ordinary dif-
ferential equations. The mathematical derivation of the proposed methods is based on the
interpolation and collocation of the exact solution and its derivatives at some selected equidis-
tant grid and off-grid points. The proposed strategy consists in a block method where the
collocation at the initial point is avoided to circumvent the singularity at the starting end of
the solution interval. The convergence analysis of the discrete solutions of the methods are
examined. Finally, some second-order SVBPs of ordinary differential equations are numeri-
cally solved to demonstrate the efficiency and validity of the suggested technique, which is
compared to various strategies available in the current literature. The result supports the good
performance of the derived schemes.

Keywords: Convergence analysis, Order, Local Truncation error, Wavelet Newton approach,
Chebyshev, Block method.
MSC2010: 65L04, 65L05, 65L06, 65L20.

1 Introduction

The solution of singular differential equations exhibits strange behaviour at the singular points; it
is sometimes bounded, frequently unbounded, it may oscillate, or it is peculiar in some other way.
SBVPs are fascinating to researchers because of their behaviour and presence in several science and
engineering fields. Two-point singular boundary value problems:

u” (t) + ?u’(t) =k(t,u), 0<t<ty=1 (1.1)

is considered in this work together with any of the two-point boundary conditions: u(0) = g, u(1) =
up or u(0) = uq, v'(1) = uy or v/ (0) = ul, u(l) = up where A, uq, up, ul,, and uj are known real

values and K (x,u) denotes a continuous real function, where we assume that the solution exists
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and is unique. [1] and [2] established the uniqueness and existence of the solution to the problem
(1.1) subjected to any of the boundary conditions. According to [3] and [4], the mathematical
expression of numerous problems arising in chemical kinetics, astrophysics, catalytic diffusion reac-
tions, celestial mechanics, engineering, and various physical models resulted in second-order singular
boundary value problems of ordinary differential equations of the type given in (1.1). [4], [5], [6],
and [7] opined that SBVP has its application in the study of stellar structure, thermal explosion,
and thermal distribution in the human head, rotationally symmetric shallow membrane caps, the
problem of reactant concentration in a chemical reactor, reaction-diffusion processes inside a porous
catalyst, the distribution of oxygen in a spherical shell, and many others, can be modelled by the
system (1.1).

Significant effort has been expended in obtaining numerical solutions to the aforementioned unique
problems. Different solutions for addressing (1.1) have been documented, where the main challenge
occurs owing to the singularity at £ = 0. Numerical techniques for solving the problem have
been proposed by notable scholars in the field of numerical analysis (1.1). For example, finite
difference methods (FDM) offered in [3] and [9], spline methods (SM) proposed in [10], and [11],
the Jacobi-Gauss collocation method (JCM) described in [12] are examples of such techniques, the
pseudospectral method (PM) proposed in [13], the quintic B-spline method in [14], the Bernstein
basis polynomials in [15], the Pade approximation method (PAM) introduced in [16], [17]. Other
papers on recently developed numerical or analytical strategies for tackling (1.1) are [3], [7], [18],
[19], [20], [21] and [22]. In particular, [21] adopted the block method in combination with an ad-
hoc formula to obtain a solution at the initial point before transferring the further solution to
the primary method. One limitation of such a strategy is that the ad-hoc formulas will increase
the computational cost. In this work, however, a class of numerical Methods have been derived
for the solution of the Second-order singular boundary value problems. The method was achieved
by omitting collocation at the initial points. This strategy allows the block method to produce
approximation at this point. The methods are developed from continuous equations achieved by
the techniques of collocation and interpolation. The derived methods are analyzed and numerically
applied to solve second-order singular boundary value problems. The solutions were considered
within intervals [0, 3] and [0, 4].

2 Formulation of the Suggested Block Method

Numerical solution of second order differential equation
W = f(t, u, ) (2.1)

subject to any of the following boundary conditions: Dirichlet boundary conditions, u(a) = u,, u(b) =
up, Neumann boundary conditions, u'(a) = ul,, u'(b) = uj, and Robin boundary conditions, g (u(a),
u'(a)) = vq, g2(u(b), u'(b)) = vy are considered in this section. The methods are derived by con-
sidering

u(t) = Zajtj (2.2)

as approximate solution to (2.1) whose partial sum is given as

k

u(t) = at!, (2.3)

=0

where the a, are unknown coefficients that will be determined. First and second derivatives of (2.3)
are obtained as
k

u(t) = Y ja; (2.4)

