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Abstract

Let Xn be the finite set {1, 2, . . . , n}, and POn = On ∪ {α : dom(α) ⊂ Xn(∀x, y ∈ Xn), x ≤
y =⇒ xα ≤ yα} be the semigroup of all partial order-preserving transformations from Xn to
itself, where On = {α ∈ Tn : (∀x, y ∈ Xn)x ≤ y =⇒ xα ≤ yα} is the full order preserving
transformation on Xn and Tn the semigroup of full transformations from Xn to itself. A
transformation α in POn is called quasi-idempotent if α ̸= α2 = α4. In this article, we study
quasi-idempotent elements in the semigroup of partial order-preserving transformations and
show that semigroup POn is quasi-idempotent generated. Furthermore, an upper bound for
quasi-idempotent rank of POn is obtained to be ⌈ 5n−4

2
⌉. Where ⌈x⌉ denotes the least positive

integer m such that x ≤ m ≤ x+ 1.

Keywords: Partial order-preserving, Full order-preserving, Quasi-idempotent, generating set and
rank.
MSC2010: 20M20.

1 INTRODUCTION
One of the most important generalizations of group theory and in fact, the leading area of research
in modern algebra is the theory of semigroups. The theory become an interesting field in modern
abstract algebra and the work done by Howie [1] in the full transformation semigroup Tn consisting
of all mappings from a set Xn into itself, formed a major breakthrough and indeed the basis for
further investigations into the area which has assumed an enviable place in the theory of semigroup.
Since then, there have been many articles concerned with this idea in Tn (see for example, [2–5]).
For any α ∈ POn(the semigroup of partial order-preserving transformations), if α = α2 then α is
called an idempotent; and if α ̸= α2 = α4 then α is called a quasi-idempotent. An element α of
POn, the semigroup of all partial order-preserving transformations of Xn, is said to have projection
characteristic (r, s), or to belong to the set [r, s], if |dom(α)| = r, |im(α)| = s, where 0 ≤ s ≤ r ≤ n.
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Throughout this paper we shall use the notation QE1 = QEn
1 ∪ QEn−1

1 , where QEn
1 and QEn−1

1

to respectively mean the sets of quasi-idempotents in [n, n− 1] and [n− 1, n− 1] in any subset QE
of the semigroup POn. For basic semigroup theory concepts see [6].
We now begin with a finite generating set. Let S be a semigroup and let ∅ ≠ A ⊆ S. The smallest
subsemigroup of S containing A is called the subsemigroup generated by A and is denoted by ⟨A⟩.
Clearly, ⟨A⟩ is the set of all finite products of elements of A.

If there exists a non-empty subset A of S such that ⟨A⟩ = S, then A is called a generating set
of S. Also, the rank of a finitely generated semigroup S is defined by

rank(S) = min{|A| : A ⊆ S and ⟨A⟩ = S}.
That is, the cardinality of a minimum generating set. If S is generated by the set E of idempo-

tents, then the idempotent rank of S is defined by

idrank(S) = min{|A| : A ⊆ E and ⟨A⟩ = S}.

Generation of finite transformation subsemigroups includes the work of Gomes and Howie in [15]
proved that both the rank and idempotent rank of Singn = Tn \ Sn, where Sn is the symmetric
group, are equal to n(n−1)

2 . This was generalised by Howie and McFadden in [17] considered the
semigroup K(n, r) = {α ∈ Singn : |im(α)| ≤ r} where (2 ≤ r ≤ n − 1), and showed that both the
rank and idempotent rank are equal to S(n, r), the Sterling number of the second kind. Gomes
and Howie in [13] investigated the rank of the semigroups On and POn, (the semigroup of order-
preserving full transformation and order-preserving partial transformations on Xn). It was shown
that the rank of On is n and POn is (2n − 1), and the idempotent rank of On is (2n − 2) and
POn is idempotent-generated and its idempotent rank is (3n − 2). Garba [14] in generalizing the
work of [13] considered the semigroup L(n, r) = {α ∈ On : |im(α)| ≤ r} where (2 ≤ r ≤ n − 2),
and showed that both the rank and idempotent rank are equal to

(
n
r

)
and the rank and idempotent

rank of Mn,r = {POn : |im(α)| ≤ r} where (2 ≤ r ≤ n− 2) are both
∑n

k=r

(
n
k

)(
k−1
r−1

)
.