Jj=1
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and

k

u'(t) = f(t,u,u) = Zj (j—1)a;t972 (2.5)

j=2

Interpolating and collocating equations (2.3), (2.4) and (2.5) at some carefully selected points and
by imposing that

w(ty) = tn, u(t,)=u, (2.6)

n’

’U///(tn.}.%) = fn-‘,—%’ .] = 17 27 . '7k (27)

yields a system of k—1 equations with £ —1 unknown coefficients. The system of algebraic equations
(2.6) and (2.7) can be written in matrix form

1 t, t tf;2 tﬁg t%; t/’;;iz a0 w,
0 1 2t 32tn éétn 5415” e Dt o I
0 1 2,4y 32, 4., B, o DA i, fors
. 2 ' 3 ' 4 ' .. / k.—2 : = : 2.8
ppy B2 A BHL, D'ty as Furs (2.8)
2 3 11k—3
0 2 6ty 120, 206, - D't as Frri
2 3 .. 14k—3 Qf—1 k
0 0 2 6, 1262, 2068, D"ty Fovs

The algebraic equations represented in (2.8) are then solved for the unknown parameters, and
substituting into the approximate solution (2.3), and simplified will yield a continuous scheme of
the forms.

k
ul(t) = ag(t) un + ax (t) hup, + h* > Bi() frps (2.9)

j=1

where, a;(s)’s and j;(z)’s are the coefficients that defined the methods and = = tit*‘% Evaluat-

ing (2.9) and it derivative at points ¢,4+;, j =1, 2, ---, k yields the following main and additional
formulas
k
un+%:aounJrozlhu;LJthZﬂ%fnjL%, (2.10)
k o
u;L+%:a1u;+hZﬁ%fn+%, j=1,2,..., k. (2.11)
j=1

The combination of equations (2.10) and (2.11) is the required Direct Block Method (DBM). The
theoretical procedure presented here is adopted to derive Hybrid Linear Multistep Formulas HLMF
for the solution of problems of type (1.1) with the interval [0,3] and [0,4] yields the DBM which are
termed Three Step Hybrid Direct Block Method (TSHDBM) and Four Step Hybrid Direct Block
Method (FSHDBM) respectively. The coefficients of the TSHDBM and FSHDBM are as presented
in tables 1 and 2.

3 Analysis of the method

We present in this section the analysis of the basic properties of the proposed methods.
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Table 1: The coefficients of the Hybrid Linear Multistep Formulas HLMF considered within [0, 3]

ioag a1 Po P B1 Bs B2 Bs B3 LTE
1 1 L g 19087  _ 19987 25561 _ 9403 14879  _ 1231  28549h°y")(xn) +0 (h?)
2 40320 20160 20160 10080 40320 20160 30965760
wep 2110 M uw o msoam o no mman g
8, (8
401 2 0 -y oz o_m om W oo
5 1 5 g 80175 21625 33625 _ 11125 18575  _ 1525 35225h8y<8)(mn)+0<h9)
2 8064 4032 4032 2016 8064 1032 6193152
6 1 3 0 %g *% % *% % *% 123hl7y‘920(mn)+0
7,.(8
o0 EEO-E R ER OB R w00
2 0 1 0 B " -5 1S 5 gl to
My 30 1 0 Mo ooWm m om o g Wl o
7. (8)
40 1 0 % _% % _% % _4% 143h6§/4(8£($n)+0
5 0 1 0 % _15177765 % _% % _% 37151%4%&?”)'*‘0
« « 7,,(8
6 0 1 0 % _% % _%(1) ;% 0 41h12;92(§%)+0

3.1 Local truncation error and order

Let m(z) be a sufficiently differentiable function. Consider the following difference operator asso-
ciated with the block method given in tables 1 and 2

L [m(x);h] = Zozjm(xn + jh) — hBm! (z, + jh) — W2y;m” (z, + jh), =01k, k=3, 4.(3.1)
J

where a; and 3; are respectively given in the tables 1 and 2. The block methods in tables 1 and 2 and
their associated difference operator is said to have order p if after expanding m(x,,+jh), m'(z,+jh)
and m”(x, + jh) in Taylor series about x,,, we have

L[m(x); h] = com(zy) + crhm/(x,) + esh®>m” (@) + - - + cghIm D (z,) + . .. (3.2)

with co =¢c1 =+ = cpy1 = 0 and ¢cpp2 # 0.

3.2 Consistency and convergence

In this section, the convergence of the proposed methods will be established. (see [1,21,23]) Let
the u(z) be the theoretical solution of (1.1), and {u;},_; be the approximate solution at the grid
points obtained by adopting proposed methods, that is, u; ~ u(x;). TSHBM is said to be of pth—
theoretical order of convergence if for h sufficiently small, there exists a constant K independent of
k such that

max [[u(z;) — u;l| < e B

This implies that

i) —ujll +0ash— 0.
OgE‘aSXNHu(xJ) ;| as
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The convergence shall be proof by first expressing the main and additional formulas in matrix form
adopting the following notations. Let A represent the 12N x 12N matrix define by

A A ... Aiow
A— . . 7
Ag1 Aanp ... Aanan
where A; ; ara 6 x 6 submatrices, except A; n, % = 1,...,2N which have dimension 6 x 6 and
A;on, ©=1,...,2N, which have 6 x 6. The submatrices are given below;
10 0 0 0O 00000 -1
01 00 0O 00000 -1
001 00O 00000 -1
AN N = y A= , 1=2,...,N
0001 0O 00000 -1
0 00O O0T1O0 00000 -1
10 0 001 00000 -1
0 00O 0O 000 O0O0TO
0 00O 0O 000 O0O0O
0 00O 0O 0 00 O0O0O )
Aon_1on =h , Aiip1=h ,i=(N+1),...,N
0 00O 0O 000 O0O0TO
0 000 0O 000 O0O0O
1 0 0 0 0O 1 0 0 00O
-1 1 0 0 0 O -1 1 0 0 0 O
-1 0 1 0 0 0 -1 01 0 0 O
-1 0 0 1 0 0 -1 0 0 1 0 O ]
A2N72N:h ,Aiﬁi:h ,Z:(N-i-l),...,(QN—].)
-1 0 0 010 -1 0 0 0 1 0
-1 0 0 0 0 1 -1 0 0 0 0 1
-1 0 0 0 0 O -1 0 0 0 0 O
00000 00000
-1 0 0 0 0 O -1 0 0 0 0 O
2 00000 2 0000 0]
Anon =h s Ainpi=h yi=(N+1),...,(2N-1)
-2 0 0 0 0 O -2 0 0 0 1 0
=2 0 0 0 0 0 =2 00000
-3 0 00 0O -3 0 0 00O
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and A;; =1, i=1,2,..., N — 1,where I is identity matrix. The rest of submatrices A;; are null

matrices. Also, let B be 12N x (12N + 2) matrix defined by

Bu Blz Bl,2N

By Banp Baonpon

where the elements B; ; are 6 x 6 submatrices except the B; 1, B; n41, ¢ = 1,2,...,2N which have

dimension 6 x 6.

19087 _ 19987 25561 _ 9403 14879 _ 1231
40320 20160 20160 10080 40320 20160
1609 1139 1843 2713 1073 _ 71
1260 504 630 1260 1260 504
1881 927 2055 1881 5949  _ 123
B _ h2 896 280 448 560 4480 560
1,1 — )
184 _ 1366 2032 286 568  _ 94
63 315 315 63 315 315
30175 _ 21625 33625 _ 11125 18575 1525
8064 4032 4032 2016 8064 4032
639  _1791 717 _909 423  _123
140 280 70 140 140 280
19087 _ 19987 25561 _ 9403 14879 _ 1231
40320 20160 20160 10080 40320 20160
1609 1139 1843 2713 1073  _ 71
1260 504 630 1260 1260 504
1881 927 2055 1881 5949  _ 123
Bi,z _ h2 896 2[80 44%8 560 4480 560 = 27 \ IN
184 _ 1366 2032 286 568  _ 94
63 315 315 63 315 315
30175 21625 33625 11125 18575 1525
8064 4032 4032 2016 8064 4032
639  _1791 717 _909 423  _ 123
140 280 70 140 140 280
4277 2641 4991 3649 959 _ 95
2880 960 1440 1440 960 576
33 _203 287 _71 169 _ 7
20 90 90 90 180 45
105 651 567 393 309 _ 51
BN 11= h 64 320 160 160 320 320
+h 4 s 12 _9s w7 |’
45 15 45 45 15 45
105 1175 1075 _ 175 665 _ 95
64 576 288 96 576 576
33 _2. 39 _2: 3
20 10 10 10 20
4277 2641 4991 3649 959 _ 95
2880 960 1440 1440 960 576
33 _203 287 _71 169 _ 71
20 90 90 90 180 45
105 651 567 393 309 _ 51
64 320 160 160 320 320 .
Brnasi:=h =2 2N
Nt mo s a2 _es wm _7 [P7TO
45 15 45 45 15 45
105 _ 1175 1075 _175 665 _ 95
64 576 288 96 576 576
33 _21 3  _21 3
20 10 10 10 20