In particular, if there exists a generating set A of S consisting of entirely quasi-idempotents,
then A is called a quasi-idempotent generating set of S, and the quasi-idempotent rank of S is
defined by

qrank(S) = min{|A| : A ⊆ QE and ⟨A⟩ = S}.
Umar [18] used quasi-idempotent elements to generate the semigroup

I−
n = {α ∈ In : (∀x ∈ dom(α)), xα ≤ x},

of all partial one-to-one order-decreasing transformations in finite symmetric inverse semigroup
and proved that the semigroup I−

n is quasi-idempotent generated and its rank is equal to n(n+1)
2 .

Madu and Garba [7] showed that each element in the semigroup IOn is expressible as a product
of quasi-idempotents of defect one in IOn, and that the quasi-idempotent rank and depth of IOn

are 2(n− 1) and (n− 1) respectively. Garba et al [8] proved that Singn is quasi-idempotent gener-
ated and that the quasi-idempotent rank of Singn is n(n−1)

2 . Garba and Imam [9] proved that the
semigroup SIn (of all strictly partial one-to-one maps on Xn) is generated by quasi-idempotents
of defect one and the best possible global lower bound for the number of quasi-idempotents (of
defect and shift equal to one) required to generate SIn is equal to ⌈ 3(n−1)

2 ⌉. Bugay [10] proved
among other results that for n ≥ 4 the quasi-idempotent rank of In is 4. Bugay [11] proved that
I(n, r) = {α ∈ In : |im(α)| ≤ r} for (1 ≤ r ≤ n− 1) is quasi-idempotent generated and the quasi-
idempotent rank of I(n, r) is

(
n
2

)
if r = 2 and

(
n
r

)
+ 1 if r ≥ 3. Recently, Imam et al [12] showed

that the semigroup On is generated by Quasi-idempotent of defect one and the upper bound for
the quasi-idempotent rank is ⌈ 3(n−2

2 ⌉.

In this article, we investigate the product of quasi-idempotents and obtain an upper bound for
quasi-idempotents rank for n ≥ 4 of POn, that is the cardinality of a minimum quasi-idempotents
generating set for POn.
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2 PRELIMINARIES
Let POn be the Semigroup of partial order-preserving transformations on Xn defined by

POn = On ∪ {α : dom(α) ⊂ Xn(∀x, y ∈ Xn), x ≤ y =⇒ xα ≤ yα},

and On the semigroups of full order-preserving transformations in Singn defined by

{On = {α ∈ Singn : (∀x, y ∈ Xn)x ≤ y =⇒ xα ≤ yα},

where Singn = Tn \ Sn the semigroup of all singular transformations on Xn, that is

Singn = {α ∈ Tn : |im(α)| ≤ n− 1}.

Hence, by Howie [6][Proposition 1.4.11], we have that

Proposition 2.1. for any α, β ∈ POn

αLβ if and only if im(α) = im(β),

αRβ if and only if ker(α) = ker(β),

αJ β if and only if |im(α)| = |im(β)|.

D = L ◦ R.

These equivalences are known as Green’s relations and the relation D is the composition of the
two relations L and R. The equivalences D and J coincide when the semigroup is finite. It is
then evident from Proposition above that there are n J-classes in POn. Thus, POn is a union of
J-classes J0, J1, . . . , Jr, . . . , Jn−1, where

Jr = {α ∈ POn : |im(α)| = r}.

Gomes and Howie [13] showed that in POn and indeed in the larger semigroup Pn of all partial
transformations of Xn. The J − class Jn−1 = {α ∈ POn : |im(α)| = n−1} is the union of [n, n−1]
and [n − 1, n − 1]. Within [n, n − 1] there are (n − 1) R − classes indexed by the equivalences
|1, 2|, |2, 3|, . . . , |n−1, n| and within [n−1, n−1], which consists of one-to-one partial order-preserving
transformations, there are n R-classes, indexed by the domains Xn \ {1}, Xn \ {2}, . . . , Xn \ {n}.
So a generating set for POn covers the R− classes in Jn−1. Thus |Jn−1| = n(2n− 1).

Consider a typical element β in [n, n−1], with the kernel, ker(β) = |i, i+1| and im(β) = Xn\{j},
then β is always a decreasing element whenever j > i and β can always be written as

β =

(
1 2 · · · i, i+ 1 i+ 2 · · · j j + 1 · · · n
1 2 · · · i i+ 1 · · · j − 1 j + 1 · · · n

)
.