The rest of the submatrice B; ; that are not included are all Null matrices i.e B; ; = 0. It should
be noted that the entries of the submatrices A; ; and B;; are the coeflicients of the TSHDBM
presented in table 1 for n = 0,1,..., N — 1. We define the following vectors corresponding to the
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exact and function values.
U = (ulty)ults) ulty) ulta), - ulty_yey) o to)al (b)) w'tn)” (33)
(F(tos ulto),u'(t0)), f(ty,ulty) w/(E))se - fltnultn),u'(tn))) " (34)

where u has (6N — 1) + (6N + 1) = 12N components and F has (6N + 1) + (6N + 1) = 12N + 2
components because due to the boundary condition in (1.1) u(tp) and wu(ty) are known values,
y(20) = Ya, y(xn) = yp. With this notation in mind, it is possible to write the exact form of the
system that provided the approximate values of the problem at hand is given by

1
2

F

Aranx12nUian + h*Bianxan+2) Flaan+2) + Cran = L(h)12n (3.5)
with
Cioy = (*um —Uq, —Ug — Ug, —Ug, —Uq, 0y -, 0, —up, 0, -+ 70)Ta

while IL(h)12n represents the local truncation errors of the proposed formulas presented in table 1
which are given as

L(h)1an = (a1,az2,a3,a4,as,a6,a7 ... ,a6n, b1, b2, b3, by, bs, be, b7 . .., bg N )T (3.6)
where
28549h8y®) () 1027h83y®) () 759h3y®) ()
=20 I 20 L o (R =" U0 =———2 1 0(r°
“ 30065760 T O (W) a2 masio TO07).as 220376 O (1)
17h8y®) () 35225h8y(®) () 123h8y®) (2)
== J U Lo =227 2 20 Lok === 410
aa 30 T O () as sioasz T O (). as om0 O )
2854918y (1) 12308y ®) (1)
=220 I U L o (B0 - O (h°
a 30065760 T O (1) aen 17920 +0 (1)
19087h7y®) (z0) 1139h7y®) z) 137h7y®) (z)
=7 YU L O, bp= L U L O(R8), by =L 0 L O (RS
! 7740 T (h%) b2 83840 (h%) bs 57344 (k)
14307y ®) (z,) 3715R7y®) (2,,) 4107y ®) (z,)
777 h8) . pe = 0 Am) W) = —J ) L8
4 60430 +O (1), bs 1548288 +0 (1) . b 17920 +0 (i)
19087h7y®) (z;) 8 417y (zn_1) 8
b7——7741440 +0(h),b6N——17920 +0 (h?)
Let defined the system that approximates (1.1) as
Aanxi2nUian + W2 Branx 12n+2) Fien+2) + Cian =0 (3.7)
where Uyo is approximated by vector Uian,
UIQN = (u%,ul,u%,u%u%,u;g,~~ auN—l-s-%aué)au%a"' 7u/IV)7F12N+2 = (fO?f%7flaf%af2f%>f3"' afN)
Subtracting equation (3.7) from (3.5) yields
AanxianEran + B Biony ian+2)(F — F) = L(h)12n (3.8)
where
Eiony = Usan — Urany = (6%,62,63 >6N—1+%7€6,€%; T ,G/N)T
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which are the errors associated with the solution and the derivatives. Since (1.1) is continuous in
the close [a, b] and differentiable in the open interval (a b), it is true by Mean Value Theorem, for
1=0, 1, ---, N the following identities are valid.

of (ci)
ou

f(ti,u(ti), u’(tl)) — f(t“u“u;) = (U(tl) — U,;)

where ¢;, ¢; are points on the line segment joining (ti,u(ti),u’(ti)) to (ti, ug, u;)
Thus, we have o -
F—F = Jianxaan+2)Hian