Again β is increasing whenever i > j and β can be written as

β =

(
1 2 · · · j − 1, j · · · i, i+ 1 i+ 2 · · · n
1 2 · · · j − 1 j + 1 · · · i+ 1 i+ 2 · · · n

)
.

Similarly, for any element β in [n− 1, n− 1], with domβ = Xn \ {i} and imβ = Xn \ {j} then
β is a decreasing element whenever i < j and β can be written as

β =

(
1 2 · · · i− 1 i+ 1 · · · j j + 1 · · · n
1 2 · · · i− 1 i · · · j − 1 j + 1 · · · n

)
.

Similarly for i > j, the element β is a decreasing one and can be written as

β =

(
1 2 · · · j − 1 j · · · i− 1 i+ 1 · · · n
1 2 · · · j − 1 j + 1 · · · i i+ 1 · · · n

)
.
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Lastly, for i = j the element β in [n− 1, n− 1] is the only identity maps and can be written as

β =

(
1 2 · · · i− 1 i+ 1 · · · n
1 2 · · · i− 1 i+ 1 · · · n

)
.

Let Xn be the finite set {1, 2, . . . , n} and POn the semigroups of partial order-preserving trans-
formation on Xn. We begin with the following definition of quasi-idempotent elements, stationery
and non-stationery blocks of a transformation α ∈ POn.

Definition 2.2. A transformation α in POn is called quasi-idempotent if α is not idempotent but
α2 is. That is, α ̸= α2 = α4.

3 THE MAIN RESULT

3.1 PRODUCTS OF QUASI-IDEMPOTENTS IN POn

In this section, we consider the product of quasi-idempotents in the semigroup of partial order-preserving
transformations. Let QE1 = QEn

1 ∪ QEn−1
1 where QEn

1 and QEn−1
1 are respectively, the set of quasi-

idempotents in [n, n− 1] and [n− 1, n− 1]. Then

QEI = {β1, β2, . . . , βn−1, α1, α2, . . . , αn−1, µ2, µ3, . . . , µn−2, δ2, δ3, . . . , δn−2}
where

µi =

(
i i+ 1

i− 1 i

)
for i = 2, . . . , n− 1 and µi is decreasing and

δi =

(
i− 1 i
i i+ 1

)
for i = 2, . . . , n− 1 which is increasing quasi-idempotents.

And also

βi =

(
i+ 1
i

)
for i = 1, . . . , n− 1 is a decreasing quasi-idempotents,

and

αi =

(
i− 1
i

)
for i = 2, . . . , n which is increasing.Thus, ker(σi) = |i, i + 1|, ker(µi) = |i − 1, i|, dom(βi) = Xn \ i,
dom(αi) = Xn \ i, im(σi) = Xn \ i− 1, im(mui) = Xn \ i+ 1, im(βi) = Xn \ i+ 1, and im(αi) = Xn \ i− 1.
It is clear that the cardinality of quasi-idempotent in Jn−1 of POn is 2(2n− 3).
Lemma 3.1. For n ≥ 4, [n− 1, n− 1] ⊆ ⟨QEn−1

1 ⟩

Proof. Let α ∈ [n− 1, n− 1] \QEn−1
1 , with dom(α) = Xn \ {i} and im(α) = Xn \ {j}. Then we consider

three cases as follows:

Case I : If i = j, then

α =



(
1 2 · · · i− 1 i+ 1 · · · n

1 2 · · · i− 1 i+ 1 · · · n

)
for i = 1, 2, . . . , n− 1;

(
1 2 · · · n− 1

1 2 · · · n− 1

)
for i = n.

And so, we have
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α =



(
i+ 1

i

)(
i

i+ 1

)
= βiαi+1 for i = 1, 2, . . . , n− 1

(
n− 1

n

)(
n

n− 1

)
= αnβn−1 for i = n.

Case II : If i < j, then

α =

(
1 2 · · · i− 1 i+ 1 · · · j j + 1 · · · n
1 2 · · · i− 1 i · · · j − 1 j + 1 · · · n

)
.

clearly, we have

α =

(
i+ 1
i

)(
i+ 2
i+ 1

)
· · ·
(

j
j − 1

)
= βiβi+1 · · ·βj−1.

Case III : For j < i, then

α =

(
1 2 · · · j − 1 j · · · i− 1 i+ 1 · · · n
1 2 · · · j − 1 j + 1 · · · i i+ 1 · · · n

)
.

And so, we have

α =

(
i− 1
i

)(
i− 2
i− 1

)
· · ·
(

j
j + 1

)
= αi−1αi−2 · · ·αj+1.

Thus, in all cases α is a product of quasi-idempotents in QEn−1
1 . Hence [n− 1, n− 1] ⊆ ⟨QEn−1

1 ⟩.

The next lemma shows that the semigroup On is generated by its quasi-idempotents of defect 1 and
can be found in [12].

Lemma 3.2. For n ≥ 4, [n, n− 1] ⊆ ⟨QEn
1 ⟩.

The combined effect of lemmas 1 and 2 proved the following result.

Theorem 3.3. For n ≥ 4, the semigroup POn is quasi-idempotent generated. In particular, POn = ⟨QE1⟩.

On is generated by its quasi-idempotents of defect 1 and can be found in [12].

3.2 BOUND FOR QUASI-IDEMPOTENT RANK OF POn

In this section, we obtain upper bound for the minimum cardinality of Quasi-idempotent generating set
for the semigroup POn. The quasi-idempotent rank of POn denoted by qrank(POn) is defined to be the
minimum number of quasi-idempotents required to generate POn, that is

qrank(POn) = min{|Q| : Q ⊆ QE1 and ⟨Q⟩ = POn}.

We can finally state the main Theorem.

Theorem 3.4. For n ≥ 4, 2n− 1 ≤ qrank(POn) ≤ ⌈ 5n−4
2

⌉.

Proof. First, we note that, for any element α ∈ POn, of defect 1, with α = ϵ1ϵ2 · · · ϵk where ϵi ∈ QE1(i =
1, 2, . . . , k) we must have αRϵ1 and αLϵk, that is, ker(α) = ker(ϵ1) and im(α) = im(ϵk). Thus, it follows
that any generating set of quasi-idempotents for POn must cover both the R-classes and L-classes in Jn−1.
And so, since there are n L-classes and 2n − 1 R-classes in Jn−1, it is immediate that qrank(POn) ≥ n
and qrank(POn) ≥ 2n − 1. But, since 2n − 1 > n, the inequality qrank(POn) ≥ n is superfluous. Hence,
for all n ≥ 4

2n− 1 ≤ qrank(POn). (3.1)
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Now, to show the other inequality, that is qrank(POn) ≤ ⌈ 5n−4
2

⌉, we consider the subset

A = QE1 \ ({βi : i = 2, 3, . . . , n− 1} ∪ {δi : 4, 6, 8, . . . , n− 2})

of QE1 and observe that, for all i = 2, 3, . . . , n− 1,

αiµi =

(
i+ 1
i

)
= βi.

for i = 4, 6, 8, . . . , n− 2,

µi+1δi+1δi−1µi−2 =

(
i− 1 i
i i+ 1

)
= δi.

This shows that POn = ⟨A⟩. To obtain the required inequality we compute the cardinality of the set
A. For this, we consider two case based on the parity of n.

Case I . If n is even, then
|A| = |QE1| − |{βj , δi}| 2 ≤ j ≤ n− 1 and i = 4, 6, 8, . . . , n− 2

= 4n− 6− (n− 2)− (n
2
− 2)

= ⌈ 5n−4
2

⌉.
Case II . If n is odd, then

|A| = |QE1| − |{βj , δi}|
2 ≤ j ≤ n− 1 and i = 4, 6, 8, . . . , n− 2

= 4n− 6− (n− 2)− (n−1
2

− 2)

= ⌈ 5n−4
2

⌉.

Thus, we have qrank(POn) ≤ |A| = ⌈ 5n−4
2

⌉.
This together with equation 3.1 give the required result.

3.3 Conclusion
This article has been able to identify Quasi-idempotents as a new generating system of POn of a finite set of
n-elements. Thus, it follows from this study that algebraic and combinatorial properties of POn can easily
be deduced via studying the corresponding properties on the set of quasi-idempotents in this semigroup.
Moreover, the upper bound obtained for the quasi-idempotents rank has reduced to some extent the size
of the quasi-idempotents generating set. We suspect ⌈ 5n−4

2
⌉ to be the qrank, only that we are unable to

establish the equality at the moment.
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