€o
€1
df (€o) 0 0 df(€o) 0 0
5 o
. o) ; (G ;
F — F = 8U 8u/ eN
: : : : . : €
Of (en) Of (en) e}
0 0 TS0 0 L T
ey
0 0 ‘9‘7;(5,0) 0 0 0
Of(er) 0 0 Of(er) 0 0
ou ou’ B
= z . | Pan
0 m 0 0 m 0
du T ow
0o ... 0 0 0o ... 0 Oflen)

/
where the second identity has been achieved through the fact that we know the exact boundary
conditions, that is, eg = y(xo) —yo =0, ey = y(tn) — yn = 0. Finally, using the above result, the
equation (3.8) may be be written as

(Aianxi2n + h*Branx(i2nv+2)J12n+2) <123 ) Eran = L(h) 12n (3.9)

and setting Zian <128 = (Ar2nxizn + h2Bianx(12n+2)J(128+2)x4n ), We have
Zyanxian Eran = L(h) 12N (3.10)

Dropping the dimension, we can write Z = ([1 +h?BJ ) For some selected values of h > 0 matrix
Z is invertible. Let Zny = Zianx12n, for the matrix Zy where the submatrices have many zeros
entries, it is can be confirmed that for N = 1, the determinant is |Z;| = —h'l. By mathematical
induction, we know that |Zy| = —NhY*C thus, Zy is invertible as long as h > 0. Hence,

Z=(A+h*BJ=(I-C)A
where I is the identity matrix of order 12N, and C = —h?B.JZ~!. Therefore,

Z] = I - C||A]
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AT = CJIA] = T2 (A = \)

is the characteristic polynomial of C in order to have |AI — C| # 0 for A = 1, it is sufficient to
choose h such that h? € {1/); : \;is an eigenvalue of C}. For such value of h the equation (3.10)
can be written as

E = (Z)"'L(h) (3.11)

We consider the maximum norm in R*2¥ ||E|| = max; |e;| in R*2Y and the corresponding matrix
) 3 3 p

induced norm in R2N*12N By expanding series (Z) 1_2N><12N
1

onxianll = O(h™2). This is essentially related to the
fact that the uniform norm of the inverse of A grows like h~2, as one can verify rather simply .
Consequently, from the equation in ((3.10)) and the form of the vector L(h)12x in ((3.6)), assuming
u(zx) has an

term by term around h, it can be

shown after tedious calculations that ||(Z)

1Bianll < 11(Z) ryn o L(B)i2n |l (3.12)
=0(h™?)0(n®) (3.13)
= ((n°) (3.14)

Thus, the method is 6-order convergent. In similar manner, it easy to verify that FSHDBM pre-
sented in table 2 is 8 order convergent.

4 Implementation

The derived formulas for methods within [0,3] and [0,4] presented in tables 1 and 2 are combined and
applied in block form. The solutions are considered in the interval [x,, zp4x], n =0, 1, 2, ..., N—k
where N is the number of blocks. The formulas are written inform of M (y) = 0 with the following
unknown values to be obtained

/ li / /
U= (uo, UL, ULy ooy UN -k Ug, ué,ul,...,uN>

The resulting system is solved using Newton’s method given as

M'i

Ut =U"- —
J’L

where J is the Jacobian matrix of M. The following Taylor’s approximations are considered as
starting values to be used with the Newton’s method.

+_‘h ’+1 i 2f
u J = Up U 5 o n
n+d I3 5\75

_h
/ _ / = 1Y
n+% - un+.72fn~

The algorithm adopted for the implementation suggested methods for solving (1.1) are as high-
lighted below:
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Algorithm 1 Algorithm for Implementing the suggested method
A Input: Supply the following:

N, the number of the main block

xp, the end point of the integration interval

f(z,u,u") and boundary conditions u,, up.

Output: Approximate (1.1) using the suggested method by

Define h = =%, x=m9, n=0

while x < zn do

Obtain the values of {u%,u’i } i set x=x+h,n=n+1.
i=1,...k

2 )

end while
End

0~ o vt Tw e~

5 Numerical application

Numerical examples are presented in this section to show the performance of the derived method.
The errors are measured using e; = u(x;,7) — u(x;,7) where @ and u are approximate and exact
solutions of the problems, respectively, and 7 is an arbitrary time ¢ in [0,7]. Also, the following
error norms are defined for comparison:

1
n 2 n 2 2
Ly— =Y ()] . Leo— = Max(e;), 0<i<, and RMS — =y -=
5 — error |:i_0 (e:) :| o — error az(e;) <7<, an error |:i_0 ]

The following notation were adopted in the presentation of results: BNM — Block method in [26],

ROC — Rate of convergence, NS — Number of steps, MAXAE — Maximum absolute error,
ChWNA —Chebyshev wavelet Newton approach ( [6]), GeWNA — Gegenbauer wavelet Newton
approach ( [6]) , HHWNA — Hermite wavelet Newton approach ( [6]), LaWNA — Laguerre wavelet
Newton Approach ( [6]), WNA — wavelet Newton approach ( [6]), and WQA — wavelet Quasilin-
earization approach ( [0])

5.1 Example 1
Consider the nonlinear singular boundary value problem in physiology

513 (5tPen®) —t —r — 4)
B 4+t

' (t) + (1 + i) (1) (5.1)

t

subject to u/(0) =0, w(1)+5u/(1) =In (%) — 5. The exact solution is given as u(t) = ln(ﬁ).

Table 3: Solution of example 5.1 using TSHDBM

t (grid value) U-approx u-Exact u-Error
0. -1.3862943729259658  -1.3862943611198906 1.1806x10~8
0.1 -1.3862968729233076  -1.3862968611167654 1.1807x10~8
0.2 -1.3863743697370740  -1.3863743579200614 1.1817x1078
0.3 -1.3869016885211218  -1.3869016766664655 1.1854x 1078
0.8 -1.4650316132840980 -1.4650316016572746 1.1626x10~8
0.9 -1.5239867831456570  -1.5239867721873073  1.0958x 108
1. -1.6094379231199516  -1.6094379124341003  1.0685x 1078
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Table 4: Solution of example 5.1 using FSHDBM
t (grid value) U-appProx u-Exact u-Error

0. -1.3862943610889784  -1.3862943611198906  3.0912x10~ 1!
0.1 -1.3862968610858595  -1.3862968611167654  3.0906x 10~ 1!
0.2 -1.3863743578891748  -1.3863743579200614  3.0886x 10~ 1!
0.3 -1.3869016766356027  -1.3869016766664655 3.0862x 1011
0.7 -1.4274530989039420  -1.4274530989357574  3.1815x10~ 1!
0.8 -1.4650316016256707  -1.4650316016572746  3.1604x 101!
0.9 -1.5239867721569039  -1.5239867721873073  3.0403x 10~ 1!
1. -1.6094379124044592  -1.6094379124341003  2.9641x 10711

The solution of Example 5.1 was considered within interval [0, 1] over ten (10) iterations. The
results are shown in the tables 3 to 4. As shown in columns four of tables 3 to 4, the results of the
method agree with the exact solution up to at least four decimal places.

Table 5: Comparison (MAXAE) and ROC of FSHDBM with that of using example 5.1

r=0.25
NS FSHDBM(MAXAE) FSHDBM(ROC) BNM(MAXAE) BNM(ROC)

8 1.8930 x107° - 8.166 x10~° 6.24
16 7.5145 x10~8 7.98 1.231 x107? 60.5
32 1.9588 x 10710 8.58 1.906 x10~ 6.01
64 7.2320 x10~13 8.08 2.967 x10~13 6.01
128 3.1086 x10~1° 7.86 2.665 x10~1° 6.80
256 4.4408 x10~16 2.80 1.554 x10~1 NA
512 8.3321 x10~17 2.41 8.882 x 10716 NA

Comparison of MAXAE of example (5.1) obtained using FSHDBM with those of BNM are presented
in Tables 5 and 6 for r = 0.25 and r = 1. The efficiency curves using the MAXAE and NS in Tables
5 and 6 are displaced in Figures 5.1 and 5.1. It can be seen that FSHDBM compares well with
BNM.

5.2 Example 2
Consider the nonlinear SBVP 5

u” (t) + EU/(t) +u’(t) =0, (5.2)
Subject to v'(0) =0, wu(l) = \/g . The equation arise in the study of stellar structure. It exact

solution is u(t) = /52 The example is solved within the interval [0, 1] over ten (10) iterations.

The solution of example 5.2 was considered within the interval [0, 1] over ten (10) iterations. The
results are presented in tables 7 to 8. As shown in columns four of tables 7 to 8, the results agreed
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Table 6: Comparison of maximum absolute errors and ROC of FSHM with that of using example
8

5.1

r=1
NS FSHDBM(MAXAE) FSHDBM(ROC) BNM(MAXAE) BNM(ROC)

8 1.8930 x107° - 1.145%x1077 6.21
16 7.5145 x1078 7.98 1.761x107° 6.02
32 1.9588 x1019 8.58 2.682x 10711 6.04
64 7.2289 x10~1° 8.08 4.183x10~13 6.00
128 2.7347 x10~1° 7.86 9.769x10~1° 5.42
256 7.2953 x10~17 2.80 1.332x10~15 NA
512 8.3321 x10~ 7 2.41 2.442x107 15 NA

100 -

10~ |

Logo(Err)

10-13 |
10-15 |- . '\’\;
I I I I I
0 100 200 300 400 500
Number of Step

[For r = 0.25] —o— FSHDBM BNM [For

=}
7
&

Logyo(Err)

10-12

10-15

6 160 2(‘)0 360 4(‘)0 560
Number of Step
r=1] —o— FSHDBM BNM
Figure 1: [Comparison of errors obtained using FSHDBM and BNM on problem 5.1
with the exact solution up to at least six decimal places. Table 9 shows the comparison of errors

(Loo, Lo, RMS) of example 5.2 using TSHDBM and FSHDBM with those of WNA and WQA.
Again, FSHDBM performed better than TSHDBM, WNA and WQA with just four iterations.

5.3 Example 3
u(t) + %u’(t) +e =0 (5.3)

subject to v/(0) =0, w(1) = 0. This problem was used to study thermal explosion in a cylindrical
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Table 7: Solution of example 5.2 using TSHDBM

1.

V3
2

0.8660254037844386

t (grid value) U-apProx u-Exact u-Error
0. 0.9999999999861606 1 1.3839 10~ 1!
0.1 0.9983374884457982  0.9983374884595826  1.3784 10~ 1!
0.2 0.9933992677849104  0.9933992677987828  1.387310~ 1
0.3 0.9853292781505725  0.9853292781642932 1.3721 10~ !
0.7 0.9271455408157601  0.9271455408231195 7.3595 1012
0.8 0.9078412989984316  0.9078412990032037 4.7721 1012
0.9 0.8873565094138608  0.8873565094161139  2.2531 1012
1. ? 0.8660254037844386 0
Table 8: Solution of example 5.2 using FSHDBM
t (grid value) U-appProx u-Exact u-Error
0. 1.0000000000000353 1. 6.5898x10715
0.1 0.9983374884596178  0.9983374884595826  6.5576x10~1°
0.2 0.9933992677988182  0.9933992677987828  6.5917x10~1°
0.3 0.9853292781643275  0.9853292781642932 6.4141x10~1°
0.7 0.9271455408231335  0.9271455408231195 2.6124x10~1°
0.8 0.9078412990032116  0.9078412990032037 1.5148x 10715
0.9 0.8873565094161171  0.8873565094161139  6.3310x 10715

0

Table 9: Comparison L,,, Lo and RMS errors of example 5.2 obtained using TSHDBM, and
FSHDBM with those of WNA and WQA [6]

Error TSHDBM FSHDBM WNA WQA

Lo 9.5155x10710  9.384x10!2 1.43x10710 1.43x10710

Lo 2.7840x107%  2.6023x10~1'  2.07069x1071° 2.07069x10~10

RMS 1.28743x1079 1.2373x10~!! NA NA
4—2v/2

vessel. The exact solution of (5.3) is u(t) = 2In (m)

Example 5.3 was considered within the interval [0, 1] over ten (10) iterations. The results are
presented in tables 10 to 11. As shown in columns four of tables 10 to 11, the results of the method
agreed with the exact solution up to at least twelve (12) decimal places.

Table 12 shows the comparison of errors (Leo, Lo, RMS) of example 5.3 using TSHDBM and
FSHDBM with those of WNA and WQA. FSTDDBM and FSHDBM performed better than WNA
and WQA with just four iterations.
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Table 10: Solution of example 5.3 using TSHDBM within [0,1] over ten (10) iterations

t (grid value)

U-approx

u-Exact

u-Error

0. 0.31669436764085107  0.31669436764074954  1.0153x 10713
0.1 0.3132658504981409  0.31326585049806327  7.7605x 1014
0.2 0.3030154228322728  0.30301542283229976  2.6978x 10~ 14
0.3 0.2860472653046736  0.28604726530485386  1.8025x 1013
0.7 0.15524810668220576  0.15524810668275627  5.5050x 1013
0.8 0.10832276344401158  0.10832276344446458  4.5400x 10713
0.9 0.05643860246897065  0.05643860246923624  2.6559x 10713

1.

0

0.

0

Table 11: Solution of example 5.3 using FSHDBM within [0,1] over five (5) iterations

t (grid value)

U-apProx

u-Exact

u-Error

0. 0.316694367640845589  0.31669436764074954  9.5712x 10~
0.1 0.313265850498162312  0.31326585049806327  9.8782x 10714
0.2 0.303015422832399008  0.30301542283229976  9.8606x 10714
0.3 0.286047265304956432  0.28604726530485386  1.0223x 10~ 13
0.7 0.155248106682826018  0.15524810668275627  6.9448x 10714
0.8 0.108322763444515644  0.10832276344446458  5.0841x 1014
0.9 0.056438602469260776  0.05643860246923624  2.4403x 10714
1 0 0 0

Table 12: Comparison L.,

FSHDBM with those of WNA and WQA [6]

Ls; and RMS errors of example 5.3 obtained using TSHDBM, and

Error TSHDBM WNA WQA

Lo  5.52899x107'"  3.00502x107'  3.00502x 10710
Lo 1.64448x10710  5.46469x10710  5.46469x10710
RMS  6.2147x10~ ! NA NA
Error FSHDBM WNA WQA

Lo  6.85025x107'  3.00502x1071%  3.00502x 10710
L, 2.2650x10712  5.46469%x1071° 5.46469x10~10
RMS  9.7857x10713 NA NA
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5.4 Example 4
Consider the nonlinear SBVP

2
u (t) + ;u'(t) +e v =0, W/ (0) =0, 2u(l)+u'(1)=0.

The above nonlinear SBVP is discussed by |

Table 13: Comparison of computed solutions of example 5.4 obtained using FSHDBM with those

of Wavelet methods in [6]

| as a heat conduction model in the human head.
However, an exact solution to this problem is yet to be found.

t FSHDBM ChWNA GeWNA HeWNA LaWNA

0 0.27002964789671  0.2699437790  0.269943779  0.269943779  0.269948773
0.1 0.26875690062969 0.2686763867 0.268676386 0.268676386 0.268676385
0.2 0.26493281753837  0.264853383  0.264853383 0.264853383  0.264853383
0.3 0.25853978938153  0.258462168  0.258462168 0.258462168 0.258462168
0.7 0.20649448302385  0.206431878  0.206431878 0.206431878 0.206431878
0.8 0.18655201416670  0.186495288  0.186495288 0.186495288 0.186495288
0.9 0.16365968158046  0.163609789  0.163609789 0.163609789 0.163609789

1 0.13769874661365  0.137656718  0.137656718 0.137656718 0.137656718

Table 13 compares solutions of example (5.4) obtained using FSTDDBM and FSHDBM with those
obtained by ChWNA, GeWNA, HeWNA and LaWNA.

5.5 Example 5
Consider the nonlinear SBVP:

o (8) + %u’(t) + (81;(“ - ;) 0, (5.5)

subject to «/(0) = 0, u(0) = 1. The above nonlinear SBVP is discussed in [0, 1] to study rota-
tionally symmetric solutions of shallow membrane caps. The exact solution to this example is yet
to be discovered. Table 14 compares the solutions of example (5.5) obtained using FSHDBM with
those obtained by ChWNA, GeWNA, HeWNA and LaWNA.

6 Conclusion
A new strategy for developing block methods for solving singular boundary value problems has been
introduced in this paper. The suggested strategy eliminates the use of ad-hoc formulas to obtain

the approximation of the problem at the initial points. Some examples are considered for numerical
experiments, and the results established the good performance of the technique.
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Table 14: Comparison of computed solutions of problem 5.5 obtained using FSHDBM with those

of Wavelet methods in [6]

NS

FSHDBM

ChWNA

GeWNA

HeWNA

LaWNA

0.
0.1
0.2
0.3

0.954135307075277
0.954588728705079
0.955949645053102
0.958220004713764

0.954135307
0.954588729
0.955949645
0.958220005

0.954135307
0.954588729
0.955949645
0.958220005

0.954135307
0.954588729
0.955949645
0.958220005

0.954135307
0.954588729
0.955949645
0.958220005

0.7

0.8

0.9
1.

0.976478969841676

0.983369348898582

0.991206375159024
1

0.976478970

0.983369349

0.991206375
1

0.976478970

0.983369349

0.991206375
1

0.976478970

0.983369349

0.991206375
1

0.976478970

0.983369349

0.991206375
1
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